Wifi msc что это

Обновлено: 02.07.2024

На протяжении многих лет Mesh Wi-Fi использовался преимущественно в бизнесе, где безопасность сети критически важна. Недавно Mesh Wi-Fi стал доступен для обычных пользователей, благодаря чему у них появился доступ к безопасному высокоскоростному Wi-Fi с широким радиусом действия.

В этой статье мы расскажем, что такое Mesh Wi-Fi, для чего он нужен, и поделимся кое-какими полезными советами для начала работы.

Что такое Mesh Wi-Fi?

Mesh Wi-Fi — это домашняя Wi-Fi система, созданная для устранения зон со слабым сигналом и обеспечения непрерывного покрытия Wi-Fi во всём доме.
Mesh-системы обеспечивают более высокую скорость, широкое покрытие и надёжное соединение для устройств, подключённых к сети. В то время как обычные роутеры раздают Wi-Fi из одной точки, у систем Mesh Wi-Fi их несколько.

Устройство, подключённое к модему, является основным (главным роутером или шлюзом). Остальные устройства (называемые «узлами») принимают и ретранслируют сигнал основного устройства. В результате получается эффективная Wi-Fi сеть с мощным сигналом, которая состоит из нескольких модулей.

Кому пригодится Mesh Wi-Fi?

Mesh Wi-Fi создан для тех, у кого дома слабое или неполное Wi-Fi покрытие, а также для тех, кому нужна несложная Wi-Fi система, которую легко настроить самому.

Поскольку у обычных роутеров зона вещания ограничена, зачастую они не могут полностью покрыть большие дома или дома с несколькими этажами. Если площадь дома составляет 280 кв. м, в нём два или более этажей, есть внутренние стены из кирпича или у него необычная планировка, тогда роутер с Mesh Wi-Fi не будет лишним.

Mesh Wi-Fi также отлично подойдёт для тех, кто заинтересован в мощной Wi-Fi системе, но не хочет возиться со сложной установкой и настройкой, требующимися для большинства обычных роутеров.

Каковы преимущества Mesh Wi-Fi?

У традиционных роутеров зона охвата ограничена. Добавление усилителя Wi-Fi сигнала может с этим помочь, однако взамен на подключение усилители Wi-Fi сигнала жертвуют скоростью, в то время как Mesh Wi-Fi сочетает в себе всё самое лучшее — высокую скорость и широкую зону охвата.

Одна сеть на весь дом

Mesh Wi-Fi роутер позволяет забыть о входе в новую сеть каждый раз, когда вы поднимаетесь на этаж выше, и не терять подключения к единой надёжной сети, где бы вы ни были. Умная технология Mesh позволяет оставаться в сети, даже когда один из Mesh-узлов (модулей) даёт сбой.

Стабильное подключение на большом расстоянии

Mesh-роутер обеспечивает мощное и стабильное соединение во всём доме. Каждый модуль Mesh использует сигнал других узлов, поэтому Wi-Fi подключение будет одинаково хорошим как на чердаке, так и в подвале.

Простая настройка и управление

Большинство Mesh-роутеров в продаже сегодня поддерживают простую установку и управление сетью, позволяя переключать настройки сети, проверять скорость и включать родительский контроль.

Управление умным домом

Некоторые Mesh-роутеры, такие как TP-Link Deco M9 Plus, настолько продвинуты, что работают в качестве Wi-Fi роутера и центра управления умным домом, подключая устройства по Zigbee, Bluetooth и Wi-Fi и позволяя управлять всеми умными устройствами из приложения Deco.

Как работает Mesh Wi-Fi?

Для создания Mesh Wi-Fi сети используется два или более модулей Mesh Wi-Fi. Один модуль подключается к интернету, а остальные размещаются по всему дому для создания мощной Wi-Fi сети. В отличие от стандартных роутеров, эти модули являются частью единой сети с одним SSID и паролем. Поэтому для настройки и расширения Mesh-сети достаточно просто добавлять новые модули.

Модули Mesh необходимы для эффективной работы Wi-Fi, поскольку они образуют последовательную цепочку с другими модулями в сети. Сигнал будет хорошим даже у самых отдалённых от роутера модулей. Модули взаимодействуют друг с другом для определения лучшего диапазона для ваших устройств, а также для перенаправления трафика в случае сбоя одного из модулей.

В чём разница между Mesh Wi-Fi и усилителями Wi-Fi сигнала?

Несмотря на то, что Mesh Wi-Fi и усилители Wi-Fi сигнала могут показаться одинаковыми по своей функции, есть некоторые ключевые различия.

У устройств Mesh Wi-Fi есть протоколы роуминга (чтобы вы оставались в одной сети при переключении между модулями) и Mesh-технологии, такие как самовосстановление (Self-Healing) и адаптивная маршрутизация, поддерживающие стабильность сети.

При использовании усилителей Wi-Fi сигнала для сохранения хорошего подключения при значительном отдалении от роутера происходит подключением к новой сети.

Большинство усилителей Wi-Fi вещают отдельные сети Wi-Fi — с Mesh-устройствами волноваться об этом не придётся. Каждый Mesh‑модуль, по сути, является роутером, в то время как усилители Wi-Fi сигнала просто дублируют сигнал основного роутера.

Wi-Fi сигнал Mesh Wi-Fi быстрее и эффективнее, чем сигнал усилителей Wi-Fi.

Примечание: хоть наш Deco M3 (3-pack) и использует Mesh-модули, похожие на усилители Wi-Fi сигнала, они не взаимозаменяемы. В работе этих Mesh-модулей используется схожая технология и логика для создания мощной Mesh Wi-Fi сети, которая усилителям Wi-Fi сигнала не по силам.

Особенности Mesh Wi-Fi

Одно имя. Один пароль

Mesh Wi-Fi позволяет подключаться к сети, используя одно имя сети и один пароль, чтобы пользоваться бесшовным Wi-Fi во всём доме.

Бесшовный роуминг

Бесшовный роуминг позволяет оставаться в сети независимо от того, где вы находитесь в доме. Переключение от одного Mesh‑узла к другому происходит настолько плавно, что это будет незаметно даже просмотре потокового или видеозвонке.

Адаптивная маршрутизация

Mesh Wi-Fi роутеры используют адаптивную маршрутизацию для автоматического выбора наилучшего маршрута и частотного диапазона при передаче данных для сохранения постоянной максимально возможной скорости.

Самовосстановление (Self-Healing)

В случае сбоя одного из узлов Mesh Wi-Fi, сеть Mesh Wi-Fi автоматически перенаправит данные, чтобы вы оставались в сети.

Заключение

С момента своего возникновения Mesh Wi-Fi далеко продвинулся и был восторженно принят потребителями за своё удобство, а также простоту использования и установки. Перейдите на страницу Mesh-устройств TP-Link, чтобы увидеть все Mesh-роутеры Deco.

Часто задаваемые вопросы про Mesh Wi-Fi

Нужно ли покупать новый роутер, чтобы пользоваться Mesh Wi-Fi?

Нет, не нужно! Для использования Mesh Wi-Fi можно бесплатно обновить прошивку имеющегося совместимого роутера TP-Link до OneMesh и выполнить сопряжение с совместимым Mesh-усилителем или Powerline-адаптерами.
Перейдите в раздел совместимых роутеров TP-Link, чтобы увидеть все подходящие модели.

Будет ли работать Mesh Wi-Fi, если в доме кирпичные или бетонные стены либо стены с нанесённой штукатуркой?

Да! Mesh Wi-Fi системы будут работать в домах с такими стенами. Однако из-за факторов окружающей среды качество подключения большинства роутеров (включая Mesh Wi-Fi роутеры) может упасть.
Если стены в доме слишком толстые, возможно, лучше использовать Powerline-адаптеры.

Работает ли Mesh Wi-Fi со старыми устройствами?

Где можно найти Mesh Wi-Fi устройства?

Mesh-устройства продаются в магазинах электроники: Ситилинк, Регард, DNS, Эльдорадо, М.Видео и т. д.

Продаёт ли TP-Link Mesh Wi-Fi устройства?

Да, продаём! Перейдите в раздел Mesh-устройств TP-Link, чтобы увидеть все наши Mesh-роутеры.

Наши самые популярные Mesh Wi-Fi устройства относятся к линейке устройств Deco. С нашими роутерами Deco вы сможете настроить сеть в считанные минуты, без труда управлять настройками сети через приложение, получить бесшовное покрытие во всём доме, а также воспользоваться всеми вышеперечисленными преимуществами.

Deco Mesh Wi-Fi vs. Google Wifi

У нас за спиной два десятка лет опыта работы в мировой сфере сетевых технологий, поэтому нам известен рецепт отличного Wi-Fi. Так что нет ничего удвительного в том, что Deco превосходит по производительности Google Wifi — как по зоне охвата, так и по скорости Wi-Fi***.

Комната Deco Google Wifi
Гостиная 334,91 Мбит/с 173,86 Мбит/с
Домашний офис 1004,76 Мбит/с 795,11 Мбит/с
Спальня 394,60 Мбит/с 307,50 Мбит/с
Домашний кинотеатр 608,80 Мбит/с 365,62 Мбит/с
1. Согласно исследованию, проведённому в 2018 году компанией Allion USA в двухэтажном доме площадью 280 кв. м. Индивидуальные показатели могут варьироваться в зависимости от используемых в доме строительных материалов, планировки, условий сети, ограничений клиентов и помех.

Безопасность домашней сети с Deco Mesh Wi-Fi

Безопасность устройств

Благодаря автоматическим обновлениям прошивки Deco становится всё лучше и безопаснее, а встроенный межсетевой экран допускает к передаче на устройства лишь проверенные данные.

Продвинутое шифрование

Deco автоматически шифрует каждое Wi-Fi подключение с помощью WPA2-PSK — как между устройствами Deco, так и между вашими Wi-Fi устройствами и устройствами Deco.

Антивирус в реальном времени

Deco автоматически защищает каждое устройство от вирусов, вредоносного ПО и вирусов‑вымогателей. Сюда также относятся устройства, у которых обычно нет защиты, такие как Wi-Fi камеры и умные замки.

Фильтрация контента

Создавайте профили и фильтруйте контент при помощи предустановленных или созданных вами списков, а Deco будет автоматически блокировать вредоносные сайты с помощью постоянно обновляющейся базы данных.

Примечание: сравнение основано на информации об устройствах, доступной на буклетах/сайтах устройств по состоянию на 3 явнаря 2018 года. Никаких тестирований не проводилось.

Обзор технологии Wi-Fi

Wi-Fi остается одной из наиболее перспективных технологий беспроводной связи. Она стремительно развивается и принимает в себя новые беспроводные решения, позволяющие увеличить скорость передачи данных. Даже с развитием LTE-сетей, Wi-Fi не остается в стороне, а скорее получает дополнительную ветку развития, разгружая трафик в наиболее востребованных участках сети.

Wi-Fi для применения внутри помещений в рамках установленной законодательством мощности излучения не требует получения разрешения на использование частот. Кроме того, организация Wi-Fi-сети в условиях дома или небольшого офиса довольно проста, благодаря чему, зачастую, можно обойтись своими силами. Тем не менее, при проектировании сети с высокими требованиями к качеству связи, плотности покрытия и пропускной способности, как правило, прибегают к помощи специалистов. Развертывание Wi-Fi-сети занимает на порядок меньше времени по сравнению с прокладкой СКС до рабочих мест. Именно за простоту настройки, развертывания, относительную дешевизну и удобство, Wi-Fi по праву считают одной из перспективных и активно развивающихся технологий.

Требования к Wi-Fi-оборудованию описаны в наборе стандартов IEEE 802.11. С выпуском каждого нового стандарта, к 802.11 добавлялась буква, например, 802.11a/b/n и т.д. На сегодняшний день насчитывается несколько десятков разновидностей стандартов Wi-Fi. Не все стандарты были направлены на увеличение скорости передачи данных, некоторые из них затрагивают вопросы безопасности (например, 802.11i), другие включали описание работы роуминга (802.11r) и т.д.


При этом следует отметить, что не все перечисленные стандарты Wi-Fi служат для организации беспроводных локальных сетей как привычные нам роутеры, работающие в диапазонах 2.4 и 5 ГГц (стандарты 802.11 a/b/g/n/ac). Такие стандарты как 802.11ad и 802.11ay изначально планировалось выпустить для передачи данных на небольшие расстояния – от 1 до 10 метров – и, в перспективе, использовать их для организации высокоскоростных интерфейсов передачи данных, например для подключения мониторов к ПК и передачи изображения в формате 8K. Однако, в результате развития 5G-сетей и переходом в диапазон до 100 ГГц, устройства с поддержкой 802.11ad стали применяться для организации радиодоступа вне помещений (но для таких частот должны быть обеспечены условия прямой видимости).

Таким образом, у Wi-Fi большое будущее, которое позволит использовать данную технологию в совершенно разных приложениях. Несомненно, данная технология найдет свое место как в 5G-сетях, IoT-решениях, так и в VR-приложениях:

Обзор технологии Wi-Fi

Применимость различных стандартов Wi-Fi

Диапазон 2.4 ГГц

Большинство обычных клиентских маршрутизаторов и бытовых Wi-Fi-устройств работает в двух частотных диапазонах: 2,4 ГГц (802.11 b/g/n) и 5 ГГц (802.11 a/n/ac).

В диапазоне 2,4 ГГц стандартами определено 14 каналов. Некоторые из них могут быть недоступны в ряде стран (например, 14 канал разрешен для использования только в Японии). Каналы с номерами 1, 6 и 11 считаются полностью не пересекающимися по частотам и называются, как ни странно, "непересекающимися". Но на деле всегда остается "неучтенка", и если точки доступа расположены достаточно близко друг к другу, то и непересекающиеся каналы становятся пересекающимися:

Обзор технологии Wi-Fi

Каждый канал занимает ширину в 20 МГц. В некоторых случаях, стандартами разрешено использовать ширину канала равную 40 МГц (см. раздел Агрегация каналов). Номера каналов и их центральные частоты приведены на рисунке.

Обзор технологии Wi-Fi

Каналы Wi-Fi в диапазоне 2.4 ГГц

Использование непересекающихся каналов удобно в том случае, когда требуется организовать равномерное радиопокрытие таким образом, чтобы рядом расположенное оборудование не мешало друг другу, увеличивая тем самым стабильность и качество связи:

Обзор технологии Wi-Fi

Одним из недостатков диапазона 2,4 ГГц является его высокая загруженность и малое количество каналов. Помехи для Wi-Fi-сети могут создавать не только другие Wi-Fi-устройства и точки доступа, но и Bluetooth-устройства, работающие в этом же частотном диапазоне. Даже обычная бытовая СВЧ-печь способна очень сильно влиять на качество соединения в диапазоне 2,4 ГГц. Для минимизации взаимных влияний мощность Wi-Fi-передатчиков строго ограничена и регламентирована. Использование мощного передатчика требует получения разрешения в радиочастотном центре.

Более перспективным, с точки зрения меньшей загруженности и наличия большего числа каналов, является частотный диапазон 5 ГГц.

Диапазон 5 ГГц

В частотном диапазоне 5 ГГц доступно 23 неперекрывающихся канала по 20 МГц. Можно даже отметить, что 5-гигагерцовый диапазон состоит только из неперекрывающихся каналов, так как на такой частоте перекрытие создает существенные коллизии. Здесь уже можно использовать не только ширину 20/40 МГц, но и каналы шириной в 80 МГц (основной + вспомогательный). Ниже изображено расположение каналов в диапазоне 5 ГГц:

Обзор технологии Wi-Fi

  • Первый блок (Lower, нижний) каналов UNII-1 лежит в диапазоне частот от 5180 до 5240. При этом доступные непересекающиеся каналы по 20 МГц: 36, 40, 44, 48;
  • Второй блок (Middle, средний) UNII-2 лежит в диапазоне частот от 5260 до 5320. При этом доступные непересекающиеся каналы по 20 МГц: 52 56 60 64;
  • Третий блок (Extended, расширенный) UNII-2 лежит в диапазоне частот от 5500 до 5700. При этом доступные непересекающиеся каналы по 20 МГц: 100 104 108 112 116 120 124 128 132 136 140;
  • Четвертый блок UNII-3 - частота от 5745 до 5805, доступные непересекающиеся каналы по 20 МГц: 149 153 157 161;
  • Отдельно существуют 3 группы каналов: Japan (каналы: 8, 12, 16; диапазон 5040-5080) US Public Safety (каналы: 184, 188, 192, 196; диапазон 4920-4980) ISM (канал 165, частота 5825);
  • Стандартом 802.11ac предусмотрено использование групп UNII-1, UNII-2 (обе) и UNII-3, т.е. суммарно 23 канала. Благодаря чему, при использовании ширины канала в 80 МГц, доступно 5 непересекающихся каналов. Этой же спецификацией предусмотрена возможность объединения 2-х каналов по 80 МГц, что в итоге дает 160 МГц.

Carrier Aggregation - агрегация каналов

Под агрегацией следует понимать логическое объединение нескольких параллельных каналов передачи в один. Стандартами допускается использование полосы пропускания 40 МГц в диапазоне 2,4 ГГц. В диапазоне 5 ГГц ширина каналов может быть увеличена до 40, 80, 160 МГц с занятием частот соседних каналов для увеличения пропускной способности сети:

Обзор технологии Wi-Fi

Это и называется агрегированием. В случае использования широкой полосы пропускания, стабильность соединения может снижаться в силу взаимных влияний различных сетей друг на друга. Однако, несомненно, увеличение ширины канала позволяет многократно увеличить скорость передачи данных.

В этом разделе приводится описание технологий, которые нашли применение в беспроводных сетях стандарта 802.11 и позволили многократно увеличить скорости передачи данных – MIMO и Beamforming.

MIMO - Multiple Input Multiple Output

Технология MIMO оказала большое влияние на развитие Wi-Fi. Буквально несколько лет назад никто не думал о том, что будут существовать беспроводные устройства с пропускной способностью в сотни мегабит в секунду. Возникновение новых скоростных стандартов связи, в том числе 802.11n произошло во многом благодаря MIMO.

Наиболее простое определение, которое можно дать технологии MIMO – это многопотоковая передача данных. Аббревиатура переводится с английского как "несколько входов, несколько выходов". В отличие от своего "родителя" (Single Input / Single Output), в устройствах с поддержкой MIMO сигнал передается на одном радиоканале с помощью нескольких приемников и передатчиков.

Одной из основных характеристик технологии MIMO является количество антенн, работающих на прием и передачу. Обозначается NxM, где N - количество передающих антенн, а M - приемных. Например, MIMO типа 3х2 означает, что радиосистема имеет 3 передающие антенны и 2 принимающие. Кроме того, в MIMO применяется пространственное мультиплексирование. Иначе говоря, технология одновременной передачи данных нескольких пакетов по одному каналу. Благодаря такому "уплотнению" канала, его пропускную способность можно увеличить в два и более раз.

Как только технология беспроводной передачи данных Wi-Fi начала пользоваться большим спросом, быстро стали возрастать и требования к скорости. Впервые технология MIMO появилась в стандарте 802.11n, который дал возможность увеличить канальную скорость беспроводного соединения с 54 Мбит/сек до 600 Мбит/сек. Стандарт 802.11n дает возможность применять как стандартную ширину канала в 20 МГц, так и использовать широкополосную линию в 40 МГц. Таким образом можно получить в несколько раз увеличенную пропускную способность каналов, которые используются в данный момент. С помощью объединения MIMO с более широкой полосой пропускания канала, получается достаточно мощный способ повышения физической скорости передачи.

Типы MIMO

Для различного количества пользователей, между которыми в одно и тоже время идет передача данных, существует два типа технологий:

SU-MIMO – система для одного пользователя (Single User - SU). Используется, когда в определенный промежуток времени потоки данных идут только к одному пользователю. Технология предоставляет многоканальные входные и выходные потоки одному устройству. Пока Wi-Fi-устройство адресата получает или принимает данные, другие пользователи находятся в ожидании.

MU-MIMO – система для нескольких пользователей (Multi User - MU). Позволяет нескольким пользователям принимать одновременно потоки данных. Она опирается на технологии SU-MIMO, но дает одновременную связь точки доступа с несколькими устройствами. MU-MIMO создает до 4 одновременных подключений, передавая по 4 потока данных одновременно. В результате пользователи не делят между собой соединение и улучшается производительность сети.

Обзор технологии Wi-Fi

Разница между технологиями SU и MU-MIMO

Особенности технологии

До появления стандарта 802.11ax, технология MU-MIMO работала только в диапазоне 5 ГГц. С появлением 802.11ax MU-MIMO стала доступной и на 2.4 ГГц. В продаже сетевого оборудования появляется все больше двухдиапазонных маршрутизаторов с поддержкой данной технологии.

MU-MIMO использует технологию Beamforming. Благодаря ей, сигналы распространяются не хаотично, а в направлении беспроводного устройства. Эта направленность позволяет увеличить дальность сигнала и повысить скорость передачи данных.

К сожалению, невозможно обслуживать бесконечное количество пользователей и потоков данных. Например, роутер с поддержкой трех потоков может одновременно работать только с тремя Wi-Fi-устройствами без задержек.

Чтобы пользоваться преимуществами метода, принимающее устройство должно иметь поддержку MU-MIMO. В данном случае, достаточно одной антенны и пользовательское устройство примет поток данных от роутера.

Компании, выпускающие смартфоны, роутеры, точки доступа и другие сетевые устройства уже заложили в них поддержку технологии. Как гарантируют производители, во многих современных устройствах, они учли также аппаратные требования для поддержки MU-MIMO, и теперь достаточно обновить ПО на своем гаджете, и пользователь получит поддержку данной технологии.

Сигнал, который передается с помощью архитектуры MU-MIMO, сложно перехватить, что повышает безопасность беспроводной сети.

На первых этапах развития технологии существовала трудность совмещения устройств, работающих с поддержкой MIMO и без нее. Однако на данный момент это уже не так актуально – практически каждый современный производитель беспроводного оборудования использует ее в своих устройствах. Также, одной из проблем при появлении технологии передачи данных с помощью нескольких приемников и нескольких передатчиков, являлась цена устройства.

Beamforming - автоматическое формирование луча

В последних моделях Wi-Fi-маршрутизаторов все чаще можно увидеть такую "опцию" как Beamforming. Beamforming, согласно техническим спецификациям современных Wi-Fi-устройств, это технология, позволяющая направлять излучаемый сигнал не во все стороны, как это происходит обычно, а "концентрированно" в сторону абонента. Это увеличивает отношение сигнал/шум, и как следствие - скорость передачи данных:

Обзор технологии Wi-Fi

Особенно это актуально в местах, где много различных перекрытий сигналов и множество других источников радиопомех, работающих в нелицензируемом диапазоне частот 2.4 и 5 ГГц.

Следует отметить, что главной сложностью при внедрении beamforming в устройства является сложность настройки антенн в сочетании с грамотным программным обеспечением. В недорогих моделях роутеров зачастую наличие beamforming является лишь маркетинговым ходом. Сильно повысить стабильность приема в отдаленных участках помещения не получится. Beamforming стал частью стандарта, начиная с 802.11ac, во втором поколении этих устройств (wave 2).

MCS в Wi-Fi сетях

  • Тип модуляции. Модуляция - это метод передачи данных. Чем сложнее модуляция, тем выше скорость передачи данных. Более сложные модуляции требуют хороших условий передачи, низкого уровня помех и отсутствия препятствий на пути прохождения сигнала.
  • Скорость кодирования информации. Этот параметр указывает на то, какая часть потока данных фактически используется для передачи "полезной" информации. Это значение выражается в виде дроби, например, 5/6 или 83,3% используемого потока данных.
  • Количество пространственных потоков. Используя технологию MIMO, в настоящее время возможно запускать до 8 пространственных потоков. Фактически это позволяет использовать одну и ту же область частотного пространства для передачи и приема нескольких потоков данных.
  • Ширина канала передачи. Это значение определяет, какая ширина канала будет использована для передачи. Ширина канала может быть максимум 40 МГц для диапазона 2.4 ГГц и 160 МГц для диапазона 5 ГГц. В диапазоне 60 ГГц ширина канала может составлять до 2 ГГц (стандарт 802.11ad/ay).
  • Длительность защитного интервала. Защитный интервал фактически представляет собой очень короткую паузу между передачей пакетов, чтобы можно было игнорировать любую ложную информацию. Более длительные интервалы защиты обеспечивают более надежную беспроводную связь.


Чем выше индекс MCS, тем "сложнее" вышеперечисленные параметры передачи. Значение индексов MCS для различных стандартов Wi-Fi приводится в таблице ниже. В расширенной виде с таблицей MCS можно ознакомиться по ссылке.

Когда я ещё жил в многоквартирном доме, я сталкивался с проблемой низкой скорости в дальнем от роутера помещении. Ведь у многих роутер стоит в прихожей, куда провайдер дотянул оптику или UTP и где поставили типовое устройство.

Еще хорошо, когда собственник меняет маршрутизатор на свой собственный, а типовые устройства от провайдера — это, как правило, самые бюджетные или простые модели. Ждать от них высокой производительности не стоит — работает и ладно.

Но я установил роутер с гигабитными портами, радиомодулем, поддерживающим работу на частотах 2,4 ГГц и 5 ГГц. А скорость связи с интернетом в пределах квартиры и особенно в дальних комнатах была совсем удручающей.

Для обычного пользователя, который подключается по Wi-Fi к сети и смотрит ролики на YouTube, никакой разницы не будет, какой системой пользоваться. А вот с точки зрения организации нормального Wi-Fi покрытия — эти системы принципиально разные и у каждой есть как плюсы, так и минусы. Начнем с Wi-Fi системы.

Это сеть обычных роутеров, которые могут работать независимо. В такой системе выделяется один ведущий маршрутизатор, остальные становятся ведомыми. При этом переход между роутерами остается незаметным для клиента, а с точки зрения самих маршрутизаторов — клиент перемешается из одной соты в другую.

Такую систему можно сравнить с сотовой связью, ведь образуется единая локальная сеть с роутерами-трансляторами. Плюсы системы очевидны: сеть можно наращивать постепенно, добавляя новые устройства по необходимости. Причем достаточно будет покупать недорогие роутеры с поддержкой этой технологии.

Минус один, но существенный: к каждому роутеру должен быть подведен Ethernet-кабель и питание. То есть, если вы уже сделали ремонт и на заложили UTP-кабель, то его придется либо протягивать по плинтусу, где это возможно, либо рассматривать другую систему.

Это сеть специализированного оборудования, которое также образует сеть из нескольких устройств, создавая сплошное покрытие Wi-Fi сигнала. Эти точки, как правило, двухдиапазонные, поэтому работать можно как в сетях 2,4 ГГц, так и в сетях 5 ГГц.

Большим плюсом является то, что для подключения каждого нового устройства нет необходимости тянуть кабель — они связываются по отдельному передатчику, создавая свою сеть и через нее передаются данные. В последующем эти данные передаются на обычный Wi-Fi адаптер, достигая пользователя.

Преимущество очевидно: не нужно никаких дополнительных проводов — просто воткнул в розетку адаптер новой точки, привязал ее к главному маршрутизатору и пользуйся.

Но есть и недостатки. Например, цена. Стоимость главного маршрутизатора в разы превышает стоимость обычного роутера, а стоимость дополнительного адаптера также существенна. Зато не надо переделывать ремонт, тянуть кабели и думать о проводах.

Я уже переехал из железобетонной квартиры в собственный дом и также столкнулся с проблемой падения скорости в беспроводной сети. Если раньше сильно влияла зашумленность эфира соседними Wi-Fi роутерами (а ведь каждый норовит выкрутить мощность на максимум, чтобы «заглушить» соседей и поднять свою скорость), то теперь начали влиять расстояния и перекрытия.

Вместо квартиры на 45 м² я перебрался в двухэтажный дом на 200 м². О жизни в доме можно говорить много, и даже то, что соседская Wi-Fi точка лишь иногда появляется в меню смартфона, а больше беспроводных сетей не обнаруживается, уже говорит о многом.

Как бы то ни было, роутер я постарался разместить в географическом центре дома и на частотах 2,4 ГГц он обеспечивает связь везде, а вот на участке покрытие уже хромает. Но когда смотришь фильм с домашнего сервера на ноутбуке в дальней от маршрутизатора комнате, иногда бывают замирания.

Оказалось, что сеть 5 ГГц нестабильна при нескольких стенах, перекрытиях, и ноут предпочитает переключиться на сеть 2,4 ГГц, у которой стабильность выше, а скорость передачи данных ниже.

«Нужно больше скорости!», — как любит говорить Джереми Кларксон. И я пошел искать способ расширить и ускорить беспроводную связь. Я решил сравнить в лоб две системы: Wi-Fi систему от Keenetic и Mesh-систему от Zyxel.

Со стороны Keenetic участие приняли роутеры Keenetic Giga и Keenetic Viva. Один из них выступал организатором сети, а второй — ведомой точкой. Оба роутера имеют гигабитный Ethernet и двухдиапазонный радиомодуль. Кроме этого, у них есть USB-порты и очень широкий диапазон настроек прошивки. На момент теста была установлена последняя доступная прошивка, ведущим был Keenetic Giga. Связаны между собой они были по гигабитному проводному Ethernet-кабелю.

Со стороны Zyxel будет Mesh-система в составе Multy X и Multi mini. «Старшая» точка, Multy X, была подключена к интернету, а «младшая», Multi mini, была установлена в дальнем углу дома.

Главенствующая точка была подключена к сети, а дополнительная выполняла функцию раздачи сети по беспроводному и проводному каналу. То есть дополнительная подключенная точка может служить еще и беспроводным адаптером для техники, у которой нет Wi-Fi модуля, но есть Ethernet-порт.

Производитель часто заявляет в пресс-релизах о необыкновенно широком покрытии беспроводной сетью своих устройств. Но это действует на открытой площадке без стен, отражающих поверхностей и радиопомех.

В реальности многие сталкивались со снижением скорости и потерей пакетов в квартирах, где на смартфоне видно полтора–два десятка беспроводных сетей. В том числе поэтому эффективнее задействовать еще не так зашумленный диапазон 5 ГГц.

Для простоты: я буду называть головные устройства Wi-Fi- и Mesh-системы роутерами. Каждый из роутеров может быть просто беспроводным устройством. Но мне интересно, сколько устройств и на какой скорости роутер может обеспечить доступом в сеть.

По первому вопросу ситуация выглядит следующим образом. Количество поддерживаемых устройств зависеть от Wi-Fi модуля. У Zyxel Multy X и Multy mini это будет 64 + 64 устройства на каждый диапазон (2,4 + 5 ГГц), то есть при наличии двух точек можно подключить 128 устройств по 2,4 ГГц и 128 устройств по 5 ГГц.

Создание Mesh-сети сделано максимально простым и наглядным: для работы достаточно иметь смартфон и установить туда приложение Zyxel Multi. И неважно, будет ли у вас устройство iOS или Android. Следуя подсказкам мастера установки создается сеть и подключаются все последующие устройства.

Что удивительно, для первоначального создания сети надо включить геопозиционирование и иметь подключение к интернету. Так что придется, как минимум, иметь доступ в сеть со смартфона.

У роутеров Keenetic ситуация выглядит несколько иначе. Количество подключаемых клиентских устройств зависит от модели. Ниже приведу название роутеров и возможности по подключению клиентов в диапазонах 2,4 и 5 ГГц.

Giga III и Ultra II: 99 + 99 Giga KN-1010 и Viva KN-1910: 84 на оба диапазона Ultra KN-1810: 90 + 90 Air, Extra II, Air KN-1610, Extra KN-1710: 50 + 99 City KN-1510: 50 + 32 Duo KN-2110: 58 + 99 DSL KN-2010: 58 Lite KN-1310, Omni KN-1410, Start KN-1110, 4G KN-1210:50

Конфигурировать роутеры можно как с компьютера, так и со смартфона. И если в локальной сети это легко реализуется через веб-интерфейс, то для смартфона существует специальное приложение, которое в дальнейшем даст возможность пользоваться дополнительными функциями, вроде Torrent-качалки или доступа к файлам на подключенном накопителе по USB.

У Keenetic есть отличная функция — KeenDNS, которая позволяет при наличии серого IP-адреса подключаться к веб-службам опубликованных сервисов из внешней сети. То есть можно подключиться к интерфейсу роутера за NAT, можно подключиться к интерфейсу видеорегистратора или веб-сервера за NAT.

Но поскольку этот материал всё-таки о сети, то надо отметить, что организация Wi-Fi-сети также очень проста: главенствующий роутер становится ведущим устройством, а на остальных роутерах включается режим ведомых адаптеров.

При этом ведомые роутеры могут создавать VLAN, могут работать в едином адресном пространстве, на них может быть выставлена мощность работы каждого беспроводного адаптера с шагом в 10%. Таким образом, сеть можно расширить многократно. Но есть одно но: для организации Wi-Fi сети все роутеры должны быть подключены при помощи Ethernet.

Так как беспроводная сеть со стороны клиента не имеет разницы, а с точки зрения технической организации — сети принципиально разные, была выбрана методика в сторону пользователя. Тестирование проходили отдельно устройства Zyxel Multy X + Multiy mini и Keenetic Giga + Keenetic Viva.

Чтобы избежать влияния провайдера, в локальной сети был поднят сервер перед головным устройством. А на пользовательском устройстве был организован клиент. Все тесты проводились при помощи утилиты Iperf, эмулирующей беспрерывную передачу данных.

Каждый раз тесты проводились для 1, 10 и 100 потоков, что позволяет оценить производительность беспроводной сети при различной загрузке. Эмулировалась как однопотоковая передача данных вроде просмотра ролика на YouTube, так и многопотоковая вроде работы Torrent-качалки. Тесты проводились отдельно при подключении по сети 2,4 и 5 ГГц.

Помимо этого, так как устройство Zyxel Multy и Zyxel mini могут выступать в качестве адаптера, они были подключены по Ethernet-интерфейсу к пользовательскому компьютеру на скорости 1000 Мбит/с. Также проведено три теста скорости. В аналогичном тесте роутер Keenetic Vivo участвовал в качестве Wi-Fi-адаптера, будучи подключенным патч-кордом к ноутбуку.

Расстояния между точками порядка 10 метров, железобетонное перекрытие и две стены. Расстояние от ноутбука до конечной точки доступа - 1 метр.

Все данные занесены в таблицу и построены графики скорости.

А теперь пришло время посмотреть на цифры и на графики. График более нагляден, поэтому сразу приведу его.

На графиках цепочки подключения следующие:

Zyxel mini: сервер — провод — Zyxel Multy X — беспроводная связь — Zyxel Multy mini — ноутбук (адаптер Intel Dual Band Wireless-AC 7265)

Zyxel Multy: сервер — провод — Zyxel Multy X — беспроводная связь-Zyxel Multy X — ноутбук (адаптер Intel Dual Band Wireless-AC 7265)

Keenetic Wi-Fi: сервер — провод — Keenetic Giga — провод-Keenetic Viva — ноутбук (адаптер Intel Dual Band Wireless-AC 7265)

Keenetic усилитель: сервер — провод — Keenetic Giga — Keenetic Viva(в качестве репитера) — ноутбук (адаптер Intel Dual Band Wireless-AC 7265)

Keenetic адаптер: сервер — провод — Keenetic Giga — беспроводная связь — Keenetic Viva(в режиме адаптера) — провод — ноутбук

Zyxel mini адаптер: сервер — провод — Zyxel Multy X — беспроводная связь — Zyxel Multy mini — провод — ноутбук

Zyxel Multy адаптер: сервер — провод — Zyxel Multy X — беспроводная связь — Zyxel Multy X — провод — ноутбук

На картинке видно, что все устройства на частоте 2,4 ГГц менее производительны, чем на частоте 5 ГГц. И это притом, что вокруг не было шума из соседских мешающих сетей, так как в случае наличия зашумленности по частоте 2,4 ГГц результат был бы заметно хуже.

Тем не менее наглядно видно, что скорость передачи данных на частоте 5 ГГц почти вдвое выше, чем на 2,4 ГГц. Кроме того, заметно, что некоторое влияние оказывает и количество потоков одновременной загрузки, то есть при увеличении количества потоков более плотно используется канал передачи данных, хотя разница не так существенна.

Очень хорошо видно, когда роутер Keenetic выступал в качества репитера, что скорость передачи делится надвое, так что стоит это учитывать, если хотите передавать большие объемы информации с большой скоростью, а не просто расширить покрытие Wi-Fi-сети.

На последнем тесте, где Zyxel Multy X и Zyxel Multy mini выступали в качестве адаптера для проводного подключения удаленного устройства (связь между базовым Zyxel Multy X и принимающим устройством была беспроводной), продемонстрировала преимущества Multy X, особенно при многопоточной передаче данных. Сказалось большее количество антенн у Zyxel Multy X: девять штук против шесть у Zyxel Multy mini.

Таким образом, очевидно, что даже при незагруженном эфире на частоте 2,4 ГГц имеет смысл переходить на 5 ГГц, когда нужно передавать большие объемы информации достаточно быстро. При этом даже на частоте 2,4 ГГц вполне можно смотреть фильмы в качестве FullHD, используя роутер в качестве репитера.

А вот кино в 4К с нормальным битрейтом уже начнет заикаться, поэтому роутер и устройство воспроизведения должны уметь работать на частоте 5 ГГц. При этом самая большая скорость достигается, если в качестве беспроводного адаптера используется комплект из двух Zyxel Multy X или Zyxel Multi X + Multy mini.

А теперь о ценах. Испытанная пара роутеров Keenetic Giga + Keenetic Viva стоит 14 800 рублей. А комплект Zyxel Multy X + Multy mini — 21 900 рублей.

Mesh-система Zyxel может обеспечить широкое покрытие на очень приличной скорости без прокладки дополнительных проводов. Это особенно актуально, когда ремонт уже сделан, а дополнительной витой пары не заложено. К тому же организация такой сети максимально проста — через приложение на смартфоне.

Надо добавить к этому, что Mesh-сеть может состоять из шести устройств и иметь как топологию звезда, так и древовидную. То есть конечное устройство может находиться очень далеко от стартового роутера, который подключен к интернету.

При этом Wi-Fi-система на базе роутеров Keenetic куда более функциональна и обеспечивает более дешевую организацию сети. Но для этого требуется кабельное подключение. Дистанция между роутерами может быть до 100 метров, а скорость совершенно не будет снижаться из-за передачи по гигабитному проводному соединению.

При этом устройств в такой сети может быть больше шести, а роуминг Wi-Fi устройств при перемещении будет бесшовным.

Таким образом, каждый решает сам, что выбрать: функциональность и необходимость прокладки сетевого провода или же простоту расширения беспроводной сети за несколько болей.

Одно дело, когда речь идет о квартире с ремонтом. И совсем другое - частный дом(не таунхаус). Здесь всегда куча скрытых полостей.

Короче, я сам живу в частном доме, и побольше, чем 200 квадратов, но суть не в этом, а в том, что у меня везде медь.
Я ж сисадмин в прошлом, а что может быть надежнее меди для помещения? Ничего.

У меня сделано так - на чердак приходит оптика. В чулане верхнего этажа - серверная. Дома сервер - штука нужная. Мне один для разработки, а второй детям как хранилище мультов и игрищ. Да, тут можно было nas, но так сложилось исторически.
Там же гигабитный управляемый свитч. Чтобы отдельный vlan для камер.
Отсюда медные хвосты расходятся по всему дому и участку. Каждый комп - на меди, каждый смарттв - на меди. Один хвост выходит в пристроенный к дому гараж, а еще один идет в баню. На концах висят роутеры в режиме точки. Там рядом беседка, как ж в беседке без вайфая.
Всего получается пять точек. Работает отлично, если что-то умирает, можно воткнуть любой дешманский роутер.

Здесь совершенно ни к чему бесшовность, роутеры перекрывают друг друга, на весь этаж бьют, а контент дивайсы потребляют в статичном режиме.

Читайте также: