Быстро ли считает компьютер

Обновлено: 25.06.2024

Скорость передачи сигнала между нейронами медленная, по разным оценкам от 30 до 100 м/с, можно сказать практически ничто по сравнению со скоростью света. В другом ответе верно подмечено, что Вы путаете скорость передачи сигнала, измеряемую в метрах в секунду и производительность вычислений, измеряемую в операциях в секунду. Человеческий мозг выдает хорошую производительность за счет параллельных вычислений одновременно на разных группах нейронов, но при этом низкое качество.

По какому принципу работает живой человеческий мозг?

Непрерывные аналоговые сигналы бегут по отросткам (аксонам и дендритам), проходят через синапсы, усиливающие или гасящие сигналы. Дальше идет обработка самим нейроном нескольких сигналов от синапсов, выдача аналогового сигнала на другие синапсы и передача на другие отростки. Аналоговый сигнал содержит информации в огромное количество раз больше, чем похожий на него цифровой, но при этом содержит очень существенный недостаток - низкую помехоустойчивость. Быстро меняющийся аналоговый сигнал невозможно биологическими природными методами зафиксировать и запомнить надолго с первого раза. Достаточно одной помехи или следующего сигнала, чтобы информация в нейроне потерялась. А ведь для того чтобы перемножать хотя бы трехзначные числа нужны временные ячейки памяти.

Т.е. живой биологический мозг не может считать быстро по причине низкой стабильности и помехоустойчивости аналоговых сигналов.

По какому принципу работает компьютер?

Люди придумавшие цифровую обработку информации, изначально решили пойти путем стабильности и помехоустойчивости. Они придумали цифровой дискретный сигнал, который может принимать значения 0 и 1, а между ними обязательно разрыв. Например вот так

В результате количество информации в сигнале меньше в разы, но при этом получается хорошая помехоустойчивость. Элементы памяти отлично стабильно хранят информацию, а арифметико-логические устройства проводят действия ничего не путая.

Вывод. Биологический мозг изначально не создан для вычислений, поэтому он справляется с этой задачей хуже. Компьютер изначально создан для вычислений, поэтому он справляется с этой задачей лучше.

Время для компьютеров течет не так, как для людей. То, что человеческим мозгом воспринимается как мгновение, для компьютеров растягивается на долгие эпохи. Данная статья — это метафора, в попытке осознать этот простой и в общем-то очевидный факт.

Инфляция временных единиц

Для большинства программистов прикладного уровня время, которым измеряется производительность программ, останавливается на масштабе миллисекунд: ну какая разница, будет ли элемент в браузере рендериться 50 или 200 микросекунд, если это всё равно ничтожно малое значение? Какая разница, выполняется ли запрос в базу данных за 200 или за 500 микросекунд, если сетевые издержки на порядок больше? Безусловно, есть области программирования, где приходится спуститься на уровень наносекунд и единичных тактов, но в большей своей части программисты не думают такими временными понятиями. Я предлагаю подумать.

Компьютерная секунда

Я предлагаю подумать, как выглядела бы работа современного компьютера, если бы каждому такту процессора соответствовала одна секунда в субъективном мироощущении каких-нибудь существ, которые, как мы знаем, и управляют всей техникой ("гарантийные человечки" или, на современный лад, "фиксики"). Для таких человечков частота процессора будет равно ровно 1 Hz.

Я пишу эту статью на ноутбуке с восьмиядерным процессором базовой частотой в 2.4 GHz, то есть один такт раз в

0,4 наносекунды (округление очень грубое). Это значение и будет нашей "компьютерной секундой".

Что же происходит за время, равное такой секунде?

Восемь ядер процессора успевают выполнить несколько элементарных операций вроде сложения чисел.

Свет проходит около 12 сантиметров (в вакууме).

За пять секунд процессор может получить данные из кэша первого уровня.

Компьютерная минута

Этот промежуток времени интереснее. За минуту может произойти многое. По человеческим меркам эта минута равна примерно 24 наносекундам.

Что же может произойти за компьютерную минуту?

Электрический сигнал пройдет всю длину кабеля от компьютера до монитора.

За две минуты произойдет обращение к данным в оперативной памяти.

За несколько минут JVM сможет сделать объект String из маленького массива байтов.

Компьютерный час

На этом этапе мы переходим от человеческих наносекунд к микросекундам: компьютерный час равен 1.44 мкс.

Может выполниться пузырьковая сортировка небольшого массива, когда-то написанная мной в образовательных целях. (вдумайтесь: если процессор каждую секунду делает по простому действию, то для сортировки маленького массива ему понадобятся часы!)

За десяток-другой часов процессор может запросить и получить данные у достаточно производительного SSD.

Компьютерный год

Предлагаю перескочить через сутки и месяцы и сразу перейти к годам (

12мс), за год может произойти очень много разных событий:

Запрос, обрабатываемый базой данных несколько месяцев, можно считать быстрым.

Примерно раз в компьютерный год должно меняться изображение на мониторе, чтобы соответствовать частоте 60 Hz.

Около трех лет уходит на выполнение пинга 8.8.8.8 (три года, Карл! человек за это время может пешком дойти до сервера и вернуться!)

Десяток лет может пройти от нажатия на клавиатуру до появления символа на экране монитора.

Компьютерное столетие

Именно на таком уровне (человеческие секунды) мы общаемся с компьютером. Например, главная страница Хабра будет загружаться около пяти столетий. Вдумайтесь! Полтысячи лет! Если во времена Шекспира начать, секунда за секундой, работать над загрузкой страницы, работа всё ещё может быть не закончена в XXI веке!

Надеюсь, что данный мысленный эксперимент вам показался настолько же захватывающим и невероятным, как и мне. Многие вещи становятся более понятными и осязаемыми, если перевести их в компьютерные секунды. Например, читая "Операционные системы" Танненбаума, я недоумевал, как компьютер может вообще успевать что-то делать, если переключение в/из ядра ОС — такая сложная операция? Но если перевести это в "компьютерное" время, то это всего-то час труда раз в пару месяцев.

Здравствуйте. Если вы собираетесь изучить язык программирования python или любой другой язык, Вам необходимо знать, как компьютер хранит и обрабатывает числа. В привычной для нас системе исчисления десять знаков от 0 до 9, и называется она десятичной. А почему именно десять цифр? Видимо потому, что первобытные люди, которые изобрели эту систему, пользовались для счета пальцами рук.

Существует так же восьмиричная система исчисления. Она имеет только восемь цифр от 0 до 7. Есть еще и шестнадцатиричная система исчисления. В ней используются шестнадцать цифр. Для обозначения первых десяти цифр применяются цифры от 0 до 10, а недостающие шесть цифр дополняют буквами A, B, C, D, E, F. Но мы на них останавливаться не будем.

Сегодня поговорим о двоичной системе исчисления. Для записи любого числа используются две цифры 0 и 1. Процессор компьютера состоит из миллиардов маленьких транзисторов, которые имеют состояние логического нуля 0 – когда напряжение на выходе отсутствует, и состояние логической единицы 1 – когда на выходе присутствует напряжение. Компьютеру удобно использовать данную систему.

В привычной для нас десятичной системе, если нам нужно записать число меньше десяти, мы используем всего одну цифру. Для записи числа от 10 и 99, мы вводим новый разряд, который сначала мы приравниваем единице. Подставляя в младший разряд те же цифры от 0 до 9, после 9 опять идет 0 и мы получаем новый десяток. Когда во втором разряде мы дойдем до 99, вводим третий разряд от 100 до 999, потом четвертый, пятый и т. д.

В двоичной системе действует то же правило, только для записи числа используются две цифры 0 и 1. Поэтому, при увеличении на один, после 1 снова идёт 0, и при этом вводим следующий разряд. В двоичной системе числа от 0 до 10 выглядят так: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001.

Для выполнения операций над числами компьютер:

Переводит число из десятичной системы в двоичную;

выполняет необходимые операции (например, сложение);

результат обратно переводит в десятичную систему и выдает нам.

Давайте рассмотрим несколько примеров как можно число из десятичной системы исчисления, перевести в двоичную систему исчисления:

Возьмем число 123 и воспользуемся методом последовательным делением на число 2

Почему лучший компьютер по-прежнему уступает человеческому мозгу? - мозг, компьютер

2015-02-07 в 04:05

Печально осознавать, что в эпоху технического прогресса человеческий мозг по-прежнему остаётся загадкой. Кроме того, мы тратим миллионы долларов на развитие гигантских суперкомпьютеров и используем огромное количество энергии из невосполнимых ресурсов, чтобы обеспечить питанием эти приборы. А сравнительно маленький по размерам человеческий мозг по многим показателям по-прежнему превосходит самые мощные компьютеры.


Суперкомпьютеру требуется 82 944 процессоров и 40 минут работы, чтобы симулировать одну секунду мозговой активности человека.

В прошлом году суперкомпьютер K использовался учёными из Окинавского технологического университета в Японии и Исследовательского центра Юлих в Германии в попытке симулировать 1 секунду активности человеческого мозга.

Компьютер смог воссоздать модель из 1,73 миллиарда нейронов (нервных клеток). Однако в человеческом мозге около 100 миллиардов нейронов. То есть в человеческом мозге примерно столько нейронов, сколько звёзд в Млечном пути. Несмотря на то, что компьютеру удалось успешно симулировать 1 секунду мозговой активности, это заняло 40 минут.

Работник Корейского научного института проверяет суперкомпьютеры в Тэджоне, Южная Корея, 5 ноября 2004 г.


Суперкомпьютер К в 2011 г. был самым быстрым компьютером в мире. Его мощность около 10,51 петафлопс, т. е. примерно 10 510 триллионов операций в секунду. Технологии развиваются стремительно, поэтому сейчас К уже на четвёртом месте, на первом месте ― Tianhe-2 (33,86 петафлопс, 33 860 триллионов операций в секунду). Таким образом, за три года нам удалось утроить вычислительную мощность самого продвинутого компьютера.

Чтобы сделать эти цифры понятнее, iPhone 5п производит примерно 0,0000768 петафлопс. Итого, самый быстрый в мире компьютер примерно в 440 000 быстрее, чем графика iPhone 5, но медленнее, чем человеческий мозг.

В исследовании Мартина Хильберта из школы коммуникации Анненберга при Университете Южной Калифорнии, опубликованном в журнале Science в 2011 г., подсчитана способность мира обрабатывать информацию. Хильберт сформулировал её следующим образом: «Люди всего мира могут осуществить 6,4*1018 операций в секунду на обычных компьютерах образца 2007 г., что сравнимо с максимальным количеством нервных импульсов, возникающих в одном человеческом мозге за секунду».

Мозг дёшево обходится: он достаётся бесплатно

За исключением редких врождённых патологий мы все рождаемся с мозгом. Чтобы построить Tianhe-2, потребовалось $390 миллионов, сообщает «Форбс». При интенсивной работе он потребляет свыше 17,6 мегаватт энергии, площадь компьютерного комплекса занимает 720 кв. метров. Другие суперкомпьютеры более экономичны и потребляют около 8 мегаватт.

Для сравнения: 1 мегаватт равен 1 миллиону ватт. 100-ваттная лампочка при включении берёт 100 ватт. В итоге самый быстрый компьютер потребляет столько же энергии, сколько 176 000 лампочек.

Д-р Джефф Лайтон, технолог Dell корпорации по производству компьютеров, пишет в блоге: «Эти системы очень громоздкие, дорогие и энергозатратные».

Конечно, мозгу тоже требуется энергия. Он получает её из еды, для производства которой в современной сельскохозяйственной системе требуется топливо.

Компьютеры, которые мы используем в повседневной жизни, полезны. Но некоторые эксперты сомневаются в полезности суперкомпьютеров.

Газета South China Morning Post опубликовала статью о китайском суперкомпьютере Tianhe-2: «В отличие от персональных компьютеров, которые могут выполнять самые разные задачи –– от обработки текстов до игр и просмотра вэб-страниц, суперкомпьютеры построены для специфических задач. Для изучения их полной вычислительной возможности учёные потратили месяцы, если не годы, для написания и переписывания кодов, чтобы обучить машину эффективно выполнять свою работу».

Старший научный сотрудник из Пекинского компьютерного центра, пожелавший остаться анонимным, сказал South China Morning Post: «Пузырь суперкомпьютеров хуже, чем пузырь рынка недвижимости. Здание простоит десятилетия после того, как его построили, а компьютер, вне зависимости от того, настолько он быстрый по сегодняшним меркам, превратится в хлам уже через пять лет».

Что быстрее: компьютерный модем или человеческий мозг?

Многие учёные пытались измерить скорость обработки информации человеческим мозгом. Цифры, которые они называют, различаются и зависят от использованного подхода. Сравнение скорости модема и «скорости» работы мозга едва ли можно отнести к разряду точных наук.


Во-первых, нужно рассмотреть, сколько битов в секунду может обработать ваш мозг, затем посмотреть, сколько битов в секунду в среднем обрабатывает современный компьютер. Говоря иными словами, надо сравнить, сколько времени компьютеру требуется для загрузки изображения из Интернета, и сколько времени вам нужно, чтобы проанализировать то, что вы видите перед глазами.

Д-р Тор Норретрандерс, профессор философии из Бизнес-школы Копенгагена, написал книгу под названием «Иллюзия пользователя: сокращаем объём сознания», в которой он утверждает, что сознание обрабатывает примерно 40 бит/с, а подсознание — 11 миллионов бит/с.

Австрийский физик-теоретик Герберт В. Франке утверждал, что человеческий разум может осознанно усваивать 16 бит/с и осознанно удерживать в уме 160 бит/с. Он отмечает, что по этой причине ум может упростить любую ситуацию до 160 бит/с.


Фермин Москозо дель Прадо Мартин, когнитивный психолог из Университета Прованса во Франции, определил, что мозг обрабатывает примерно 60 бит/с. В своей статье в журнале Technology Review он сказал, что не уверен насчёт верхнего предела. То есть он не может утверждать, что мозг неспособен обработать больше 60 бит/с.

А теперь посмотрим, насколько быстро работает ваш компьютер дома.

Один мегабит в секунду равен 1 миллиону бит в секунду. Домашние модемы могут работать со скоростью от 50 мегабит в секунду до нескольких сотен мегабит в секунду. Это в миллион раз быстрее, чем ваше сознание, и, по крайней мере, в пять раз быстрее, чем ваше подсознание. То есть в этом отношении компьютеры однозначно превосходят мозг. Разумеется, эти цифры неточные, потому что с человеческим подсознанием многое до конца неясно.

Однако, хотя люди сравнительно медленно воспринимают информацию, то, как они умеют её обрабатывать, впечатляет.

Мы учимся и мы изобретаем

Учёные работают над созданием компьютеров, которые бы обладали творческими способностями. Но в настоящее время самый продвинутый искусственный интеллект в этом отношении уступает даже мозгу людей, живших тысячи лет назад.

Дьюб писал: «Чтобы найти информацию, компьютер использует расположения виртуальной памяти. В свою очередь человеческий мозг помнит, где находится информация благодаря намёкам. Они сами по себе являются единицей информации или памяти, связанной с информацией, которую надо найти.

«Это означает, что человеческий разум в состоянии связать между собой практически безграничное количество концепций самыми разными способами, а затем при получении новой информации убрать или восстановить эти связи. Эта особенность позволяет людям выйти за пределы уже изученной информации и создавать новые изобретения и искусство, что является отличительной особенностью человеческой расы».

Мозг мало изучен, и его преимущества до конца не раскрыты

National Geographic иллюстрирует, насколько сложно создать точную модель человеческого мозга. В февральском номере журнала в статье «Новая наука мозга» рассказывается, как учёные создали трёхмерную модель части мозга мыши размером с крупинку соли. Чтобы детально отобразить этот крошечный отдел, они использовали электронный микроскоп и разделили его на 200 секций, каждая толщиной в человеческий волос.

«Чтобы отобразить человеческий мозг схожим образом, потребовалось бы количество данных, превосходящее все тексты во всех библиотеках мира», ―пишет National Geographic.

В 2005 г. исследователи из Калифорнийского университета и Калифорнийского технологического института обнаружили, что лишь некоторые из 100 миллиардов нейронов в мозгу используются для хранения информации о конкретном человеке, месте или концепции. Например, они обнаружили, что когда людям показали фото актрисы Дженнифер Энистон, в мозгу реагировал один конкретный нейрон. А на фото актрисы Хэлли Берри реагировал уже другой нейрон.

Читайте также: