23 сферы применения компьютерной графики способы создания цифровых графических объектов

Обновлено: 07.07.2024

Область применения компьютерной графики не ограничивается одними художественными эффектами. Во всех отраслях науки, техники, медицины, в коммерческой и управленческой деятельности используются построенные с помощью компьютера схемы, графики, диаграммы, предназначенные для наглядного отображения разнообразной информации. Конструкторы, разрабатывая новые модели автомобилей и самолетов, используют трехмерные графические объекты, чтобы представить окончательный вид изделия. Архитекторы создают на экране монитора объемное изображение здания, и это позволяет им увидеть, как оно впишется в ландшафт.

Научная графика Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства - графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения.

Иллюстративная графика - это произвольное рисование и черчение на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

Художественная и рекламная графика - ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и "движущихся картинок". Получение рисунков трехмерных объектов, их повороты, приближения, удаления, деформации связано с большим объемом вычислений. Передача освещенности объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчетов, учитывающих законы оптики.

Компьютерная анимация - это получение движущихся изображений на экране дисплее. Художник создает на экране рисунке начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Компьютерная графика – это наука, предметом изучения которой является создание, хранение и обработка моделей и их изображений с помощью электронно-вычислительной машины.

В компьютерной графике рассматриваются следующие задачи:

  • представление изображения в компьютерной графике;
  • подготовка изображения к визуализации;
  • создание изображения;
  • осуществление действий с изображением.

Под компьютерной графикой обычно понимают автоматизацию процессов подготовки, преобразования, хранения и воспроизведения графической информации с помощью компьютера.

Знание основ компьютерной графики и умение их использовать на простейшем бытовом уровне становится неотъемлемым элементом компьютерной грамотности современного человека. На данный момент существует множество сфер применения компьютерной графики.

  • компьютерное моделирование;
  • системы автоматизированного проектирования;
  • компьютерные игры;
  • обучающие программы;
  • реклама и дизайн;
  • мультимедиа презентации;
  • Internet.

К примеру, назначением научной графики является получение наглядных изображений, а именно построение графиков, чертежей и диаграмм, помогающих при решении сложных производственных задач, проведении экспериментов.

р1.jpg

Говоря о работе инженеров, изобретателей и архитекторов, нельзя не упомянуть про такой раздел, как конструкторская графика. Построение чертежей вручную отнимает много времени, другое дело компьютерная программа, позволяющая оптимизировать процесс в поиске наиболее удачного решения.

В любом учреждении время от времени возникает необходимость классификации данных, создании статистических сводок и упорядочиванию отчетной документации. И здесь уж никак нельзя обойтись без помощи специальных графических приложений, предназначенных для наглядного представления показателей работы предприятия.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. 7 класса. Босова Л.Л. Оглавление

Ключевые слова:

  • графический объект
  • компьютерная графика
  • растровая графика
  • векторная графика
  • форматы графических файлов

Рисунки, картины, чертежи, фотографии и другие графические изображения будем называть графическими объектами.

Компьютерная графика — это широкое понятие, обозначающее:1) разные виды графических объектов, созданных или обработанных с помощью компьютера;2) область деятельности, в которой компьютеры используются как инструменты создания и обработки графических объектов.

Сферы применения компьютерной графики

Компьютерная графика прочно вошла в нашу повседневную жизнь.

  • для наглядного представления результатов измерений и наблюдений (например, данных о климатических изменениях за продолжительный период, о динамике популяций животного мира, об экологическом состоянии различных регионов и т. п.), результатов социологических опросов, плановых показателей, статистических данных, результатов ультразвуковых исследований в медицине и т. д.;
  • при разработке дизайнов интерьеров и ландшафтов, проектировании новых сооружений, технических устройств и других изделий;
  • в тренажёрах и компьютерных играх для имитации различного рода ситуаций, возникающих, например, при полете самолёта или космического аппарата, движении автомобиля и т. п.;
  • при создании всевозможных спецэффектов в киноиндустрии;
  • при разработке современных пользовательских интерфейсов программного обеспечения и сетевых информационных ресурсов;
  • для творческого самовыражения человека (цифровая фотография, цифровая живопись, компьютерная анимация и т. д.).

Примеры компьютерной графики показаны на рис. 3.5.


Рекомендуем вам познакомиться со следующими Интернет-ресурсами:

Способы создания цифровых графических объектов

Графические объекты, созданные или обработанные с помощью компьютера, сохраняются на компьютерных носителях; при необходимости они могут быть выведены на бумагу или другой подходящий носитель (плёнку, картон, ткань и т. д.).

Графические объекты на компьютерных носителях будем называть цифровыми графическими объектами.

Существует несколько способов получения цифровых графических объектов:

  • 1) копирование готовых изображений с цифровой фотокамеры, с устройств внешней памяти или «скачивание» их из Интернета;
  • 2) ввод графических изображений, существующих на бумажных носителях, с помощью сканера;
  • 3) создание новых графических изображений с помощью программного обеспечения.

Принцип работы сканера состоит в том, чтобы разбить имеющееся на бумажном носителе изображение на крошечные квадратики — пиксели, определить цвет каждого пикселя и сохранить его в двоичном коде в памяти компьютера.

Качество полученного в результате сканирования изображения зависит от размеров пикселя: чем меньше пиксель, тем на большее число пикселей будет разбито исходное изображение и тем более полная информация об изображении будет передана в компьютер.

Размеры пикселя зависят от разрешающей способности скайера, которая обычно выражается в dpi (dot per inch — точек на дюйм 1 ) и задаётся парой чисел (например, 600 х 1200 dpi). Первое число — это количество пикселей, которые могут быть выделены сканером в строке изображения длиной в 1 дюйм. Второе число — количество строк, на которые может быть разбита полоска изображения высотой в 1 дюйм.

  • 1Дюйм — единица длины в английской системе мер, равна 2,54 см.

Задача. Сканируется цветное изображение размером 10 х 10 см. Разрешающая способность сканера — 1200 х 1200 dpi, глубина цвета — 24 бита. Какой информационный объём будет иметь полученный графический файл?



Растровая и векторная графика

В зависимости от способа создания графического изображения различают растровую, векторную и фрактальную графику.

Растровая графика

В растровой графике изображение формируется в виде растра — совокупности точек (пикселей), образующих строки и столбцы. Каждый пиксель может принимать любой цвет из палитры, содержащей миллионы цветов. Точность цветопередачи — основное достоинство растровых графических изображений. При сохранении растрового изображения в памяти компьютера сохраняется информация о цвете каждого входящего в него пикселя.

Качество растрового изображения возрастает с увеличением количества пикселей в изображении и количества цветов в палитре. При этом возрастает и информационный объём всего изображения. Большой информационный объём — один из основных недостатков растровых изображений.

Следующий недостаток растровых изображений связан с некоторыми трудностями при их масштабировании. Так, при уменьшении растрового изображения несколько соседних пикселей преобразуются в один, что ведёт к потере чёткости мелких деталей изображения. При увеличении растрового изображения в него добавляются новые пиксели, при этом соседние пиксели принимают одинаковый цвет и возникает ступенчатый эффект (рис. 3.7).


Растровые графические изображения редко создают вручную. Чаще всего их получают путём сканирования подготовленных художниками иллюстраций или фотографий; в последнее время для ввода растровых изображений в компьютер широко применяются цифровые фотокамеры.

Векторная графика

Многие графические изображения могут быть представлены в виде совокупности отрезков, окружностей, дуг, прямоугольников и других геометрических фигур. Например, изображение на рис. 3.8 состоит из окружностей, отрезков и прямоугольника.


Каждая из этих фигур может быть описана математически: отрезки и прямоугольники — координатами своих вершин, окружности — координатами центров и радиусами. Кроме того, можно задать толщину и цвет линий, цвет заполнения и другие свойства геометрических фигур. В векторной графике изображения формируются на основе таких наборов данных (векторов), описывающих графические объекты, и формул их построения. При сохранении векторного изображения в память компьютера заносится информация о простейших геометрических объектах, его составляющих.

Информационные объёмы векторных изображений значительно меньше информационных объёмов растровых изображений. Например, для изображения окружности средствами растровой графики нужна информация обо всех пикселях квадратной области, в которую вписана окружность; для изображения окружности средствами векторной графики требуются только координаты одной точки (центра) и радиус.

Ещё одно достоинство векторных изображений — возможность их масштабирования без потери качества (рис. 3.9). Это связано с тем, что при каждом преобразовании векторного объекта старое изображение удаляется, а вместо него по имеющимся формулам строится новое, но с учётом изменённых данных.


Вместе с тем, не всякое изображение можно представить как совокупность простых геометрических фигур. Такой способ представления хорош для чертежей, схем, деловой графики и в других случаях, где особое значение имеет сохранение чётких и ясных контуров изображений.

Фрактальная графика

Фрактальная графика, как и векторная, основана на математических вычислениях. Но, в отличие от векторной графики, в памяти компьютера хранятся не описания геометрических фигур, составляющих изображение, а сама математическая формула (уравнение), по которой строится изображение. Фрактальные изображения разнообразны и причудливы (рис. 3.10).


Форматы графических файлов

Формат графического файла — это способ представления графических данных на внешнем носителе. Различают растровые и векторные форматы графических файлов, среди которых, в свою очередь, выделяют универсальные графические форматы и собственные (оригинальные) форматы графических приложений.

Универсальные графические форматы «понимаются» всеми приложениями, работающими с растровой (векторной) графикой.

Универсальным растровым графическим форматом является формат BMP. Графические файлы в этом формате имеют большой информационный объём, так как в них на хранение информации о цвете каждого пикселя отводится 24 бита.

В рисунках, сохранённых в универсальном растровом формате GIF, можно использовать только 256 разных цветов. Такая палитра подходит для простых иллюстраций и пиктограмм. Графические файлы этого формата имеют небольшой информационный объём. Это особенно важно для графики, используемой во Всемирной паутине, пользователям которой желательно, чтобы запрошенная ими информация появилась на экране как можно быстрее.

Универсальный растровый формат JPEG разработан специально для эффективного хранения изображений фотографического качества. Современные компьютеры обеспечивают воспроизведение более 16 миллионов цветов, большинство из которых человеческим глазом просто неразличимы. Формат JPEG позволяет отбросить «избыточное» для человеческого восприятия разнообразие цветов соседних пикселей. Часть исходной информации при этом теряется, но это обеспечивает уменьшение информационного объёма (сжатие) графического файла. Пользователю предоставляется возможность самому определять степень сжатия файла. Если сохраняемое изображение — фотография, которую предполагается распечатать на листе большого формата, то потери информации нежелательны. Если же этот фотоснимок будет размещён на web-странице, то его можно смело сжимать в десятки раз: оставшейся информации будет достаточно для воспроизведения изображения на экране монитора.

Универсальный формат EPS позволяет хранить информацию как о растровой, так и о векторной графике. Его часто используют для импорта 1 файлов в программы подготовки полиграфической продукции.

  • 1 Процесс открытия файла в программе, в которой он не был создан.

С собственными форматами вы познакомитесь непосредственно в процессе работы с графическими приложениями. Они обеспечивают наилучшее соотношение качества изображения и информационного объёма файла, но поддерживаются (т. е. распознаются и воспроизводятся) только самим создающим файл приложением.

Задача 1. Для кодирования одного пикселя используется 3 байта. Фотографию размером 2048 х 1536 пикселей сохранили в виде несжатого файла. Определите размер получившегося файла.


Задача 2. Несжатое растровое изображение размером 128 х 128 пикселей занимает 2 Кб памяти. Каково максимально возможное число цветов в палитре изображения?


Самое главное

Компьютерная графика — это широкое понятие, обозначающее:

  • 1) разные виды графических объектов, созданных или обработанных с помощью компьютеров;
  • 2) область деятельности, в которой компьютеры используются как инструменты создания и обработки графических объектов.

В зависимости от способа создания графического изображения различают растровую и векторную графику.

В растровой графике изображение формируется в виде растра — совокупности точек (пикселей), образующих строки и столбцы. При сохранении растрового изображения в памяти компьютера сохраняется информация о цвете каждого входящего в него пикселя.

В векторной графике изображения формируются на основе наборов данных (векторов), описывающих тот или иной графический объект, и формул их построения. При сохранении векторного изображения в память компьютера заносится информация о простейших геометрических объектах, его составляющих.

Формат графического файла — это способ представления графических данных на внешнем носителе. Различают растровые и векторные форматы графических файлов, среди которых, в свою очередь, выделяют универсальные графические форматы и собственные форматы графических приложений.

Вопросы и задания

1. Ознакомьтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Что вы можете сказать о формах представления информации в презентации и в учебнике? Какими слайдами вы могли бы дополнить презентацию?

Компьютерная графика – это раздел информатики, который занимается проблемами получения изображений на компьютере. Изображения могут быть рисунками, чертежами, мультипликацией.

Рассмотрим сферы применения компьютерной графики.

Научная графика

В начале компьютерной эры вычислительная техника использовалась исключительно для решения научных и промышленных задач. Графика использовалась для интерпретации результатов. Например, при решении проектных задач, чертежи выводились на бумагу при помощи специального устройства графопостроителя, который выполнял чертеж, управляя движением пера по бумаге. Современная научная графика позволяет получать графическую интерпретацию научных расчетов на мониторе и выводить на печатные устройства. Для выполнения работ связанных с научной графикой используются специализированные прикладные пакеты программ, такие как Matlab, MathCad.

Деловая графика

Область компьютерной графики, которая занимается визуальным оформлением различных показателей работы организации. Чаще всего для этого используются различные виды диаграмм. На диаграммах можно наглядно представить сравнение плановых и фактических показателей, кривые спроса на продукцию, визуализировать показатели отчетной документации и т.д. Чаще всего используются те средства деловой графики, которые включены в состав табличных процессоров (MS Excel, Calc).

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Конструкторская графика

Конструкторская графика. Этот вид графики используется в работе инженеров. Графическими средствами инженеры создают чертежи приборов, изобретений, сооружений, котельных и т.д. Здесь применяются как изображения отдельных проекций, так и объемные чертежи. Для работы с конструкторской графикой используются специальные системы автоматизированного проектирования (САПР). Самые популярные из них AutoCAD, DraftSight, Компас. На рисунке показан фрагмент проекта котельной, выполненный в системе AutoCAD.

Компьютерная живопись и иллюстративная графика

Это сфера деятельности профессиональных художников. Средства для работы с иллюстративной графикой называются графическими редакторами. К самым популярным относится Adobe Photoshop, CorelDraw. Художники-иллюстраторы часто пользуются дополнительными приложениями: Corel Painter IX, Pixarra TwistedBrush, Alias SketchBook Pro. Здесь есть возможность использовать различные кисти и фильтры, прорисовывать в специальных техниках текстуры тканей или шерсть животных, имитировать такие техники рисования как карандаш, акварель масло.

Компьютерная анимация

Позволяет получить движущиеся изображения на мониторе. Существует несколько видов анимации:

    Анимация по ключевым кадрам. Этот вид анимации близок к традиционной мультипликации. Сначала создаются ключевые кадры. Потом аниматор расставляет их в нужной последовательности. Далее специальная программа связывает последовательные кадры в движущееся изображение.

Создание анимированных изображений в формате *.jpg является вполне посильной задачей для непрофессионала. Для этого нужно:

Заготовить в графическом редакторе (например, в Paint) последовательность кадров и сохранить их в любом доступном формате (.jpg, .bmp, .jpg).

Добавить подготовленные кадры при помощи кнопки «Добавить».

Нажать кнопку «Готово» внизу экрана.

Запись движения. С реальных движущихся объектов снимаются датчиками данные о движении. Например, если нужно воссоздать движения человека, то нужно считывать данные о движении конечностей, отдельных суставов. Потом создается компьютерная модель движущегося объекта, и считанные данные переносятся на нее. Этим способом можно достаточно точно воссоздать даже мимику лица.

Процедурная анимация

Движения различных механических систем легко описываются математическими уравнениями в частных производных. Для многих тел и механизмов эти уравнения давно известны, поэтому положение объекта или части системы в любой момент времени можно рассчитать на основе этих уравнений. Процедурная анимация широко применяется в компьютерных играх для создания простых движений.

Программируемая анимация

Этот вид анимации представляет собой нечто среднее между анимацией по ключевым кадрам и процедурной анимацией. Бесконечным циклом организуется непрерывная смена кадров. Но вместо ключевых кадров задается формула, по которой последующее положение объекта вычисляется через предыдущее.

Например, чтобы анимировать равномерное горизонтальное движение объекта, достаточно написать немного странную с точки зрения математики формулу: $x=x+1$. Эту формулу следует читать так: новое значение координаты x равно предыдущему значению, увеличенному на 1. Если шаг изменения координаты достаточно мал, то получится плавное движение объекта по горизонтали. Если прибавлять не 1, а, 10, то получится эффект движения рывками. Программируемую анимацию можно создать в любом языке программирования. В языках JavaScript и ActionScript существуют специальные средства для вставки такой анимации в веб-страницы.


В статье раскрывается понятие и сущность компьютерной графики, рассматриваются основные виды компьютерной графики, приводятся статистические данные и описываются основные способы применения графической информации в различных сферах общественной жизни.

Ключевые слова: изображения, графика, данные.

В условиях современного мира человек всё чаще сталкивается с большими объёмами информации, с которыми достаточно тяжело взаимодействовать, если они не представлены в удобном виде, поэтому сегодня трудно представить жизнь без таблиц, схем, графиков, диаграмм, картинок и видеоматериалов, так как именно эти средства представления информации помогают нам визуализировать любые данные. Графическая информация в компьютеризированной среде является конечным продуктом компьютерной графики — изображением.

Компьютерная графика является разделом информатики, изучающим методы и средства представления и визуализации данных в графическом виде посредством программно-аппаратных средств. Это самый быстрорастущий сегмент в области информационных технологий. Широкий спектр возможностей, которые может реализовать компьютерная графика, начиная с систем видеонаблюдения и заканчивая многопользовательскими онлайн играми и просмотром видео на видеохостингах, постоянно расширяется, позволяя нам всесторонне развивать своё окружение.

В зависимости от методов и приёмов создания графической информации выделяют растровые, векторные, фрактальные и трёхмерные (3D) компьютерные графики.

Смысл растровой компьютерной графики заключается в представлении изображения совокупностью пикселей разных цветов. Размер изображения в пикселях может выражаться в виде количества пикселей по ширине и по высоте (800×600px, 1024×768px, 1600×1200px и т. д.) или же в виде общего количества пикселей (например, в изображении 1920×1080 пикселей содержится около 2 миллионов и 74 тысяч точек, что равно 2 мегапикселям). Пиксель — простейший элемент растровой графики. Каждый пиксель имеет свой фиксированный размер, и каждому пикселю приписан свой атрибут цвета. Каждый цвет пикселя записывается в виде определённого сочетания битов. Количество цветов напрямую зависит от количества битов, которые для этого используются, а называется это качество растрового изображения цветовой глубиной. Важным показателем в растровой графике служит разрешение изображения. Данный показатель выражает количество пикселей на дюйм: чем больше данных пикселей, тем выше разрешение изображения и тем оно чётче. Выражается этот показатель в единицах измерения «dpi» (dots per inch — точек на дюйм) [1]. Растровое представление изображения используется в таких приборах, как мониторы, принтеры, сканеры, мобильные телефоны и цифровые фотоаппараты. Пример растрового изображения можно рассмотреть на рисунке 1.


Рис. 1. Пример растрового изображения

Векторная графика — вид компьютерной графики, в котором изображение представляется в виде совокупности отдельных объектов, описываемых математическими уравнениями [2, 60]. Таким образом, если в растровой графике построение изображения происходит посредством совокупного представления пикселей, то в векторной графике базовым элементом построения изображения является линия (контур). В векторной графике контур имеет свои свойства: форму, цвет, начертание (сплошной или пунктирный), толщину и форму концов (со стрелкой или закругленные). Каждый контур имеет две и более опорных точек, которые называются узлами — по ним и строится изображение. Контур может быть открытым и закрытым. Открытый контур — если его начальная опорная точка не совпадает с конечной опорной точкой. Закрытый контур — если его последняя опорная точка является одновременно и первой, и замыкающей.

Данный вид компьютерной графики применяется в электронной полиграфии, системах автоматического проектирования и для создания любых изображений, которые в будущем должны будут масштабироваться. Это происходит с учётом того, что в векторной графике, в отличие от растровой, при увеличении масштаба изображения качество картинки не портится и не наблюдается эффект, который называют «пикселизацией» (когда становятся заметны элементы растра). Пример векторного изображения можно рассмотреть на рисунке 2.


Рис. 2. Пример векторного изображения

Фрактальная графика — очередной вид представления изображения, посредством наследования каждого нового элемента определённых графических свойств предыдущих элементов. Говоря простым языком, это изображение, построенное из многократно повторяющихся одинаковых частей. Мелкие элементы фрактального объекта повторяют свойства всего объекта. Полученный объект носит название «фрактальной фигуры». Процесс наследования можно продолжать до бесконечности. Изменяя коэффициенты уравнения, можно получать совершенно различные друг от друга изображения, а меняя и комбинируя окраску фрактальных фигур, можно моделировать образы живой и неживой природы [2,74].

Основное свойство такого вида компьютерной графики состоит в том, что изображение при масштабировании почти не изменяется ни в геометрическом строении, ни по уровню разрешения. Такое изображение всегда остаётся одинаково сложным, а каждый её элемент в одинаковой степени похож на все остальные элементы. Фрактальная графика в современном мире особенно популярна, ведь это один из самых необычных и лёгких способов создания сложных изображений, ведь графическому редактору нужно только задать нужную математическую формулу и указать количество повторений.

Фрактальная графика позволяет создавать абстрактные композиции, где можно реализовать такие композиционные приёмы как горизонтали и вертикали, диагональные направления, симметрию и асимметрию и др. Фрактальная графика незаменима при создании изображений облаков, гор, водных и других поверхностей, очень напоминающих природные неевклидовые поверхности. Часто фрактальную графику применяют для создания рекламных вывесок, вебсайтов и приложений, ведь фрактальные изображения на подсознательном уровне привлекают внимание человека. Методами фрактальной графики часто моделируют турбулентные потоки и создают различные узоры. Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся перспективных видов компьютерной графики. Пример фрактального изображения можно рассмотреть на рисунке 3.


Рис. 3. Пример фрактального изображения

Трёхмерная 3D графика — один из самых сложных видов компьютерной графики, но в то же время и один из самых полезных в жизни современного человека. 3D моделирование позволяет создать объёмную трёхмерную модель с учётом многих условий, которые можно менять самостоятельно. Под условиями понимаются такие вещи, как освещение, точка зрения на объект, его габариты относительно других объектов и т. д. Данный вид построения изображения имеет огромное количество преимуществ над всеми другими видами компьютерной графики, описанными мною выше. Трёхмерная графика применяется почти во всех сферах жизнедеятельности человека. Примерами является почти всё, что нас окружает, ведь подавляющее большинство предметов обихода, перед тем как пойти в производство, создаются в графических редакторах трёхмерных моделей [3]. Возьмём, к примеру, любой мобильный телефон. В процессе создания инженеры сначала рассчитывали примерную форму и компоновку всех деталей внутри корпуса, после чего создают 3D модель, отражающую точные минимальные габариты устройства. После этого дизайнеры, с учётом данных величин, проектируют, как должен выглядеть аппарат и накладывают поверх первичной 3D модели смартфона новые объекты и шкурки (слои изображения) и т. д. То есть данная технология позволяет спроектировать то или иное устройство сразу в его объёмном виде и с учётом многих нюансов, что естественно ускоряет и облегчает процесс конструирования объектов быта. Пример трёхмерной графики можно рассмотреть на рисунке 4.

Картинки по запросу трехмерная графика

Рис. 4. Пример трёхмерной графики

Сегодня компьютерная графика является одним из самых быстроразвивающихся направлений информационных технологий: графическая информация используется почти во всех сферах жизнедеятельности человека [5].

Помимо сферы досуга и развлечений, компьютерная графика незаменима и в области здравоохранения, так как условии современного мира вынуждают искать более совершенные средства борьбы с различными заболеваниями. В связи с этим подавляющее большинство стран мира последние 30 лет упорно старается внедрять современные информационные технологии в область медицины. И в этом процессе модернизации одно из наиболее значимых мест занимает внедрение компьютерной графики. Она активно применяется в создании моделей внутренних органов, обработке и выводе на экран компьютера изображения со сканера УЗИ и компьютерной томографии. Все эти данные записываются в память компьютера и в последствии на их основе составляется объёмное изображение. С помощью данных технологий выявляется около 80 % всех заболеваний даже на ранних стадиях, что существенно упрощает процесс лечения пациентов.

Особое внимание графической информации уделяется среди научных деятелей и в области образования. В данных отраслях человеку просто необходимо графическое сопровождение почти во всех вопросах, начиная от школьных презентаций в PowerPoint и заканчивая сложными графическими моделями протекания различных химических реакций. В данных направлениях компьютерная графика позволяет сделать преждевременные предположения о происхождении каких-либо процессов, на протекание которых ушло бы не одно тысячелетие. Примерами служат компьютерные графические программы, моделирующие зарождение жизни на земле, различные природные катаклизмы и столкновение элементарных частиц (программа анализа результатов деятельности большого адронного коллайдера).

Однако развитие и использование графической информации не достигли предела, и на сегодня существует множество планов по внедрению компьютерную графику в обиход. Например, во многих странах планируется искать информацию о преступниках по фотографиям и записям видеокамер в Интернете посредством использования нейронных сетей. На данный момент данная технология изучена не до конца и имеет определённый процент погрешности, но по заверениям учёных данная технология будет в полной мере освоена уже в ближайшее время.

Огромное значение для людей имеют транспортные средства, но в силу многих обстоятельств, человечеству было бы удобнее отстраниться от самостоятельного управления автомобилями. Зная это, компания Google запустила тестирование своих беспилотных автомобилей ещё в 2009 году, информационный портал ITC.ua представил следующую статистику: «C 2009 года беспилотники Google накатали около 2.72 млн км, из них около 1.7 млн км в режиме автопилота. За это время автомобили стали участниками 11 незначительных аварий»., что ярко отличается от количества аварий по вине человека [6]. Алгоритм управления транспортом, используемый в программе Google, намного практичнее, так как учитывает множество факторов, фиксирующихся с помощью камер с применением технологий, основанных на компьютерной графике (например, уровень освещённости на дороге, расстояние до дорожной разметки и других объектов, поведение других машин), а после производит расчет за доли секунд и позволяет реагировать на любые изменения в окружающей обстановке почти моментально.

Таким образом, графическая информация является очень удобным инструментом представления данных. С внедрением в обиход компьютеров начали развитие досуг и развлечения, здравоохранение, бизнес, образование, искусство и пр. Процесс развития представления графической информации и средств её обработки имеет высокую скорость. За 20–25 лет технологии компьютерной графики достигли небывалых высот, и то, что раньше казалось фантастикой, сейчас используется повсеместно, например, виртуальная реальность [7]. В конце 1960-х американским компьютерным художником Майроном Крюгером был сформулирован термин «искусственная реальность», определяющий технически созданный объектный мир, переданный человеку посредством его ощущений. В 1964 году польский философ и писатель Станислав Лем в своей книге «Сумма Технологии» впервые теоретически описал возможность создания окружающей действительности, почти не отличающейся от нашей, но подчиняющейся другим законам. Ровно через 20 лет была создана первая система, позволяющая манипулировать объектами на экране с помощью движения рук, а в 1989 был введён сам термин «виртуальная реальность». На сегодняшний день из простых манипуляторов и теоретических предположений эта технология переросла в полноценную аппаратно-программную систему, позволяющую человеку посредством контроллеров и специального шлема очутиться в виртуальном мире и управлять находящимися там объектами. Поэтому скорость развития графических технологий высока, и с каждым годом методы представления графической информации становятся более доступными для обычного пользователя.

Читайте также: