1000base x sfp что это

Обновлено: 04.07.2024

В настоящее время можно легко найти маршрутизаторы и коммутаторы с поддержкой оптоволокна. Однако бывают различные типы и конфигурации волокон. Было бы невозможно построить разные переключатели для каждой установки. Для решения этой проблемы производители устройств часто используют порты SFP.

Порты SFP позволяют установщику настроить их оптоволоконное соединение, выбрав модуль SFP, соответствующий их потребностям.

Модуль SFP (Small Form-Factor Pluggable) представляет собой подключаемый модуль малого форм-фактора. Проще говоря, это небольшой трансивер, который может отправлять и получать данные по оптоволокну. Модули SFP подключаются к сетевому коммутатору или медиаконвертеру. Они поддерживают горячую замену, поэтому модули можно легко вставлять и извлекать. SFP также иногда называют miniGBIC (преобразователь гигабитного интерфейса). На данный момент SFP в основном заменяют старые и большие GBIC. Как видно из названия, модули SFP небольшие, вмещают всего 1-2 оптоволоконных разъема.

Модуль SFP: как выбрать оптоволоконный канал?

Прежде чем выбирать модули SFP, проверьте свои устройства на предмет каких-либо конкретных требований. Вам также необходимо знать, какое расстояние передачи необходимо. Данная статья поможет вам выбрать правильный тип волокна и правильный SFP.

Модули SFP различаются по полосе пропускания, длине волны и расстоянию. Основное различие между всевозможными модулями SFP заключается в типе оптического волокна. Поэтому при выборе модуля необходимо прежде всего определиться с типом волоконной оптики.

Они предназначены для работы с многомодовым (MM) кабелем, как правило, стандарта 50/125 (ОМ2) или стандарта 62,5 / 125. Модули поддерживают передачу данных со скоростью до 10 Гб на волнах толщиной 850 нм или 1320 нм. Энергия света используется для передачи данных, источником служит светодиод. По оптическому волокну распространяется несколько мод излучения, каждая под своим уникальным углом. Недостаток в том, что существует дальность передачи данных до 550 метров.

Они используются с одномодовым (SM) кабелем, как правило, стандарта 9/125. Здесь используется другая технология, в качестве источника света используется лазер, излучение распространяется по оптическому волокну в одном режиме, так что расстояние передачи данных достигает 120 км.

Существуют также модули SFP с технологией WDM, в которых прием и доставка сигнала осуществляется через одно ядро ​​(с использованием одного разъема), но на разных длинах волн. Это либо уменьшает количество ядер при построении сетей, либо экономит деньги в проектах, где количество ядер ограничено бюджетом. В этой технологии используется только одномодовое оптическое волокно. Для организации связи используются два спаренных модуля, каждый из которых имеет разную (противоположную) длину волны приемника или передатчика, например, 1310 нм и 1550 нм.

Помимо разницы в технологии передачи данных и типе оптического волокна, в модулях SFP существует несколько типов разъемов - разъем SC и разъем LC. Если вы отвечаете только за сетевое оборудование, то кабели уже имеют какие-то разъемы, и вам остается только узнать, что это такое, и выбрать соответствующий коммутатор или медиаконвертер.

Модуль SFP: как выбрать оптоволоконный канал?

Но если решать вам, то ответ на вопрос «Что выбрать?» не будет универсальным и объективным. По сути, конкретный разъем ничем не выделяется среди других, поэтому их выбор обусловлен поставленной задачей. В большинстве случаев используется разъем LC, в частности, только эти разъемы присутствуют в модулях SFP от MOXA.

Разъемы ST могут быть полезны, когда требуется более прочная фиксация, например, благодаря привинченной металлической крышке.

Разъемы SC хороши при многократном использовании на разных жилах (их можно снять и надеть на другой провод).

Если у вашего кабеля и модуля SFP разные разъемы, вы можете использовать адаптер.

Не стоит забывать, что существуют SFP-модули не только для оптоволокна, но и для витой пары со слотом RJ-45.

Модули SFP + (расширенные сменные модули малого форм-фактора) поддерживают скорость до 16 Гбит / с.

Модули SFP28 могут обрабатывать 25 Гбит / с по одному каналу.

Модули QSP+ (с четырьмя подключаемыми модулями малого форм-фактора) предназначены для приложений с более высокой пропускной способностью. Эти модули используют четыре канала для передачи до 40 Гбит / с.

Что касается жилых помещений, в большинстве случаев вам понадобится модуль SFP или SFP +.

Каждое оптическое волокно работает с определенной скоростью, то есть в соответствии с определенным стандартом 802.3 Ethernet. Важно помнить об этом, поскольку в этих устройствах нет функции MDI / MDIX для автоматического определения скорости.

Соответственно, помимо оптики необходимо выбрать нужную скорость: Fast Ethernet, Gigabit Ethernet или 10 Gigabit Ethernet.

Длины волн и расстояния SFP также указаны в соответствии с отраслевыми стандартами. Некоторые примеры приведены ниже (всегда обращайтесь к обозначениям, сделанным производителем вашего модуля SFP).

Worton

Каждое устройство оснащено выделенным портом коммутатора, который может передавать данные на другие порты в любое время, и передача не будет мешать. Разные порты имеют разные размеры и характеристики, что предотвращает неправильный тип разъема, подключенного к ним. В современной телекоммуникационной отрасли, порт SFP может найти в различных сетевых устройствах, включая коммутаторы Ethernet, маршрутизаторы, сетевые карты (NIC), серверы и т. д. Современный гигабитный коммутатор обычно разрабатывается с двумя или более портами SFP. Так что же такое порт SFP гигабитного коммутатора? В чем разница между портом SFP и портом RJ45 гигабитного коммутатора? А как наладить их соединения?

порт-RJ45-и-порт-SFP-гигабитного-коммутатора

Что такое порт SFP на гигабитном коммутаторе?

Порт SFP разработан для использования с разъемами малого форм-фактора (small form factor, SFF) и предлагает высокую скорость и физическую компактность. Он позволяет гигабитному коммутатору разрешить оптические или медные линии связи, вставив соответствующий модуль SFP (оптический SFP или медный SFP). Независимо от оптического порта или линии связи электрического порта, единственное различие - физический уровень (средства). Когда порт SFP вставлен в 1G SFP с электрическим портом, для передачи данных необходимо использовать сетевой кабель (кабель Cat5e/Cat6/Cat7). Принимая во внимание, что, когда порт SFP подключен к гигабитному SFP с оптическим портом, оптические патч-корды (оптоволокно LC) должны поддерживать оптоволоконные соединения. Таким образом, модуль SFP RJ45 обычно используется для uplink на короткие расстояния для соединения между все-SFP коммутатором распределения, и медным edge коммутатором, а модуль SFP чаще всего используется для высокоскоростного оптоволоконного uplink на большие расстояния. Чтобы проиллюстрировать порты SFP на гигабитном коммутаторе, принимая FS S3800-24F4S коммутатор с SFP портом в качестве примера:

порт-SFP-на-гигабитном-коммутаторе

S3800-24F4S гигабитный коммутатор 24 порта предназначен для удовлетворения спроса на экономичный гигабитный доступ или агрегацию для корпоративных сетей и клиентов операторов. Он оснащен консольным портом, 4*1GE Combo портами, 20*100/1000BASE SFP портами и 4*10GE SFP+ портами. Среди этих портов, порты SFP позволяют этому гигабитному коммутатору подключаться к широкому разнообразию оптоволоконных кабелей и кабелей Ethernet, чтобы расширить функциональность коммутации по всей сети. Стоит отметить, что этот коммутатор включает 4 комбинированных порта SFP/RJ45, так что пользователи могут использовать либо порт SFP, либо порт RJ45 одновременно для соединений на короткие расстояния..

Что такое combo порт SFP?

Комбинированный порт - это единый интерфейс с двумя интерфейсами - порт RJ45 или порт SFP, поэтому он поддерживает как медные, так и оптические соединения SFP. Другими словами, это составной порт, который может поддерживать два разных физических, поделиться одну и ту же коммутационную матрицу и номер порта. Но эти два разных физических порта нельзя использовать одновременно. Каждый двойной combo порт представляет собой единый интерфейс, который предлагает на выбор два соединения: соединение RJ-45 для медного Ethernet кабеля и соединение SFP для оптоволоконного кабеля. Например, если используется combo порт SFP, соответствующий медный порт автоматически отключается, и наоборот. На следующем рисунке показаны 4*1GE combo порты FS S3800-24F4S SFP стекируемого коммутатора.

Combo-порт-SFP-на-гигабитном-коммутаторе

Что такое uplink порт SFP?

Uplink-SFP-порт-на гигабитном-коммутаторе

Порт SFP vs. порт RJ45 гигабитного коммутатора

Помимо портов SFP, гигабитный коммутатор обычно имеет несколько портов RJ45. Оба они могут передаваться с Gigabit Ethernet. В чем же тогда разница между портом SFP vs. портом RJ45 гигабитного коммутатора?

Что такое порт RJ45 на гигабитном коммутаторе?

Порт RJ45 является встроенным портом гигабитного коммутатора, который соответствует стандарту 1000BASE-T Ethernet. Он поддерживает только RJ45 кабели (Cat5e/Cat6/Cat7) для передачи 1 Гбит/с, а расстояние ограничено 100 м (330 футов). Таким образом, коммутатор 1000BASE-T с портами RJ45 может использоваться в ЦОД для коммутации серверов, локальных сетей, для uplink от настольных коммутаторов или непосредственно к настольному компьютеру для широкополосных приложений. FS S3800-24T4S стекирукмый коммутатор - это коммутатор 1000BASE-T, который поставляется с консольным портом, 24 *10/100/1000BASE-T RJ45 портами и 4 *10GbE SFP+ портами. Таким образом, при подключении двух гигабитных коммутаторов с портом RJ45, существует простой и понятный способ: подключите стандартный кабель Ethernet (Cat5/5e/6/6a) напрямую для соединения этих двух коммутаторов.

порт-RJ45-на-гигабитном-коммутаторе

SFP порт vs. RJ45 порт

По сравнению с Ethernet коммутатором использующим только порт RJ45, коммутатор порта SFP поддерживает больше типов коммуникационных кабелей и более длинные линии связи. Он также может осуществлять обмен с портом 1000BASE-LX/LH, 1000BASE-ZX или 1000BASE- BX10-D/U. Но для соединений на короткие расстояния на гигабитном коммутаторе нет никакой разницы в использовании порта SFP или порта RJ45 для соединения коммутаторов. Если вы не планируете подключать сервер через оптические каналы в ближайшем будущем, вам не понадобится SFP, и вы можете использовать стандарт 1000BASE-T. В следующей таблице перечислены подключения RJ45 и SFP гигабитных коммутаторов:



или медной витой парой. SFP бывают двух видом: Multi-mode (в народе мултимоды) обозначаються как MMF и single-mode (в народе одномоды) обозначаютсья SMF. Для определения является ли модуль одномодом или мультимодом на нем имеется маркировка.

1000BASE-T SFP для медной витой пары.

Для модуля стандарта 1000BASE-T SFP используеться неэкранированая витая пара категория 5 длиной до 100 метров. Данный модуль поддерживает скорость 10/100/1000 Mb/s, автосогласование и технлогию Auto MDI/MDIX (автоматическое определение кросовера).

1000BASE-SX SFP для оптического волокна мультимод. Модуль стандарта 1000BASE-SX SFP совместим с стандартом IEEE 802.3z 1000BASE-SX поддерживает оптические мультимодовые волокна 50 μm длиной в 550 метров, а также 6 2.5 μm FDDI волокна длиной до 220 метров. В случае использования оптических волокон оптимизированых под длину волны в 50 μm дальность может увелиситься до 1 километра. 1000BASE-LX/LH SFP для мультимодового и одномодового волокна Модуль 1000BASE-LX/LH SFP совместим с стандартом IEEE 802.3z 1000BASE-LX, в случае использования одномодового волокна работает на дальность до 10 км, а если использовать мультимодовое волокно поддерживает дальность до 550 м. Для того что бы использовать мультимодовое волокно с модулем данного стандарта, необходимо воспользоваться технологией "mode conditioning patch cable". 1000BASE-EX SFP для одномодовых волокон большой протяженности Для 1000BASE-EX SFP используется стандартное одномодовое волокно длиной до 4о км. На каждом конце оптического волокна между волокном и ресивером SFP должен быть установлен аттенюатор в 5 дб. 1000BASE-ZX SFP для одномодовых волокон большой протяженности Для 1000BASE-ZX SFP используется стандартное одномодовое волокно длиной до 70 км. SFP обеспечивает оптический канал с мощностью 23 дБ, но точная мощность зависит от нескольких факторов, таких как качество волокна, количество соеденителей и разъемов. Когда использвать на менее протяженные дистанции одномодовое волокно, это может потребовать установку оптического аттенюатора, который необходимо поставить для предотвращения перегрузки ресивера. 10 дБ аттенюатор необходимо cтавить в разрыв оптического волокна и ресивером SFP на каждом коце канала, когда потери на волоконно составляют менее 8 дБ. 1000BASE-BX-D и 1000BASE-BX-U SFP для одного волокна двунаправленной передачи Модули 1000BASE-BX-D и 1000BASE-BX-U SFP совместимы с стандартами IEEE 802.3ah 1000BASE-BX10-D и 000BASE-BX10-U и работают на одномодовом волокне SMF. В одной линии на концах всегда используються только устройства одного типа 1000BASE-BX10-D которые соеденяються одним одномодовым волокном с протяженностю до 10 км. Передача на одном оптическом волкне достигается разделением передатчиков по длинам волн как изображено на рисунке: 1000BASE-BX10-D передатчик на 1490-нм канале а ресивер на 1310-нм канале. Как изображено на рисунку сплитер с спектральным уплотнением wavelength-division multiplexing (WDM) интегрирован в SFP и разделет на линию на каналы 1310-нм и 1490-нм.


SFP GLC-BX-D и GLC-BX-U так же поддерживают цифровой оптический мотниторинг (digital optical monitoring - DOM) функциональность описана в стандрте SFF-8724 (multisource agreement - MSA). Эта особенность дает возможность мониторить в режиме реального времени параметры SFP, такие как оптичекую выходную мощьность, температуру, смещение лазера и напряжение на передатчике. Технические спецификации

Конекторы и кабели

Конекторы существует следующих типов: - Двойно LC/PC конекторы (1000BASE-SX, 1000BASE-LX/LH и 1000BASE-ZX) - Одинарный LC/PC конектор (1000BASE-BX-D и 1000BASE-BX-U) - RJ-45 конектор (1000BASE-T) Поддерживаються пачкорды только с PC или UPC конекторами. Пачкорды с APC конекторами не поддерживаються. Все кабеля должны быть совместимы со стандартами, указаными в разделе стандарты.

Классы полировки волоконно-оптических разъемов

Ethernet


Ethernet — пакетная технология передачи данных. Разработана преимущественно для локальных компьютерных сетей.

Стандартами Ethernet определяются проводные соединения и электрические сигналы на физическом уровне, а на канальном уровне модели OSI определяются формат кадров и протоколами управления доступом. В основном, Ethernet описывают стандарты IEEE группы 802.3.

Это самая распространенная технология ЛВС, особенно в середине 90-х годов прошлого века. Своим появлением Ethernet вытеснила такие устаревшие технологии, как Arcnet, FDDI и Token ring.

История

Корпорация Xerox PARC разработала Ethernet одновременно со многими другими своими первыми проектами. Общепринято, что технология Ethernet была изобретена 22 мая 1973 года Робертом Меткалфом (Robert Metcalfe). Он составил докладную записку для главы PARC о потенциале технологии Ethernet, что и стало свидетельством ее создания. Однако, законное право на технологию разработчик получил, лишь спустя несколько лет.

В 1976 году Меткалф вместе со своим ассистентом Дэвидом Боггсом (David Boggs) выпустили брошюру под названием «Ethernet: Distributed Packet-Switching For Local Computer Networks». Меткалф покинул Xerox в 1979 году и основал компанию 3Com, которая занималась продвижением компьютеров и локальных вычислительных сетей (ЛВС). Он убедил руководство компаний DEC, Intel и Xerox работать совместно с целью разработки стандарта Ethernet (DIX).

Впервые стандарт Ethernet был опубликован 30 сентября 1980 года. По выходу на рынок он вступил в соперничество с двумя крупными запатентованными технологиями: token ring и ARCNET. Они в скором времени были раздавлены под потоками хлынувшей на рынок продукции Ethernet. Так, 3Com стала основной компанией в своей отрасли.

Технология

Стандарт первых версий (Ethernet v1.0 и Ethernet v2.0) говорит о том, что в качестве передающей среды в нем используется коаксиальный кабель. Впоследствии стали использовать витую пару и оптический кабель.

Каковы преимущества использования витой пары перед использованием коаксиального кабеля?

  • возможность работы в дуплексном режиме;
  • низкая стоимость кабеля;
  • высокая надежность сети в случае неисправности кабеля (при соединении типа «точка-точка» в случае обрыва кабеля связи лишаются два узла). В коаксиальном соединении используется топология «шина», поэтому в случае обрыва кабеля связи лишится сразу весь сегмент;
  • В витой паре минимально допустимый радиус изгиба меньше, чем в коаксиале;
  • В витой паре большая помехозащищенность, ввиду использования дифференциального сигнала;
  • Имеется возможность питания по кабелю маломощных узлов, к примеру, IP-телефонов (стандарт POE);
  • Гальваническая развязка трансформаторного типа. Используя коаксиальный кабель в российских условиях, где обычно отсутствует заземление компьютеров, эксплуатация часто сопровождается пробоями сетевых карт, а иногда даже и полным сгоранием системного блока.

В качестве веской причины перехода на оптический кабель стала необходимость в увеличении длины сегмента без повторителей. Управление доступом в случае с сетью на коаксиальном кабеле представляет собой множественный доступ с обнаружением коллизий (CSMA/CD, Carrier Sense Multiple Access with Collision Detection), скорость передачи данных достигает 10 Мбит/с, размер пакета от 72 до 1526 байт.

Полудуплексный режим работы (узел не может передавать и принимать информацию одновременно) сопряжен с ограничением по количеству узлов в одном сегменте сети. Оно ограничено предельным значением (1024 рабочих станции). На физическом уровне можно устанавливать более жесткие ограничения, к примеру, к сегменту тонкого коаксиала можно подключить не более 30 рабочих станций, а к сегменту толстого коаксиала — не более 100. Впрочем, сеть, которая построена на одном разделяемом сегменте, становится неэффективной задолго до достижения предельного значения количества узлов. Это происходит из-за полудуплексного режима работы.

В 1995 году был принят стандарт IEEE 802.3u Fast Ethernet, его скорость составляла 100 Мбит/с, появилась возможность работы в режиме полный дуплекс.

В 1997 году был принят стандарт IEEE 802.3z Gigabit Ethernet, его скорость составляла 1000 Мбит/с, передача осуществлялась по оптическому волокну. А через два года после его выхода, передача осуществлялась уже посредством витой пары - инженеры доработали стандарт.

Формат кадра

Существует несколько форматов Ethernet-кадра:

  • Version I (в настоящее время не применяется);
  • Ethernet Version 2 или Ethernet-кадр II (также его называют DIX - аббревиатура первых букв фирм-разработчиков DEC, Intel, Xerox). Является наиболее распространенной, используется и по сей день. Зачастую применяется непосредственно протоколом Интернет;
  • Novell — внутренняя модификация IEEE 802.3 без LLC (Logical Link Control);
  • Кадр IEEE 802.2 LLC;
  • Кадр IEEE 802.2 LLC/SNAP;
  • Часть сетевых карт Ethernet, выпускаемых компанией Hewlett-Packard, используют при работе кадр формата IEEE 802.12, он соответствует стандарту 100VG-AnyLAN.

Как дополнение Ethernet-кадра он может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности. Разные типы кадра обладают разным форматом и значением MTU.

MAC-адреса

В ходе разработки стандарта Ethernet предусматривалось, что каждая сетевая карта должна обладать уникальным 6-байтным номером (MAC-адресом), зашитым в нее во время изготовления. Данный номер применяется в целях идентификации отправителя и получателя кадра. Предполагается, что при появлении в сети нового компьютера, сетевому администратору не придется вновь настраивать MAC-адрес.

Как достигается уникальность MAC-адресов? Каждый производитель получает в координирующем комитете (IEEE Registration Authority) специальный диапазон, состоящий из шестнадцати миллионов (2^24) адресов, по мере истечения которых, запрашивает новый диапазон. Так, по трем старшим байтам MAC-адреса можно определить производителя. Кроме того, существуют специальные таблицы, которые позволяют определить производителя по MAC-адресу.

Все без исключения современные сетевые платы позволяют программным образом изменить MAC-адрес, но если плата будет, к примеру, обесточена, то при сбросе данных, восстановится исходный MAC-адрес.

Разновидности Ethernet

Скорость передачи данных и передающая среда определяют несколько видов технологии Ethernet. Вне зависимости от способа передачи стек сетевого протокола и программы работают одинаково почти во всех вариантах.

Большая часть Ethernet-карт имеет поддержку нескольких скоростей передачи данных (применяется автоопределение скорости и дуплексности, для достижения наилучшего соединения между двумя устройствами). Если автоопределение не работает, скорость подстраивается под партнера, активируется режим полудуплексной передачи. К примеру, присутствие в устройстве порта Ethernet 10/100 говорит о том, что через него можно работать по технологиям 10BASE-T и 100BASE-TX, а порт Ethernet 10/100/1000 имеет поддержку стандартов 10BASE-T, 100BASE-TX и 1000BASE-T.

Ранние версии Ethernet

  • Xerox Ethernet — технология с максимальной скоростью в 3 Мбит/с. Существовала в двух вариантах: Version 1 и Version 2. Формат кадра последней версии до сих пор имеет широкое применение.
  • 1BROAD36 — технология не получила широкого распространения. Один из первых стандартов, который позволяет работать на больших расстояниях. Использовалась технология широкополосной модуляции (как в кабельных модемах). В качестве среды передачи данных применялся коаксиальный кабель.
  • 1BASE5 — технология, также известная, как StarLAN. Стала первой модификацией Ethernet-технологии, в которой использовалась витая пара. Работала на скорости 1 Мбит/с. Коммерчески непопулярна.

10 Мбит/с Ethernet

  • 10BASE5, IEEE 802.3 (также имеет название «Толстый Ethernet»). Является первоначальной разработкой, обладающей скоростью передачи данных в 10 Мбит/с. По раннему стандарту IEEE использует коаксиальный кабель с волновым сопротивлением 50 Ом (RG-8), с максимальной длиной сегмента 500 метров.
  • 10BASE2, IEEE 802.3a (также имеет название «Тонкий Ethernet»). В данном стандарте применяется кабель RG-58, с максимальной длиной сегмента 185 метров. ПК присоединялись один к другому, для подключения кабеля к сетевой карте требуется T-коннектор, а на кабеле должен быть BNC-коннектор. Также необходимо наличие терминаторов на каждом конце. Долгие годы данный стандарт являлся основным в технологии Ethernet.
  • StarLAN 10 - первая разработка, использующая витую пару для передачи данных. Скорость 10 Мбит/с. В дальнейшем данная технология эволюционировала в стандарт 10BASE-T.

Схема, при которой к одному кабелю витой пары подключается более двух устройств, работающих в симплексном режиме, никогда не применялась в Ethernet, однако, в теории это вполне возможно реализовать. Но такой принцип применялся в работе с коаксиальным кабелем. Вот почему все сети на витой паре применяют топологию «звезда», тогда как сети на коаксиальном кабеле построены на топологии «шина». Терминаторы для работы по витой паре встроены в каждое устройство, поэтому применять дополнительные внешние терминаторы в линии нет необходимости.

  • 10BASE-T, IEEE 802.3i — стандарт, при котором для передачи данных применяется 4 провода кабеля витой пары (две скрученные пары) категории-3 или категории-5. Максимальная длина сегмента составляет 100 метров.
  • FOIRL — (Fiber-optic inter-repeater link). Базовый стандарт для технологии Ethernet. Он использует для передачи данных оптический кабель. Максимальное расстояние передачи данных без повторителя составляет 1 км.
  • 10BASE-F, IEEE 802.3j — главный термин для обозначения семейства 10 Мбит/с ethernet-стандартов, применяющих оптический кабель (расстояние до 2 км.): 10BASE-FL, 10BASE-FB и 10BASE-FP. Однако из всех лишь 10BASE-FL получил широкое распространение.
  • 10BASE-FL (Fiber Link) — модернизированная версия стандарта FOIRL. Улучшения коснулись увеличения длины сегмента до 2 км.
  • 10BASE-FB (Fiber Backbone) — неиспользуемый в настоящее время стандарт предназначался для объединения повторителей в магистраль.
  • 10BASE-FP (Fiber Passive) — стандарт, созданный по топологии «пассивная звезда». В ней не нужны повторители. Стандарт никогда не применялся.

Fast Ethernet (100 Мбит/с)

  • 100BASE-T — общий термин для обозначения стандартов, которые используют витую пару в качестве среды передачи данных. Длина сегмента достигает 100 метров. Включает в себя стандарты 100BASE-TX, 100BASE-T4 и 100BASE-T2.
  • 100BASE-TX, IEEE 802.3u — усовершенствованный стандарт 10BASE-T, предназначенный для использования в сетях топологии «звезда». Применяется витая пара категории 5, фактически используются только две неэкранированные пары проводников, имеется поддержка дуплексной передача данных. Расстояние до 100 м.
  • 100BASE-T4 — стандарт, который использует витую пару категории 3. Задействованы все четыре пары проводников, передача данных осуществляется в полудуплексе. Не используется на практике.
  • 100BASE-T2 — стандарт, в котором применяется витая пара категории 3. Задействованы только две пары проводников. Поддерживается полный дуплекс, когда сигналы распространяются в противоположных направлениях по каждой паре. Скорость передачи в одном направлении — 50 Мбит/с. Не используется на практике.
  • 100BASE-SX — стандарт, в котором применяется многомодовое волокно. Максимальная длина сегмента составляет 400 метров в полудуплексе или 2 километра в полном дуплексе.
  • 100BASE-FX — в данном стандарте используется одномодовое волокно. Максимальная длина ограничена величиной затухания в оптическом кабеле и мощностью передатчиков. Составляет от 2-х до 10 километров.
  • 100BASE-FX WDM — в данном стандарте используется одномодовое волокно. Максимальная длина ограничена лишь величиной затухания в волоконно-оптическом кабеле и мощностью передатчиков. Интерфейсы делятся на два вида, отличаются длиной волны передатчика и маркируются либо цифрами, либо одной латинской буквой A(1310) или B(1550). В паре могут работать исключительно парные интерфейсы.

Gigabit Ethernet (1 Гбит/с)

  • 1000BASE-T, IEEE 802.3ab — стандарт, в котором используется витая пара категории 5e. В передаче данных задействовано 4 пары. Скорость передачи данных составляет 250 Мбит/с по одной паре. В данном стандарте применяется метод кодирования PAM5, частота основной гармоники - 62,5 МГц. Расстояние - до 100 метров.
  • 1000BASE-TX - данный стандарт был создан Ассоциацией Телекоммуникационной Промышленности (Telecommunications Industry Association, TIA), был обнародован в марте 2001 года как «Спецификация физического уровня дуплексного Ethernet 1000 Мб/с (1000BASE-TX) симметричных кабельных систем категории 6 (ANSI/TIA/EIA-854-2001)» («A Full Duplex Ethernet Specification for 1000 Mbit/s (1000BASE-TX) Operating Over Category 6 Balanced Twisted-Pair Cabling (ANSI/TIA/EIA-854-2001)»). В стандарте используется раздельная приемо-передача, ввиду чего конструкция приемопередающих устройств значительно упрощается. Также существенным отличием 1000BASE-TX является отсутствие схемы цифровой компенсации наводок и возвратных помех, из-за этого сложность, уровень энергопотребления и цена процессоров сокращается, в сравнении с процессорами стандарта 1000BASE-T. Однако, как следствие, для стабильной работы по такой технологии необходима кабельная система высокого качества. Вот почему 1000BASE-TX может использовать лишь кабель 6 категории. На рынке практически не создавались продукты, построенные на основе данного стандарта, хотя 1000BASE-TX использует более простой протокол (соответственно, более простую электронику), чем стандарт 1000BASE-T.
  • 1000BASE-X — общий термин, использующийся для обозначения стандартов со сменными приемопередатчиками GBIC или SFP.
  • 1000BASE-SX, IEEE 802.3z — в данном стандарте используется многомодовое волокно. Дальность сигнала (без повторителя) достигает 550 метров.
  • 1000BASE-LX, IEEE 802.3z — в данном стандарте используется одномодовое волокно. Дальность сигнала (без повторителя) зависит от типа используемых приемопередатчиков. Обычно она составляет от 5 до 50 километров.
  • 1000BASE-CX — данный стандарт используется для коротких расстояний (до 25 метров). В нем применяется твинаксиальный кабель с волновым сопротивлением 75 Ом. Он был заменен стандартом 1000BASE-T, в настоящее время не используется.
  • 1000BASE-LH (Long Haul) — в данном стандарте, используется одномодовое волокно. Дальность сигнала (без повторителя) достигает 100 километров.

Ethernet 10G (10 Гбит/с)

Новый 10 Гбит-ный стандарт Ethernet состоит из семи стандартов физической среды для LAN, MAN и WAN. Сегодня он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.

  • 10GBASE-CX4 — стандарт 10-гигабитного Ethernet, предназначенный для коротких расстояний (до 15 метров). Применяется медный кабель CX4 и коннекторы InfiniBand.
  • 10GBASE-SR — стандарт 10-гигабитного Ethernet, предназначенный для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля). Применяется многомодовое волокно. Также имеется поддержка расстояния до 300 метров, с использованием нового многомодового волокна (2000 МГц/км).
  • 10GBASE-LX4 — данный стандарт использует уплотнение по длине волны с целью поддержки расстояний от 240 до 300 метров, по многомодовому волокну. Также имеется поддержка расстояния до 10 километров при использовании одномодового волокна.
  • 10GBASE-LR и 10GBASE-ER — данные стандарты поддерживают расстояния до 10 и 40 километров соответственно.
  • 10GBASE-SW, 10GBASE-LW и 10GBASE-EW — данные стандарты применяют физический интерфейс, который совместим по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, поскольку в них применяются те же самые типы кабелей и расстояния.
  • 10GBASE-T, IEEE 802.3an-2006 — стандарт принят в июне 2006 года, спустя 4 года разработки. В нем используется экранированная витая пара. Расстояние работы — до 100 метров.

Компания Harting объявила о выходе первого в мире 10-гигабитного соединителя RJ-45, который не требует инструментов для установки. Модель получила название HARTING RJ Industrial 10G.

Ethernet: 40 Гбит/с и 100 Гбит/с

По наблюдениям Группы 802.3ba, требования к пропускной полосе для приложений сетевого ядра и прочих вычислительных функций растут с разными скоростями. Это, в свою очередь, определяет необходимость двух соответствующих стандартов для следующих поколений Ethernet: 40GbE и 100GbE.

Читайте также: