Настроить статическую маршрутизацию между роутерами в сети с помощью cli

Обновлено: 05.07.2024

Статический роутинг представляет собой определяемые пользователем маршруты (route), которые заставляют пакеты, перемещающиеся между источником и адресатом, отправляться по указанному пути. Он также полезен для определения шлюза последней надежды (gateway of last resort) , на который будут направляться все unroutable пакеты. Статический маршрут обычно предназначен для тех случаев, когда Cisco не может динамически формировать маршрут для адресата.

Для настройки статического роутинга, в режиме глобальной конфигурации, необходимо ввести команды, типа:

ip route prefix mask address | interface> [distance] [tag tag] [permanent]

CISCO помнит статические маршруты, до тех пор, пока вы не удаляете их (используя в режиме глобальной конфигурации команду no ip route prefix mask ). Однако, если Вы определяете параметр administrative distance, Вы ослабеваете(flagging) статический маршрут, который может быть отменен (overridden) динамической информацией. Например, IGRP-derived (-полученные) маршруты имеют заданное по умолчанию значение administrative distance равное 100. Чтобы иметь статический маршрут, который был бы отменен в соответствии с IGRP dynamic route, определите ему administrative distance большее, чем 100. Статические маршруты имеют заданное по умолчанию значение administrative distance равное 1. Каждый dynamic routing protocol имеет некоторое значение по умолчанию для administrative distance (см. таблицу)

Статические маршруты, которые указывают на интерфейс, будут рекламироваться (advertised) через RIP, IGRP, или другие протоколы динамической маршрутизации dynamic routing protocols, независимо от того, были ли определены для этих протоколов dynamic routing protocols команды redistribute static. Однако, если Вы определяете статический маршрут на интерфейс, который не входит ни в одну из сетей, определенных в команде network для dynamic routing protocols, никакой из этих протоколов не рекламирует (advertise) этот маршрут, если redistribute static для них определена.

В первом примере, было выбрано administrative distance равное 110. В этом случае, пакеты для сети 10.0.0.0 будут направлены через маршрутизатор 131.108.3.4, если динамическая информация с administrative distance меньшим, чем 110 не доступна:

Во-втором примере пакеты для сети 131.108.0.0 будут направлены маршрутизатору 131.108.6.6:

В общем случае при настройке статической маршрутизации вам необходимо настроить заданный по умолчанию маршрут для IP трафика. Его предназначение - заставлять трафик для неизвестных подмножеств IP адресов (не определенных командами ip route) следовать по заданному по умолчанию маршруту.

Чтобы лучше понять принцип маршрутизации настроим статическую маршрутизацию на основе нескольких примеров. Для настройки подключимся к консоли маршрутизатора посредством консольного (rollover) кабеля, а после установки IP адреса можно подключаться через Telnet/SSH.

После включения питания оборудование проходит диагностику, называемую POST (Power On Self Testing). Если оборудование и система в порядке, то загружается операционная система IOS (Internetwork Operating System).

Если система не содержит конфигурацию, то система запустит мастера первоначальной настройки, с помощью которого можно настроить порты, пароль к системе и т.д.:


Рекомендую пропустить данный этап и настроить необходимые параметры самостоятельно.

Но прежде повторим какие режимы доступны для настройки:



Теперь настроим сеть, указанную на рисунке:


Необходимо настроить маршрутизацию так, чтобы все компьютеры были друг другу доступны.

Приведем настройки для маршрутизатора A_Router. Настройки для маршрутизатора B_Router аналогичны за исключением IP адресов.

Ввод в режим глобальной конфигурации:

Router> enable

Меняем имя маршрутизатора:

Назначаем IP адрес и маску для интерфейса FastEthernet 0/0, подключенного к локальной сети:

Затем включаем интерфейс:

Для информативности можно добавить комментарий к каждому интерфейсу:

То же самое проделаем и с другим интерфейсом, подключенному к маршрутизатору В. Настрой там сеть 10.1.1.0/30. Подобные интерфейсы еще называют WAN (Wide Area Network) интерфейсами.

Теперь настроим статическую маршрутизацию к сети 192.168.1.0/24:

этот интерфейс доступна сеть 192.168.1.0/24

либо можно ввести IP адрес интерфейса вместо его названия:

Подобные настройки с учетом IP адресов необходимо выполнить и на другом маршрутизаторе.

Вот как выглядит конфигурация на обоих маршрутизаторах:



Теперь выполни команду ping 192.168.1.100 с любого компьютера маршрутизатора A_Router. Если результат выглядит примерно так


то, все настроено правильно.

Поздравляю, статическая маршрутизация выполнена. Теперь каждый маршрутизатор будет доступен с любого компьютера.

Напомню, что данная конфигурация хранится в оперативной памяти, поэтому сохраним ее в энергонезависимой памяти для последующего использования:

Destination filename [startup-config]?

Нажми Enter и конфигурация из оперативной памяти будет скопирована в энергонезависимую.

Running-config - текущая конфигурация в оперативной памяти

Startup-config - сохраненная конфигурация в энергонезависимой памяти NVRAM. Именно этот файл будет загружен в оперативную память маршрутизатора при включении питания.

Чтобы просмотреть текущую конфигурацию введи:

Чтобы увидеть таблицу маршрутизации введи:

Ты увидишь новый маршрут обозначенный буквой S, то есть статический (static):


Чтобы увидеть список всех интерфейсов введи:


Теперь немного усложним задачу. Между маршрутизаторами поставим третий маршрутизатор:


Конфигурация маршрутизатора A_Router не изменилась, а в B_Router необходимо изменить адрес WAN интерфейса.

Вот как будет выглядеть конфигурация C_Router:


Таблицы маршрутизации A_Router и B_Router также не изменились. А в C_Router выглядит так:


А теперь еще больше усложним сеть, добавив четвертый маршрутизатор:


Теперь у нас имеется альтернативный маршрут через маршрутизатор D, который подключен к сети посредством серийных интерфейсов со скоростью передачи в 56 Кбит/с (настройку и принцип работы серийных интерфейсов мы рассмотрим в одном из последующих уроков).

Добавим новый маршрут в A_Router и B_Router. Настроем D_Router аналогично C_Router с учетом адресации.

Теперь таблицы маршрутизации будут выглядеть так:



Запустим утилиту Ping на одном из хостов, чтобы убедиться, что маршрутизация работает правильно.

По какому же маршруту передаются пакеты?

Пакеты передаются одновременно по двум маршрутам, так как по умолчанию на маршрутизаторах Cisco включена балансировка нагрузки.

С одной стороны все выглядит хорошо. Имеется запасной маршрут, повышающий надежность связи. Однако в этом кроется и потенциальная опасность.

В данном примере один маршрут является более медленным по сравнению с другим маршрутом, что может привести к значительным задержкам при передаче пакетов. Это крайне нежелательно при передаче медиатрафика (видео, голос). Для такого типа трафика необходим постоянный маршрут с минимальными задержками, то есть оптимальным решением является использовать быстрый маршрут для всего трафика, а второй - в качестве резервного на случай отказа первого.

Рассмотрим другую ситуацию. Подключим к сети коммутатор:


Конфигурация прежняя. Таблицы маршрутизации на A_Router и B_Router тоже не изменились. Пакеты свободно проходят по двум маршрутам.

Теперь отключим C_Router и проверим как будет работать связь:


В чем же дело? Ведь у нас же есть работающий маршрут.

Взглянем на таблицу маршрутизации A_Router:


Ничего не изменилось. Маршрутизатор считает, что C_Router все еще работает и продолжают передавать через него часть пакетов. Поэтому почти половина пакетов потеряна.

Если мы отключим интерфейс Fast Ethernet 1/0 на A_Router, то запись о маршруте исчезнет из таблицы маршрутизации и все пакеты будут приняты:


Здесь оптимальным решением было бы использовать более медленный маршрут в качестве основного либо изменить топологию сети (данный пример лишь показательный).

Это лишь частные случаи, которые необходимо учитывать в каждой сети.

Какое же решение существует в данных примерах?

Решение простое: в таблицу маршрутизации поместить один (основной) маршрут, который удаляется из таблицы в случае потери связи на канальном уровне. Альтернативный маршрут добавляется в таблицу сразу после удаления основного из таблицы.

Достигается это с помощью установки определенных приоритетов, которые называются административное расстояние (administrative distance).

Административное расстояние показывает насколько надежным является маршрут по сравнению с другими маршрутами и принимает значения от 1 до 255. Чем ниже значение, тем более надежен маршрут. Статические маршруты по умолчанию всегда имеют административное расстояние равным 1. При наличии двух и более маршрутов до одной и той же сети в таблицу маршрутизации помещается маршрут с наименьшим административным расстоянием. То же самое касается и маршрутов, вычисленных динамическими протоколами маршрутизации RIP, OSPF, EIGRP. Каждый из них имеет определенное значение административного расстояния:

  • RIP - 120
  • OSPF - 110
  • EIGRP - 90

Из этого следует, что если в маршрутизаторе работают одновременно 2 и более протоколов маршрутизации, то в таблицу маршрутизации попадут маршруты протокола с более низким административном расстоянием (EIGRP) при условии, что эти протоколы вычислили маршруты до одной и той же сети назначения.

Вот как настраивается административное расстояние для статических маршрутов:

Следует быть внимательным и аккуратным при использовании статической маршрутизации.

Где используется статическая маршрутизация?

Чаще всего на маршрутизаторах клиентов, подключенных к провайдерам. В большинстве случаев такие маршрутизаторы имеют 2 интерфейса, поэтому достаточно пересылать пакеты до любых сетей через WAN интерфейс.

Неужели в этом случае для каждой сети нужно настраивать отдельный маршрут?

Нет, достаточно ввести такую команду:

Данная запись означает все сети, то есть образуют единый маршрут для всех сетей. Поэтому нет необходимости настраивать маршруты для каждой отдельной сети.

означает маршрут до конкретного хоста, а не сети. С помощью маски и технологии VLSM можно объединять несколько маршрутов в один общий, если они проходят через один и тот же интерфейс или маршрутизатор.

Сегодня мы поговорим о статической маршрутизации и рассмотрим три темы: что такое статическая маршрутизация, как она настраивается и какая у неё альтернатива. Вы видите топологию сети, которая включает в себя компьютер с IP-адресом 192.168.1.10, подсоединенный через свитч к шлюзу, или роутеру. Для этого соединения используется порт роутера f0/0 с IP-адресом 192.168.1.1.


Второй порт этого роутера f0/1 с IP-адресом 192.168.2.1 подключен к порту f0/0 другого роутера, и этот интерфейс имеет адрес 192.168.2.2. Второй роутер соединен портом f0/1 с адресом 192.168.3.2 с третьим роутером, который использует для этого соединения порт f0/0 с IP-адресом 192.168.3.3.

Наконец, третий роутер соединен со вторым свитчем через порт f0/1 с адресом 192.168.4.3, а свитч подсоединен ко второму компьютеру с IP-адресом 192.168.4.10.
Если вы знаете, как по IP-адресам можно разделить подсети, то определите, что участок от первого компьютера до первого роутера относится к одной подсети, участок межу первым и вторым роутером – ко второй сети, между вторым и третьим роутером – к третьей сети и между третьим роутером и вторым компьютером – к четвертой сети. Таким образом, у нас имеется 4 различных сети.


Если компьютер 192.168.1.10 хочет связаться с компьютером 192.168.4.10, то сначала он должен послать свои данные шлюзу 192.168.1.1. Он создает фрейм, в который помещает IP-адрес источника и назначения, MAC-адрес источника и назначения и отсылает его роутеру. Тот отбрасывает информацию 2-го уровня, то есть MAC-адреса, и смотрит на информацию 3-го уровня. Узнав, что данные адресованы устройству с IP-адресом 192.168.4.10, роутер понимает, что такое устройство к нему не подсоединено, поэтому он просто должен пропустить этот фрейм через себя дальше по сети. Он обращается к своей таблице маршрутизации и видит, что данные для сети 4. нужно посылать устройству с IP-адресом 192.168.2.2.

Давайте рассмотрим, как создается таблица маршрутизации. Для этого используем Cisco Packet Tracer и посмотрим, как реализуется концепция роутинга. Здесь изображена та же топология сети, и сейчас я присвою роутерам соответствующие IP-адреса, указав также адреса шлюзов по умолчанию.

Мы ничего не делаем со свитчем, потому что он работает с настройками по умолчанию и использует VLAN1. Приступим к настройкам первого роутера Router0. Сначала присвоим ему имя хоста R1, после чего пропишем IP-адрес и маску подсети для интерфейса f0/0. Затем нужно применить команду no shutdown. Вы видите, как маркер интерфейса сменился с красного на зеленый, то есть порт включился в сеть.

Далее нам нужно настроить второй порт роутера f0/1, при этом имя хоста остается прежним, мы просто добавляем IP-адрес 192.168.2.1 и маску подсети 255.255.255.0. Здесь нет ничего нового, это простая настройка, вы уже знаете все команды, поэтому я быстро пробегусь по остальным роутерам. По мере того, как я буду присваивать IP-адреса и использовать команду no shut, порты роутеров будут изменять цвет на зеленый, показывая, что связь между устройствами установлена. При этом я создаю сети 1., 2., 3. и 4. Последний октет IP-адреса порта роутера указывает на номер самого роутера, а предпоследний октет – на номер сети, подключенной к этому порту.

Таким образом, у первого роутера адреса портов будут 192.168.1.1 (первый роутер, первая сеть) и 192.168.2.1 (первый роутер, вторая сеть), у второго роутера — 192.168.2.2 (второй роутер, вторая сеть) и 192.168.3.2 (второй роутер, третья сеть) и у третьего роутера — 192.168.3.3 (третий роутер, третья сеть) и 192.168.4.3 (третий роутер, четвертая сеть). По-моему, это довольно легко запомнить, однако в реальности адреса могут формироваться по-другому, в зависимости от правил, принятых в вашей компании. Вы должны придерживаться правил компании, потому что вашему коллеге будет легче устранять неисправности в вашей сети, если вы будете формировать ее в соответствии с правилами.

Итак, я закончил присваивать портам роутера IP-адреса, и вы видите, что порт второго свитча также поменял цвет на зеленый, так как соединение между ним и вторым компьютером создалось автоматически.


Теперь я вызову терминал командной строки первого компьютера и пропингую второй компьютер по адресу 192.168.4.10. Перейдем к режиму симуляции – теперь вы видите анимированное движение пакетов пинга по участкам сети. Сейчас я ещё раз запущу пингование, чтобы вы смогли внимательно посмотреть, что при этом происходит. Справа в таблице вы видите ICMP, Internet Control Message Protocol – так обозначается пинг. Пинг – это протокол, который мы используем для проверки соединения.


Вы посылаете тестовый пакет на другое устройство, и если оно его возвращает, то связь успешно установлена. Если щелкнуть по пакету пинга на схеме, можно посмотреть информацию о передаче.


Вы видите данные 3 уровня OSI – это IP-адреса источника и назначения пинга, данные 2-го уровня в виде соответствующих MAC-адресов и данные 1-го уровня в виде обозначения порта (портов) – это FastEthernet0. Вы также можете взглянуть на формат фрейма пинга: заголовок, тип и тело пакета.


Фрейм направляется к свитчу, свитч анализирует MAC-адреса и отправляет его дальше по сети роутеру. Роутер видит IP-адрес 192.168.4.10 и отбрасывает пакет, потому что не знает такого адреса. Давайте посмотрим, что происходит в режиме реального времени, для чего вернемся к пингу в окне командной строки.


Вы видите, что попытке пропинговать компьютер 192.168.4.10 все 4 пакета были потеряны – от роутера 192.168.1.1 был получен ответ, что хост назначения не доступен. Вернемся в окно интерфейса командной строки роутера и введем команду show ip route. Вы видите самую важную часть – таблицу маршрутизации, а введенная мной команда это одна из основных команд роутинга Cisco. В настоящий момент эта таблица содержит 2 записи. В начале таблицы находится список используемых сокращений, из которого видно, что буквой С обозначаются соединения. Первая запись сообщает, что сеть 192.168.1.0/24 напрямую подсоединена к порту FastEthernet0/0, а сеть 192.168.2.0/24 напрямую подсоединена к порту FastEthernet0/1. Это значит, что в данный момент роутер знает только эти две сети.


Значение 192.168.1.0/24 является идентификатором сети. Когда мы создавали подсети, мы одновременно создавали их идентификаторы. Эти идентификаторы говорят роутеру, что все устройства, IP-адреса которых находятся в диапазоне от 192.168.1.1 до 192.168.1.254, расположены в данной подсети. Таким образом, все эти устройства технически должны быть доступны для роутера, поскольку он подсоединен к данной сети.

Если в конце идентификатора расположено значение /24, это означает, что всем устройствам данной сети от 1 до 254-го будет рассылаться широковещательный запрос. Итак, к данному роутеру подсоединены только сети 1. и 2., поэтому он знает только об этих сетях. Поэтому когда пинг с адресом 192.168.4.10 попадает к роутеру, он не знает, что этот адрес доступен по маршруту Router0- Router1- Router2.

Мы скажем этому роутеру, что любой пакет и любой трафик, предназначенный для сети 192.168.4.0/24, должен быть отправлен второму роутеру. Формат команды для назначения статической маршрутизации имеет такой вид: ip route <идентификатор сети> < IP-адрес маски подсети > < IP-адрес шлюза >.


Сейчас я покажу вам, что это означает. Мы используем для этой команды режим глобальной конфигурации настроек роутера. Я набираю ip route 192.168.4.0 255.255.255.0 – это означает, что сюда попадает любой трафик для устройств сети, чей IP-адрес имеет значение последнего октета от 1 до 254, и далее набираю либо IP-адрес, либо обозначение порта, куда должен отправляться этот трафик. В данном случае я набираю обозначение интерфейса f0/1, то есть команда приобретает такой вид: ip route 192.168.4.0 255.255.255.0 f0/1.


Вместо интерфейса шлюза я могу указать его IP-адрес, тогда команда статической маршрутизации будет выглядеть как ip route 192.168.4.0 255.255.255.0 192.168.2.2.

Вы можете спросить, что лучше. Я думаю, что для широковещательных сетей, таких, как Ethernet, лучше указывать IP-адрес. Если же вы используете сети типа «точка-точка», такие, как Frame Relay (сети с ретрансляцией, или коммутацией кадров), лучше использовать exit interface. Позже мы рассмотрим сети Frame Relay, сейчас же я использую более подходящий вариант команды маршрутизации -192.168.4.0 255.255.255.0.

Давайте теперь посмотрим на таблицу маршрутизации, использовав команду do show ip address. Вы видите, что в ней появилась новая запись, озаглавленная буквой S, то есть static.


Эта запись говорит о том, что если имеется трафик для сети 192.168.4.0/24, его нужно пересылать адресату через устройство с IP-адресом 192.168.2.2. Вернемся к командной строке компьютера и пропингуем нужный адрес еще раз. Теперь трафик должен пройти через первый роутер и достигнуть второго роутера, который должен отбросить пакеты.


Что произойдет, если я еще раз отправлю пинг? Ведь теперь все сетевые устройства знают, как достичь второго компьютера. Будет ли теперь пингование IP-адреса 192.168.4.10 удачным? Нет, не будет!

Что произойдет после этого? Второй роутер знает про сети 2., 3. и 4., но ничего не знает о первой сети. Поэтому нужно зайти в настройки второго роутера Router1 и использовать команду ip route 192.168.1.0 255.255.255.0 192.168.2.1, то есть указать, что трафик для сети 1. должен быть отправлен по сети 2. первому роутеру Router0.

После этого пакет достигает первого роутера, который знает об устройстве 192.168.1.10, потому что первая сеть, в которой находится этот компьютер, подключена к порту этого роутера. Замечу, что теперь первый роутер ничего не знает о сети 3., а третий роутер ничего не знает о второй сети. Это может создать проблему, потому что эти роутеры не знают о существовании промежуточных подсетей.

Давайте рассмотрим другую ситуацию. Итак, первый компьютер может успешно общаться со вторым компьютером, при этом трафик проходит через все эти устройства. Посмотрим, сможет ли PC0 связаться с третьим роутером Router2 по адресу 192.168.3.3 – это порт сети 3 третьего роутера. Пинг показывает, что это невозможно – хост назначения недоступен.

Посмотрим, в чем причина. Открыв таблицу маршрутизации первого роутера, мы видим, что он знает только 3 сети – первую, вторую и четвертую, но ничего не знает о третьей сети. Поэтому, если я хочу связаться с этой сетью, для неё нужно задать статический маршрут.

Итак, мы рассмотрели, как можно настроить статическую маршрутизацию для трех роутеров. Если у вас имеется 10 роутеров и 50 различных подсетей, ручная настройка статической маршрутизации займет очень много времени. Вот зачем нам нужна динамическая маршрутизация.
Сейчас я удалю все маршруты, которые создал. Для этого я поочередно вызову таблицы маршрутизации всех роутеров и допишу слово «no» в начале каждой записи статической маршрутизации, то есть использую команду отрицания. Теперь мы можем рассмотреть, что представляет собой динамическая маршрутизация.

Для динамической маршрутизации я должен активировать протокол RIP, это очень быстрый протокол. Но сегодня мы не будем обсуждать RIP, наша тема – это статическая маршрутизация, и я хотел показать вам, насколько это кропотливое и утомительное дело. Я все же быстро продемонстрирую вам, как работает RIP, который мы подробно рассмотрим на следующем уроке.
На примере первого роутера я использую команду router rip, затем введу ver 2, чтобы указать версию протокола, и затем отдельными строками перечислю сети, для которых нужно использовать протокол динамической маршрутизации: 192.168.1.0, 192.168.2.0, после чего перейду ко второму роутеру и поступлю с ним аналогично. Технически я просто указываю сети, которые подключены к данному устройству, поэтому для второго роутера я укажу 192.168.2.0 и 192.168.3.0, а для третьего после команды rip ver 2 – адреса 192.168.3.0 и 192.168.4.0. Затем я вернусь к первому роутеру и посмотрю на таблицу маршрутизации.


Вы видите, что в ней волшебным образом появились все сети, две первые – это те, что подсоединены непосредственно к роутеру, а две остальные – те, связь с которыми осуществляется по протоколу динамической маршрутизации RIP. Аналогичная ситуация наблюдается в таблицах маршрутизации второго и третьего роутеров. Если я подсоединю ко второму роутеру сети 5. и 6., то все устройства, использующие RIP, будут знать об этих новых сетях. Вот в чем заключается преимущество динамической маршрутизации.


Если я сейчас пропингую второй компьютер, связь будет работать без проблем. Я могу пропинговать третий роутер, и пинг будет успешным, потому что первый роутер благодаря RIP знает обо всех устройствах всех сетей. Аналогичным «знанием» будут обладать второй и третий роутеры. Я не говорю, что RIP самый лучший протокол, но он способен эффективно выполнять множество вещей. Пока что я просто хочу, чтобы вы поняли, что такое маршрутизация и как она работает, что такое таблица маршрутизации и в чем заключено её значение.

Независимо от того, используете вы статическую или динамическую маршрутизацию, роль протоколов заключается в том, чтобы заполнить таблицу маршрутизации. Эта таблица должна знать обо всех маршрутах ко всем устройствам сети, чтобы одно устройство могло установить соединение с другим устройством.

Итак, сегодня вы узнали, что маршрутизация – это процесс, обеспечивающий появление записей о маршрутах в таблицах маршрутизации для того, чтобы роутер мог принять решение об отправке трафика по сети.

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Проводятся технические работы по обновлению компонентов блога. Возможно некорректное отображение некоторых элементов. Приносим свои извинения за временные неудобства. Мы стараемся сделать блог лучше =)

Переходи скоре.

суббота, ноября 24, 2012

Азы статической маршрутизации

В прошлой статье мы с вами обсудили процесс маршрутизации между сетями, подключенными к интерфейсами одного единственного маршрутизатора (рекомендую ознакомиться с ней), сегодня же мы разберем, как осуществляется маршрутизация между сетями, подключенными к разным маршрутизаторам, связанным между собой. Пока что мы не будим лезть в дебри протоколов динамической маршрутизации, а разберемся, как пользоваться статической маршрутизацией. В качестве примеров, для демонстрации настройки будим использовать маршрутизаторы фирмы Cisco , доступные в Packet Tracer .

Как мы уже выяснили, если у нас всего один маршрутизатор, то нам достаточно всего лишь сконфигурировать его интерфейсы, и он сразу же будет выполнять маршрутизацию между сетями, подключенными к нему. Немного по иному обстоят дела, если в нашей сети есть несколько маршрутизаторов . Допустим, наша интерсеть сеть будет иметь следующий вид:

Объединение сетей с помощью маршрутизаторов

Давайте сымитируем данную ситуацию в Cisco Packet Tracer , а заодно поищем пути ее решения. Для начала соберем в Packet Tracer следующую схему (как это сделать смотрите в предыдущей статье):

После этого перетяните необходимую интерфейсную плату в разъем маршрутизатора.

IP: tableid=0, s=172.20.20.100 (FastEthernet0/1), d=192.168.100.2 (FastEthernet1/0), routed via RIB

IP: s=172.20.20.100 (FastEthernet0/1), d=192.168.100.2 (FastEthernet1/0), g=192.168.100.2, len 128, forward

IP: tableid=0, s=172.20.20.100 (FastEthernet1/0), d=192.168.100.2 (FastEthernet1/0), routed via RIB

IP: s=172.20.20.100 (FastEthernet1/0), d=192.168.100.2 (FastEthernet1/0), len 128, rcvd 3

IP: s=192.168.100.2 (local), d=172.20.20.100 len 128, unroutable

Читайте также: