Аппаратная виртуализация тормозит компьютер

Обновлено: 06.07.2024

Виртуализация серверов обеспечивает гораздо лучшее использование системы, гибкость рабочих нагрузок и другие преимущества для центра обработки данных. Но организациям часто приходится сталкиваться с такими проблемами виртуализации, как:

  • разрастание виртуальных машин,
  • перегрузка сети,
  • сбои серверного оборудования,
  • снижение производительности виртуальных машин,
  • ограничения лицензирования программного обеспечения.

С помощью инструментов управления жизненным циклом и бизнес-политик, компании могут смягчить эти проблемы до их возникновения. Разберем подробнее проблемы.

Разрастание тратит ценные вычислительные ресурсы

Описание проблемы:

До виртуализации развертывание нового сервера занимало недели и даже месяцы, потому что компаниям приходилось планировать бюджет для систем и координировать развертывание.

С помощью виртуализации гипервизор может выделять вычислительные ресурсы и запускать новую виртуальную машину на доступном сервере за считанные минуты.

Когда виртуальные машины оказываются в среде, редко возникают какие-либо процессы, позволяющие определить, нужны ли они кому-либо или используются ли они. Следовательно виртуальные машины накапливаются со временем и поглощают вычислительные ресурсы, ресурсы резервного копирования и аварийного восстановления.

Решение:

Поскольку виртуальные машины легко создавать и уничтожать, организациям нужны политики и процедуры, которые помогут им понять, когда им нужна новая виртуальная машина и определить, как долго она им понадобится.

Следует рассмотреть возможность отслеживания виртуальных машин с помощью инструментов управления жизненным циклом. Должны быть четкие даты проверки и удаления, чтобы организация могла продлить или исключить виртуальную машину.

Виртуальные машины могут перегружать сетевой трафик

Описание проблемы:

Перегрузка сети – еще одна распространенная проблема. Организация, которая регулярно использует свои системные номера, может заметить, что у нее достаточно памяти и ядер ЦП для размещения 25 виртуальных машин на одном сервере.

Большинство серверов оснащены только одним портом сетевой карты, и сетевой трафик на виртуализированном сервере не занимает много времени, чтобы перегрузить сетевую карту. Рабочие нагрузки, чувствительные к задержке в сети, могут сообщать об ошибках или даже сбоях.

Стандартные порты Ethernet могут поддерживать трафик от нескольких ВМ, но организациям, планирующим высокий уровень консолидации, может потребоваться обновить серверы с несколькими портами сетевых адаптеров для обеспечения надлежащего сетевого подключения.

Решение:

Иногда организации могут облегчить краткосрочные проблемы с перегрузкой трафика путем перебалансировки рабочих нагрузок для распределения требовательных к пропускной способности виртуальных машин по нескольким серверам.

Помните, что для обновления сетевой карты также могут потребоваться дополнительные порты коммутатора или обновления коммутатора. В некоторых случаях организациям может потребоваться распределить трафик от сетевых адаптеров по нескольким коммутаторам, чтобы предотвратить насыщение объединительной платы коммутатора.

Консолидация умножит влияние отказов серверного оборудования

Описание проблемы:

Виртуализация предоставляет инструменты, которые могут защитить виртуальные машины и обеспечить их непрерывную работу в нормальных условиях. Но виртуализация ничего не делает для защиты базового оборудования. Итак, что происходит, когда сервер выходит из строя?

Физическая аппаратная платформа становится единой точкой отказа и влияет на все рабочие нагрузки, выполняемые на платформе. Более высокий уровень консолидации означает большее количество рабочих нагрузок на каждом сервере, и сбои серверов влияют на эти рабочие нагрузки.

Помните, что рабочая нагрузка должна перезапускаться из моментального снимка в хранилище и перемещаться с диска в память на доступном сервере.

Решение:

Существует несколько тактик устранения сбоев оборудования сервера. Организации могут выбрать перераспределение рабочих нагрузок, чтобы предотвратить размещение нескольких критически важных приложений на одном сервере. Можно также ненадолго снизить уровни консолидации, чтобы ограничить количество рабочих нагрузок в каждой физической системе.

В долгосрочной перспективе организациям следует развернуть серверы высокой доступности для важных платформ консолидации. Эти серверы могут включать в себя резервные источники питания и многочисленные технологии защиты памяти.

Резервирование памяти и зеркалирование памяти помогут предотвратить ошибки или хотя бы предотвратить их фатальный исход.

Наиболее важные рабочие нагрузки могут находиться в кластерах серверов, которые поддерживают синхронизацию нескольких копий каждой рабочей нагрузки. Если один сервер выходит из строя, другой узел кластера берет на себя и продолжает работу без сбоев.

Производительность приложений на виртуальной машине все еще может быть незначительной

Описание проблемы:

Всякий раз, когда организации меняют оборудование или абстрагируют его от приложения, ПО может работать некорректно, и его обычно необходимо перекодировать. Организации могут обнаружить, что база данных работает медленнее, чем патока. Или что приложение после виртуализации работает медленнее. Например, для рабочей нагрузки теперь требуется больше вычислительных ресурсов (объема памяти, циклов ЦП и ядер).

Решение:

Организации обычно могут запустить утилиту тестирования производительности и выявить любые ресурсы, которые используются чрезмерно, а затем предоставить дополнительные вычислительные ресурсы, чтобы обеспечить некоторый резерв. Например, если памяти слишком мало, приложение может полагаться на подкачку файлов на диске, что может снизить производительность. Добавление достаточного объема памяти может существенно повысить производительность.

Тестирование перед виртуализацией поможет выявить проблемные приложения и даст организациям возможность сформулировать ответы на проблемы виртуализации перед развертыванием виртуальной машины в производственной среде.

Лицензирование программного обеспечения

Описание проблемы:

Компании не могут рассчитывать на клонирование виртуальных машин без покупки лицензий на ОС и приложения, работающие на этой виртуальной машине.

Организации должны всегда проверять и понимать правила лицензирования любого ПО, которое они развертывают. Крупные организации могут даже нанять сотрудника по соблюдению лицензионных требований, чтобы отслеживать лицензирование ПО и предлагать рекомендации по развертыванию.

Нарушение лицензий может привести к судебным разбирательствам и серьезным штрафам. Основные поставщики ПО часто оставляют за собой право проводить аудит организаций и проверять их лицензию. Если одна лицензия стоит тысячи долларов, неосторожное распространение виртуальных машин может нанести финансовый ущерб.

Решение:

Обращайтесь за помощью к профессионалам, которые успешно настроят вам всё необходимое.

В заключении

Виртуализация серверов изменила современные корпоративные вычисления. Она позволяет эффективно использовать вычислительные ресурсы в меньшем количестве физических систем и предоставляет больше способов защиты данных и обеспечения доступности.

Но виртуализация несовершенна и создает новые проблемы, которые организации должны понимать и решать, чтобы обеспечить бесперебойную работу центра обработки данных.

Чтобы избежать ошибок, обратитесь за помощью к специалистам CloudNetworks для реализации данного решения:

Клиенты все чаще мигрируют в облака в погоне за гибкостью: здесь намного проще добавить диск, память и процессоры, если чего-то не хватает. Но иногда новички обнаруживают, что добавление ресурсов перестает помогать. Скорость работы не растет, а с бэкапом и восстановлением начинаются проблемы.

Сегодня вместе с @kvolodin мы расскажем, почему бесконечное увеличение ресурсов ВМ может вредить пользователям и как спланировать рост производительности очевидными, но действенными способами. Статья полезна тем, кто переехал или планирует переезд в облако и еще знакомится с нюансами облачной среды.


Очевидные причины: ограничения железа и бэкапов


Но так было не всегда. В старых версиях vCloud Director мы не могли жестко ограничить некоторые параметры и прописывали лимиты только в договоре. К сожалению, иногда информация из контракта даже не попадала к инженерам клиента, и они могли почувствовать последствия на своей шкуре.

Много лет назад мы предоставили клиенту квоту в 20 ТБ и предупредили про ограничение на диск в 16 ТБ. Резервное копирование данных делали с помощью Veeam Backup&Replication. Когда клиент вышел за пределы диска в 16 ТБ, все задачи на создание бэкапов просто зависли. Veeam не успевал забэкапить большую ВМ и на всякий случай оставлял неполный снэпшот, а затем создавал новый. Дерево снэпшотов стало расти слишком быстро, общая производительность диска тоже упала. Пришлось полночи заново создавать дерево снэпшотов, а затем переносить данные на диски поменьше.

В те времена от подобных инцидентов нас защищал мониторинг. Мы сразу видели непорядок на дашбордах и обращали внимание клиента на проблему. Трудность была в том, что в случае IaaS сами виртуалки оставались ответственностью клиента. Инженеру клиента нужно было самому пересоздавать ВМ, иногда с большим трудом.

Клиенту выделили квоту в 40 ТБ на СХД, а для диска ВМ прописали ограничение в 20 ТБ. Администратор клиента создал ВМ в 30 ТБ и разметил все дисковое пространство одним диском. Техподдержка обнаружила проблему, сообщила клиенту, что нужно пересоздать ВМ с дисками меньшего размера, но администраторы долго не выходили на связь.

В это время данные начали записываться на созданный диск большими темпами. Пока на СХД было свободное место, мы увеличивали размер дата-стора и ждали ответа от клиента. Но если бы расширять дата-стор дальше было невозможно, клиенту пришлось бы рисковать данными. Нужно было бы создать новый диск и перегнать данные на него. Миграция такой большой ВМ могла потребовать несколько дней, и оставалась вероятность неудачного переезда.

Базовые лимиты защищают клиента от многих проблем и позволяют обслуживать железо в штатном режиме. Мы не допускаем разрастания ВМ до пределов физического диска и избегаем трудностей с миграцией. Добавить ресурсы по запросу клиента по-прежнему можно, но только если в этом правда есть необходимость.

Но даже если физический лимит не превышен, могут возникнуть другие трудности.

Неочевидная работа гипервизора

Если виртуальная машина в облаке начинает тормозить и захлебываться, клиент чаще всего ищет причину в нехватке ресурсов. Увеличение виртуальной машины кажется логичным и быстрым ходом. Но в некоторых случаях расширение только ухудшает скорость работы.

У клиента регулярно возникали пиковые периоды активности. Раз в месяц нагрузка на системы увеличивалась и требовала больше процессоров. Клиент решил не отключать эти процессоры после пика, а оставить их про запас. Но в период низкой активности производительность упала и не давала выполнять рутинные задачи. Дело в том, что гипервизор “отодвинул” недозагруженные системы на второй план. Так работает планировщик: если ВМ не требует ресурсов, то в очереди она спускается ниже.

Клиенту облака по умолчанию доступна только информация из диспетчера задач и монитора ресурсов. Бывает и так, что на ОС клиент видит загрузку части ядер на 100%. В это же время мы на гипервизоре видим, что часть ядер не используется, потому что приложение не рассчитано на многопоточность. В таких ситуациях парадоксальным образом помогает именно уменьшение ресурсов до необходимого и достаточного уровня. После этого гипервизор лучше распределяет небольшие ВМ в очередях.

Некорректный сайзинг приложения в облаке

К сожалению, переезд приложения с физических хостов не всегда возможен “в лоб”. Даже если все работало на физических 24 процессорах, столько же процессоров в облаке не всегда решают проблему.

Один из клиентов перед переездом на новое железо решил временно разместить в облаке виртуальную АТС. Мы заглянули в документацию вендора и обнаружили явную несовместимость с vCloud Director. Производители АТС изначально не гарантировали стабильную работу своего приложения в облачной среде. Тем не менее, нашим инженерам удалось настроить работу софта с помощью нескольких хитростей. Клиент спокойно работал в облаке, пока не дождался поставки собственного железа. Но если бы он захотел внести изменения в настройки, возникли бы трудности.

У крупных производителей софта несовместимость с облаком сразу прописана в документах. Менее очевидно дело обстоит с самописным ПО.

Клиент заказал виртуальную машину для переезда собственного приложения в облако. Через пару месяцев работы софт начал сильно тормозить. При аудите выяснилось, что объемные файлы по умолчанию сохраняются в одну директорию и нагружают файловую систему. За несколько месяцев там накопились уже миллионы файлов, и для решения проблемы понадобилась новая архитектура с несколькими хранилищами.

Даже если случай не такой экстремальный, при переезде с физических хостов не помешает пересмотреть подход к сайзингу приложения, изменить модель потребления ресурсов.

Например, бывают ситуации, когда пользователь привык к быстрой работе на ноутбуке с высокочастотными процессорами, а в облаке сталкивается с низкой скоростью. Характеристики Enterprise-железа в дата-центре рассчитаны на долгосрочную работу в режиме 24/7 и не допускают пограничных состояний. Если такой пользователь разгонял процессоры на своем ноутбуке до опасного максимума, то в облаке он не сможет добиться тех же скоростей от похожего процессора.

Случается и так, что приложение рассчитано на высоконагруженную базу, но размещается в облаке на SATA-дисках. Клиент видит загрузку процессоров и увеличивает ресурс CPU, не подозревая проблемы именно с дисками.

В то же время облако дает лучшие результаты при оптимизации приложения под несколько хранилищ. На физических хостах у разработчика меньше возможностей для маневра: как правило, все хранится на локальных одинаковых дисках. В облаке появляется вариативность: можно выбрать разные диски для разных типов хранения и даже немного сэкономить.

Один из клиентов хранил в своей базе данные трекинговой системы за три года ― такой срок хранения был предусмотрен нормативом. После переезда в облако удалось разделить хранилище на “холодное” и “горячее”. Редко используемые данные перемещались на медленные и дешевые “холодные” диски, а востребованная информация оставалась на быстрых дисках в “горячем” хранилище.

Подозрительная активность на ВМ

Когда снижение производительности подкрадывается постепенно, то переход на более производительные диски может и правда решить проблему. Если же загрузка ресурсов выросла резко, скорее всего, дело в шифровальщике или залетном майнере криптовалюты.

Неправильная настройка облачного межсетевого экрана у новых клиентов встречается не так уж редко. Иногда администраторы разрешают на граничном маршрутизаторе всем и все, а потом забывают об этом. Если мошенник обнаруживает уязвимость и завладевает машиной, то он забирает все ресурсы сразу, и докидывание процессоров не решает проблему.

Откуда берутся лимиты на ресурсы в облаке

Ограничения на диск

Есть технические ограничения СХД. Яркий пример: блочный том многих моделей NetApp не может быть более 16 ТБ.

Мы как провайдер провели тесты производительности СХД и рассчитали оптимальный размер дата-стора.

Инфраструктура резервного копирования лучше справляется с бэкапом нескольких мелких объектов, чем одного большого.

Ограничения на CPU и память

Ограничен размер физического хоста, на котором располагаются ВМ клиентов.

При размере хоста 144 vCPU и 2 TБ памяти ВМ большего размера не получится создать при всем желании. (Cпасибо, кэп!)

Для оптимального обращения к памяти мы учитываем особенности работы мультипроцессорных систем. Мы уже рассказывали об этом в статье про первую виртуальную машину.

У клиента может быть сервис, который сам эффективно распределяет ресурсы памяти, ― тогда проблем не возникнет. В остальных же случаях нужно настраивать лимиты.

С помощью некоторых лимитов мы можем управлять виртуальной платформой и предоставлять предсказуемый сервис с соблюдением SLA.

Ограничения на IOPS

В облаке также встречаются клиенты, у которых намного выше среднего параметры IOPS: количество операций ввода/вывода. Чаще всего это происходит в трех случаях:

Клиент решил протестировать выделенные мощности на больших нагрузках.

У клиента наблюдается аномальная нагрузка, например, из-за некорректной работы самописного софта или вирусов.

Клиент установил высокопроизводительное приложение.

На любой из этих случаев мы задаем ограничения потребляемых дисковых мощностей, опираясь на результаты нагрузочного тестирования СХД. Сейчас можем ограничить каждый диск фиксированным значением IOPS или исходить из IOPS на ГБ.

Как новому клиенту вписаться в лимиты и обеспечить производительность

При планировании переезда в облако ознакомиться с документацией на ПО. Некоторые производители софта сразу указывают, что их приложение не работает в облачной среде.

До переезда протестировать работу приложения в облачной инфраструктуре. Большинство провайдеров позволяют клиентам брать пробный период и запускать синтетические тесты.

Не стесняться обращаться в техподдержку. Инженеры могут оценить производительность со стороны гипервизора и дать рекомендации.

Расти маленькими шагами: увеличить диски намного проще, чем резко их уменьшить. Увеличивать процессоры тоже лучше постепенно, начинать с одного ядра.

Расти не вертикально, а горизонтально. Например, не добавлять 8 процессоров на одну ВМ, а создать 4 ВМ по 2 процессора на каждой. Вдобавок это уменьшит площадь отказа.

Ставить виртуальные машины на внутренний мониторинг. В этом случае клиент может выбрать наиболее важные показатели работы ВМ и быстро получать оповещения об их состоянии. Это позволит вычислять неочевидные проблемы, которые не заметны на общем мониторинге.

Всех приветствую!

За последние пару недель получил несколько вопросов однотипного содержания: "почему дико тормозит BlueStacks. " ( прим. : это эмулятор среды Android, запускаемый в Windows) .

Собственно, что это такое?

Виртуализация — это спец. технология, позволяющая на одном физическом компьютере запускать несколько операционных систем. То есть эта "штука" позволяет в вашей Windows запускать эмуляторы Android, Windows, iOS и пр.

Разумеется, если она отключена — то всё это "добро" будет либо тормозить (либо, что более вероятно, просто зависнет или при запуске возникнет ошибка!).

ускорение ПК

Разбираемся с виртуализацией

ШАГ 1: поддерживает ли ее ЦП

И так, для начала стоит сказать, что если у вас относительно новый ПК — скорее всего ваш процессор поддерживает аппаратную виртуализацию (так называемые технологии Intel VT-X и AMD-V (более подробно на Википедии) ).

Сведения о системе — что за ЦП

Сведения о системе — что за ЦП

Спецификация к ЦП от AMD и Intel

Спецификация к ЦП от AMD и Intel

ШАГ 2: проверяем, задействована ли она (Windows 10)

В Windows 10 довольно просто и быстро узнать, включена ли виртуализация . Для этого достаточно:

Виртуализация — отключено!

ШАГ 3: включаем виртуализацию (настройка BIOS)

Virtualization Technology (Enabled — значит включено!)

Virtualization Technology (Enabled — значит включено!)

UEFI (Asus) - Advanced Mode

UEFI (Asus) - Advanced Mode / кликабельно

Intel Virtualization Technology - Disabled

Intel Virtualization Technology - Disabled / кликабельно

3) Не забудьте, что после изменения настроек в BIOS — их необходимо сохранить (чаще всего клавиша F10 — Save and Exit).

Чтобы включить этот компонент:

  • нажмите сочетание Win+R;
  • в окно "Выполнить" выставьте команду optionalfeatures и нажмите Enter;
  • в открывшемся окне с компонентами Windows — найдите оный и включите его. Нажмите OK!

Hyper-V — включено!

PS

В данной статье мы рассмотрим несколько способов повышения производительности виртуальной машины VMware Workstation, Oracle VirtualBox, Microsoft Hyper-V или любой другой. Виртуальные машины довольно требовательны к характеристикам компьютера, ведь во время их работы на ПК одновременно запущено несколько операционных систем. Как результат, виртуальная машина может быть значительно медленнее основной операционной системы или вообще работать с притормаживанием.

В данной статье мы рассмотрим несколько способов повышения производительности виртуальной машины VMware Workstation , Oracle VirtualBox, Microsoft Hyper-V или любой другой.

Динамический или фиксированный виртуальный жесткий диск?

Создавая виртуальную машину, можно создать два разных типа виртуальных жестких дисков. По умолчанию виртуальная машина использует динамический диск, который занимает необходимое место на физическом носителе информации и увеличивается лишь по мере заполнения.

Например, создавая виртуальную машину с динамическим диском в 30 ГБ, он не займёт сразу же 30 ГБ жесткого диска компьютера. После установки операционной системы и необходимых программ его размер будет порядка 10-15 ГБ. Лишь по мере добавления данных, он может увеличиться до 30 ГБ.

Это удобно с той точки зрения, что виртуальная машина будет занимать на жестком диске место, которое пропорционально объёму хранимых на ней данных. Но, работа динамического жесткого диска медленнее фиксированного (иногда также называют распределённым).

Создавая фиксированный диск, все 30 ГБ на жестком диске компьютера будут выделены под диск виртуальной машины сразу же, независимо от объёма хранимых на нём данных. То есть, фиксированный жесткий диск виртуальной машины занимает больше места жесткого диска компьютера, но сохранение или копирование файлов и данных на нём происходит быстрее. Он не так сильно подвержен фрагментации, так как пространство под него выделяется максимально большим блоком, вместо того, чтобы добавляться маленькими частями.

Установка пакета инструментов виртуальной машины

После установки на виртуальную машину гостевой операционной системы, первое, что необходимо сделать – это установить пакет инструментов или драйверов вашей виртуальной машины, например: VirtualBox Guest Additions или VMware Tools. Такие пакеты содержат драйвера, которые помогут гостевой операционной системе работать быстрее.

Установить их просто. В VirtualBox, загрузите гостевую операционную систему и выберите Устройства / Подключить образ диска Дополнительной гостевой ОС… После чего запустите установщик, который появится как отдельный диск в папке «Этот компьютер» гостевой операционной системы.

В VMware Workstation, выберите меню Виртуальная машина / Установить паке VMware Tools… После чего запустите установщик, который появится как отдельный диск в папке «Этот компьютер» гостевой операционной системы.

Добавьте папку с виртуальной машиной в исключения вашей антивирусной программы

Антивирусная программа кроме прочих, также сканирует файлы виртуальной машины, что снижает её производительность. Но дело в том, что антивирусная программа не имеет доступа к файлам внутри гостевой операционной системы виртуальной машины. Поэтому такое сканирование бессмысленно.

Чтобы избавится от снижения производительности виртуальной машины, можно добавить папку с ней в исключения антивирусной программы. Антивирус будет игнорировать все файлы такой папки.

Активация Intel VT-x или AMD-V

Intel VT-x и AMD-V – это специальные технологии виртуализации, которые предназначены для обеспечения большей производительности виртуальных машин. Современные процессоры Intel и AMD, как правило обладают такой функцией. Но на некоторых компьютерах она автоматически не активирована. Чтобы её включить, необходимо перейти в BIOS компьютера и активировать её вручную.

AMD-V часто уже активирована на ПК, если поддерживается. А Intel VT-x чаще всего отключена. Поэтому, убедитесь в том, что указанные функции виртуализации уже активированы в BIOS, после чего включите их в виртуальной машине.

Больше оперативной памяти

Виртуальные машины требовательны к объёму доступной оперативной памяти. Каждая виртуальная машина включает полноценную операционную систему. Поэтому необходимо разделить операционную систему вашего ПК на две отдельные системы.

Microsoft рекомендует минимум 2 ГБ оперативной памяти для своих операционных систем. Соответственно, такие требования актуальны и для гостевой операционной системы виртуальной машины с Windows. А если планируется использование на виртуальной машине стороннего требовательного программного обеспечения, то для её нормальной работы оперативной памяти потребуется ещё больше.

В случае, если уже после создания виртуальной машины оказалось, что оперативной памяти для её нормальной работы недостаточно, то её можно добавить в настройках виртуальной машины.

Прежде чем делать это, убедитесь, что виртуальная машина отключена. Также, не рекомендуется предоставлять виртуальной машине более чем 50% физически присутствующей на компьютере виртуальной памяти.

Если, выделив для виртуальной машины 50% памяти вашего компьютера выяснилось, что она не стала работать достаточно комфортно, то возможно для нормальной работы с виртуальными машинами вашему компьютеру недостаточно оперативной памяти. Для нормальной работы любой виртуальной машины будет достаточно 8 ГБ оперативной памяти, установленной на основном ПК.

Выделить больше CPU

Основная нагрузка при работе виртуальной машины, приходится на центральный процессор. Таким образом, чем больше мощности центрального процессора виртуальная машина может занять, тем лучше (быстрее) она будет работать.

Если виртуальная машина установлена на компьютере с мульти-ядерным процессором, то в настройках виртуальной машины для неё можно выделить несколько ядер для её работы. Виртуальная машина на двух и более ядрах центрального процессора будет работать ощутимо быстрее чем на одном.

Установка виртуальной машины на компьютере с одноядерным процессором нежелательна. Работать такая виртуальная машина будет медленно и выполнение ею каких-либо задач будет не эффективным.

Правильные настройки видео

На скорость работы виртуальной машины могут также влиять настройки видео. Например, включение 2D или 3D-ускорения видео в VirtualBox, позволяет работать некоторым приложениям значительно быстрее. То же касается и возможности увеличения видеопамяти.

Но, как и в случае с оперативной памятью, многое зависит от видеоадаптера, который установлен на основном компьютере.

Виртуальная машина и SSD диск

Первым и лучшим усовершенствованием компьютера на сегодняшний день является установка на него SSD диска. Это ощутимо ускорит работу компьютера, а соответственно и установленной на нём виртуальной машины.

Некоторые пользователи устанавливают виртуальные машины на другой (HDD) диск своего компьютера, оставляя на SSD диске лишь основную операционную систему. Это делает работу виртуальной машины медленнее. Освободите место на SSD диске и перенесите виртуальную машину на него. Разница в скорости работы почувствуется с первых минут.

По возможности, не размещайте диски виртуальных машин на внешних носителях информации. Они работают ещё медленнее чем встроенный HDD диск. Возможны варианты с подключением виртуальной машины через USB 3.0, но о USB 2.0 и речи быть не может – виртуальная машина будет работать очень медленно.

Приостановка вместо закрытия

Когда вы закончили работать с виртуальной машиной, её можно приостановить вместо полного выключения.

Запуская приложение для работы с виртуальными машинами следующий раз, вы можете включить виртуальную машину таким же способом как обычно. Но она загрузится значительно быстрее и именно в том состоянии и с того места, на котором вы закончили работать прошлый раз.

Приостановка гостевой операционной системы очень похожа на использование гибернации вместо выключения ПК.

Улучшение производительности внутри виртуальной машины

Всегда необходимо помнить, что установленная на виртуальную машину операционная система мало чем отличается от той, которая работает на основном компьютере. Её работу можно ускорить, следуя тем же принципам и используя те же методы, которые актуальны для любой другой операционной системы.

Например, производительность системы увеличится если закрыть фоновые программы или те, которые автоматически запускаются при старте системы. На производительность системы влияет необходимость осуществления дефрагментации диска (если виртуальная машина расположена на HDD диске), и так далее.

Программы для работы с виртуальными машинами

Одни пользователи уверяют, что Oracle VirtualBox самый быстрый инструмент для работы с виртуальной машиной, для других – VMware Workstation или Microsoft Hyper-V . Но то, как быстро будет работать виртуальная машина на конкретном компьютере зависит от множества факторов: это и версия гостевой операционной системы, её тип, настройки системы и виртуальной машины, производительность самого компьютера, и пр. В любом случае, всегда можно испробовать другую программу.

Технология виртуализации в процессоре

На протяжении последних 15 лет слово «виртуальный» звучит практически из каждого утюга. Нам обещают все более реалистичные виртуальные миры или, как минимум, дополненную реальность. Виртуальная реальность, как в знаменитой трилогии «Матрица», пока в будущем. А вот виртуализация внутри процессора — реальное настоящее.

Зачем нужна виртуализация на домашнем компьютере

Вот простой пример: вы используете для работы и игр Windows, но при этом хотите изучить, например, Linux. Значит, нужно, чтобы эта операционная система находилась под рукой. Или занимаетесь программированием под Android или iOS. В этом случае постоянно требуется проверка разработанного приложения в родной среде.


Без виртуализации пришлось бы устанавливать на один компьютер две операционные системы, делать загрузчик и запускать каждую операционную систему поочередно. Или еще хуже — стирать одну ОС, устанавливать другую с переносом данных, переустановкой нужных приложений и так далее.

Так вот виртуализация позволяет обойтись без всех этих сложных процедур. Используя ее,можно запускать несколько операционных систем одновременно (одну внутри другой или две параллельно) и работать в той среде, которая нужна под конкретную задачу.

Виртуализация в бизнесе

Главная задача виртуализации — оптимальное использование производительности и мощности современной компьютерной техники в бизнес-приложениях, где используется мощное и дорогое оборудование.


Например, ваша организация собирается поставить почтовый сервер для обработки поступающей и исходящей переписки, а еще развернуть DNS и WEB-сервер. Сколько для этого нужно серверных машин? Достаточно одной. Потому что на ней, в виртуально разделенных друг от друга «песочницах», на одном и том же железе заработают как бы три отдельных компьютера, выполняющие каждый свою задачу. Так вы разместите на одном компьютере сразу три отдельных сервера и используете всю мощность и производительность техники, окупив потраченные средства.

Разумеется, так как мощность и производительность серверных систем и пропускная способность каналов связи постоянно растет, у виртуализации появляется все больше возможностей для применения. Наглядный пример из относительно недавно запущенных и находящихся у всех на слуху — сервис GeForce Now, благодаря которому можно на слабых компьютерах запускать современные игры.


Фактически это удаленные виртуальные компьютеры, выделенные сервисом под конкретного игрока. Собственная техника выступает только как терминальное устройство, для которого уже не так важна производительность процессора и видеокарты.

Основные направления развития виртуализации

В целом виртуализация как технология сейчас развивается по трем основным направлениям:

  • Виртуализация представлений. Это все тот же сервис GeForce Now. Сервер предоставляет вычислительные мощности, выполняет все расчеты, а на стороне терминала, за которым находится пользователь, только отображаются результаты расчетов. Да, в этом случае аппаратные требования к серверу оказываются высокими, но зато терминальное оборудование может быть очень простым.
  • Виртуализация аппаратной платформы. Это имитация аппаратной платформы с четко заданными параметрами. На созданный таким образом виртуальный компьютер устанавливают собственную ОС, запускаемую с помощью соответствующего приложения. Пример такой виртуализации — точная эмуляция Android для проверки и поиска багов в новых приложениях.


  • Виртуализация программной среды. Используется для запуска программ в изолированной, не контактирующей с «окружающим миром» среде. Это делается для исключения конфликтов и защиты приложений — как запускаемых внутри «песочницы» от внешних воздействий, так и остальных программ от небезопасного софта внутри виртуальной среды. Например, при запуске в такой «виртуальной песочнице» безопасного браузера, вы не навредите свой операционной системе, посещая вредоносные сайты, так как все работает внутри специально созданной для приложения программной среды.

Как работает виртуализация

Мы разобрались с тем, что виртуализация — это хорошо и полезно. А что требуется для того, чтобы она заработала на вашем конкретном компьютере? Надо чтобы процессор поддерживал виртуализацию.


То есть, он должен уметь работать с несколькими системами команд одновременно – например, от одной операционной системы и от другой. А значит, выполнять инструкции, выделять адреса и место под хранение данных так, чтобы они работали только в нужной среде, да еще и взаимодействовали с интерфейсом, портами ввода-вывода, видеокартами и прочими узлами компьютера.

Такая технология есть у обоих крупных производителей процессоров для ПК: у Intel она называется Intel VT, у AMD — AMD –V.

Особенности Intel VT

Впервые о разработке технологии виртуализации компания Intel объявила еще в 2005 году. И с тех пор Intel VT постоянно совершенствуется и расширяется.


Корпорация Intel описывает Intel VT как технологию, развивающую несколько основных направлений. На сегодня это:

  • виртуализация процессоров. Производительность современного процессора, работающего в составе виртуальной машины, практически такая же, как и при работе в составе физической. Кроме того, пользователь может создавать внутри работающей виртуальной среды другую. То есть, делать что-то вроде «матрешки» из «вложенных» друг в друга виртуальных операционных систем — так работает вложенная виртуализация;


  • виртуализация графических представлений через Intel Graphics Virtualization. Обеспечивает виртуальным машинам полный доступ или совместное использование графических процессоров и систем, отвечающих за работу с видео. Применяется для удаленных рабочих мест (несколько пользователей работают с удаленных терминалов на одном сервере) и онлайн-игр;
  • виртуализация ввода-вывода Intel Virtualization Technology for Directed I/O и прочие технологии работы с периферией обеспечивают передачу результатов обработки на сетевые и прочие устройства ввода-вывода информации. То есть, образно говоря, не дают виртуальным машинам «поссориться» при взаимодействии с сетью и не потерять в быстродействии. А также позволяют им получать доступ к любым устройствам, подключенным, например, к шине PCI-E. Отсюда следует и виртуализация сетевых функций, например, Intel QuickAssist.

Особенности AMD–V

Процессоры AMD по цене доступнее Intel, но это совсем не говорит о том, что они хуже. Есть мнение, что как раз наоборот. Многие игровые платформы строятся именно на основе процессоров, чипсетов и видеокарт этой компании.

И, конечно же, у главного конкурента Intel есть свой набор функций, реализующих аналогичные процессы виртуализации. Точно также на машинах, собранных на процессоре и чипсете AMD, можно развернуть несколько операционных систем и обеспечить их работу с периферийными устройствами, сетью, памятью и пр. или, например, запустить критичное приложение в изолированной среде.

Включение виртуализации на компьютере

Непосредственный запуск виртуальных машин выполняется с помощью специальных приложений:

  • менеджеров виртуальных машин. В качестве примера можно привести VMWare Workstation, Parallels Workstation. В этом случае одна операционная система запускается внутри другой;
  • программ-гипервизоров, позволяющих запускать на одном компьютере одновременно несколько операционных систем. Примеры таких приложений — Microsoft Hyper-V или Xen.


Но до того, как вы запустите эти программы и приступите к установке и настройке виртуальных машин, вам потребуется включить виртуализацию.

Дело в том, что по умолчанию в настройках BIOS большинства материнских плат виртуализация отключена. И ее необходимо включить в соответствующем разделе, который называется у каждого производителя по-своему, например, «Virtualization Technology» изменив значение опции с «Disabled» на «Enabled».


Если такой опции нет, то может оказаться так, что прошивка вашей материнской платы или процессор (хотя такое сейчас возможно только на старых моделях) виртуализацию не поддерживает. В этом редком, но возможном случае использовать преимущества виртуализации не получится.

Такая функция отключена в BIOS некоторых моделей ноутбуков Aser Aspire, позиционируемых производителем, как техника для домашнего использования.

Но в подавляющем большинстве случаев, вы просто включаете в BIOS виртуализацию, сохраняете настройки и после этого можете устанавливать и запускать гипервизоры или менеджеры виртуальных машин и приступать к работе с ними, управляя несколькими вычислительными процессами в разных оболочках одновременно.

Читайте также: