Что измеряется в raid penalty

Обновлено: 05.07.2024

«Какой уровень RAID самый надежный?» Все знают, что наиболее распространенным является уровень RAID5, однако он отнюдь не лишен серьезных недостатков, которые неочевидны для неспециалистов.

RAID 0, RAID 1, RAID 5, RAID 10 или что такое уровни RAID?

В своей статье я попытаюсь охарактеризовать самые популярные уровни RAID, а затем сформулирую рекомендации по использованию этих уровней. Для иллюстрации статьи я построил диаграмму, на которой поместил эти уровни в трехмерном пространстве надежности, производительности и ценовой эффективности.

JBOD (Just a Bunch of Disks) – это простое объединение (spanning) жестких дисков, которое уровнем RAID формально не является. Томом JBOD может быть массив из одного диска или объединение нескольких дисков. Контроллеру RAID для работы с таким томом не требуется проведение каких-либо вычислений. На нашей диаграмме диск JBOD служит в качестве «ординара» или отправной точки – его значения надежности, производительности и стоимости совпадают с соответствующими показателями единичного жесткого диска.

RAID 0 (“Striping”) избыточности не имеет, а информацию распределяет сразу по всем входящим в массив дискам в виде небольших блоков («страйпов»). За счет этого существенно повышается производительность, но страдает надежность. Как и в случае JBOD, за свои деньги мы получаем 100% емкости диска.

Поясню, почему уменьшается надежность хранения данных на любом составном томе – так как при выходе из строя любого из входящих в него винчестеров полностью и безвозвратно пропадает вся информация. В соответствии с теорией вероятностей математически надежность тома RAID0 равна произведению надежностей составляющих его дисков, каждая из которых меньше единицы, поэтому совокупная надежность заведомо ниже надежности любого диска.

Хороший уровень – RAID 1 (“Mirroring”, «зеркало»). Он имеет защиту от выхода из строя половины имеющихся аппаратных средств (в общем случае – одного из двух жестких дисков), обеспечивает приемлемую скорость записи и выигрыш по скорости чтения за счет распараллеливания запросов. Недостаток заключается в том, что приходится выплачивать стоимость двух жестких дисков, получая полезный объем одного жесткого диска.

Изначально предполагается, что жесткий диск – вещь надежная. Соответственно, вероятность выхода из строя сразу двух дисков равна (по формуле) произведению вероятностей, т.е. ниже на порядки! К сожалению, реальная жизнь – не теория! Два винчестера берутся из одной партии и работают в одинаковых условиях, а при выходе из строя одного из дисков нагрузка на оставшийся увеличивается, поэтому на практике при выходе из строя одного из дисков следует срочно принимать меры – вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва HotSpare. Достоинство такого подхода – поддержание постоянной надежности. Недостаток – еще большие издержки (т.е. стоимость 3-х винчестеров для хранения объема одного диска).

Зеркало на многих дисках – это уровень RAID 10. При использовании такого уровня зеркальные пары дисков выстраиваются в «цепочку», поэтому объем полученного тома может превосходить емкость одного жесткого диска. Достоинства и недостатки – такие же, как и у уровня RAID1. Как и в других случаях, рекомендуется включать в массив диски горячего резерва HotSpare из расчета один резервный на пять рабочих.

RAID 5, действительно, самый популярный из уровней – в первую очередь благодаря своей экономичности. Жертвуя ради избыточности емкостью всего одного диска из массива, мы получаем защиту от выхода из строя любого из винчестеров тома. На запись информации на том RAID5 тратятся дополнительные ресурсы, так как требуются дополнительные вычисления, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких накопителей массива распараллеливаются.

Недостатки RAID5 проявляются при выходе из строя одного из дисков – весь том переходит в критический режим, все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность, диски начинают греться. Если срочно не принять меры – можно потерять весь том. Поэтому, (см. выше) с томом RAID5 следует обязательно использовать диск Hot Spare.

Помимо базовых уровней RAID0 - RAID5, описанных в стандарте, существуют комбинированные уровни RAID10, RAID30, RAID50, RAID15, которые различные производители интерпретируют каждый по-своему.

Суть таких комбинаций вкратце заключается в следующем. RAID10 – это сочетание единички и нолика (см. выше). RAID50 – это объединение по “0” томов 5-го уровня. RAID15 – «зеркало» «пятерок». И так далее.

Таким образом, комбинированные уровни наследуют преимущества (и недостатки) своих «родителей». Так, появление «нолика» в уровне RAID 50 нисколько не добавляет ему надежности, но зато положительно отражается на производительности. Уровень RAID 15, наверное, очень надежный, но он не самый быстрый и, к тому же, крайне неэкономичный (полезная емкость тома составляет меньше половины объема исходного дискового массива).

RAID 6 отличется от RAID 5 тем, что в каждом ряду данных (по английски stripe) имеет не один, а два блока контрольных сумм. Контрольные суммы - "многомерные", т.е. независимые друг от друга, поэтому даже отказ двух дисков в массиве позволяет сохранить исходные данные. Вычисление контрольных сумм по методу Рида-Соломона требует более интенсивных по сравнению с RAID5 вычислений, поэтому раньше шестой уровень практически не использовался. Сейчас он поддерживается многими продуктами, так как в них стали устанавливать специализированные микросхемы, выполняющие все необходимые математические операции.

Согласно некоторым исследованиям, восстановление целостности после отказа одного диска на томе RAID5, составленном из дисков SATA большого объема (400 и 500 гигабайт), в 5% случаев заканчивается утратой данных. Другими словами, в одном случае из двадцати во время регенерации массива RAID5 на диск резерва Hot Spare возможен выход из строя второго диска. Отсюда рекомендации лучших RAIDоводов: 1) всегда делайте резервные копии; 2) используйте RAID6!

Недавно появились новые уровни RAID1E, RAID5E, RAID5EE. Буква "Е" в названии означает Enhanced.

RAID level-1 Enhanced (RAID level-1E) комбинирует mirroring и data striping. Эта смесь уровней 0 и 1 устроена следующим образом. Данные в ряду распределяются точь-в-точь так, как в RAID 0. То есть ряд данных не имеет никакой избыточности. Следующий ряд блоков данных копирует предыдущий со сдвигом на один блок. Таким образом как и в стандартном режиме RAID 1 каждый блок данных имеет зеркальную копию на одном из дисков, поэтому полезный объем массива равен половине суммарного объема входящих в массив жестких дисков. Для работы RAID 1E требуется объединение трех или более дисков.

Мне очень нравится уровень RAID1E. Для мощной графической рабочей станции или даже для домашнего компьютера - оптимальный выбор! Он обладает всеми достоинствами нулевого и первого уровней - отличная скорость и высокая надежность.

Перейдем теперь к уровню RAID level-5 Enhanced (RAID level-5E). Это то же самое что и RAID5, только со встроенным в массив резервным диском spare drive. Это встраивание производится следующим образом: на всех дисках массива оставляется свободным 1/N часть пространства, которая при отказе одного из дисков используется в качестве горячего резерва. За счет этого RAID5E демонстрирует наряду с надежностью лучшую производительность, так как чтение/запись производится параллельно с бОльшего числа накопителей одновременно и spare drive не простаивает, как в RAID5. Очевидно, что входящий в том резервный диск нельзя делить с другими томами (dedicated vs. shared). Том RAID 5E строится минимум на четырех физических дисках. Полезный объем логического тома вычисляется по формуле N-2.

Как ни странно, никаких упоминаний об уровне RAID 6E на просторах Интернета я не нашел - пока такой уровень никем из производителей не предлагается и даже не анонсируется. А ведь уровень RAID6E ( или RAID6EE? ) можно предложить по тому же принципу, что и предыдущий. Диск HotSpare обязательно должен сопровождать любой том RAID, в том числе и RAID 6. Конечно, мы не потеряем информацию при выходе из строя одного или двух дисков, но начать регенерацию целостности массива крайне важно как можно раньше, чтобы скорее вывести систему из "критического" режима. Поскольку необходимость диска Hot Spare для нас не подлежит сомнению, логичным было бы последовать дальше и "размазать" его по тому так, как это сделано в RAID 5EE, чтобы получить преимущества от использования бОльшего количества дисков (лучшая скорость на чтении-записи и более быстрое восстановление целостности).

Уровни RAID в "числах".

В таблицу я собрал некоторые важные параметры почти всех уровней RАID, чтобы можно было сопоставить их между собой и четче понять их суть.

Произво дительность записи

Все "зеркальные" уровни — RAID 1, 1+0, 10, 1E, 1E0.

Давайте еще раз попробуем досконально разобраться, чем же различаются эти уровни?

RAID 1.
Это - классическое "зеркало". Два (и только два!) жестких диска работают как один, являясь полной копией друг друга. Выход из строя любого из этих двух дисков не приводит к потере ваших данных, так как контроллер продолжает работу с оставшимся диском. RAID1 в цифрах: двукратная избыточность, двукратная надежность, двукратная стоимость. Производительность на запись эквивалентна производительности одного жесткого диска. Производительность чтения выше, так как контроллер может распределять операции чтения между двумя дисками.

RAID 10.
Суть этого уровня в том, что диски массива объединяются парами в "зеркала" (RAID 1), а затем все эти зеркальные пары в свою очередь объединяются в общий массив с чередованием (RAID 0). Именно поэтому его иногда обозначают как RAID 1+0. Важный момент - в RAID 10 можно объединить только четное количество дисков (минимум - 4, максимум - 16). Достоинства: от "зеркала" наследуется надежность, от "нуля" - производительность как на чтение, так и на запись.

RAID 1Е.
Буква "E" в названии означает "Enhanced", т.е. "улучшенный". Принцип этого улучшения следующий: данные блоками "чередуются" ("striped") на все диски массива, а потом еще раз "чередуются" со сдвигом на один диск. В RAID 1E можно объединять от трех до 16 дисков. Надежность соответствует показателям "десятки", а производительность за счет большего "чередования" становится чуть лучше.

RAID 1Е0.
Этот уровень реализуется так: мы создаем "нулевой" массив из массивов RAID1E. Следовательно, общее количество дисков должно быть кратно трем: минимум три и максимум - шестьдесят! Преимущество в скорости при этом мы вряд ли получим, а сложность реализации может неблагоприятно отразиться на надежности. Главное достоинство - возможность объединить в один массив очень большое (до 60) количество дисков.

Сходство всех уровней RAID 1X заключается в их показателях избыточности: ради реализации надежности жертвуется ровно 50% суммарной емкости дисков массива.

Что такое RAID-массив и зачем он нужен

В системах хранения данных критически важны сохранность и время восстановления в случае сбоя. Свою ценность, а в некоторых задачах и более высокую, имеет скорость работы накопителей. Использование RAID-массивов в различных конфигурациях — это поиск компромисса между перечисленными параметрами.

RAID — это технология объединения двух и более накопителей в единый логический элемент с целью повышения производительности и (или) отказоустойчивости отдельно взятого элемента массива.

RAID-массивы классифицируются по следующим параметрам:

  • по исполнению RAID контроллера;
  • по типам поддерживаемых интерфейсов накопителей;
  • по поддерживаемым уровням RAID.

RAID-контроллеры: аппаратные и не очень

По исполнению контроллеры делятся на программные и аппаратные. Программные реализуются непосредственно средствами операционной системы или на уровне материнской платы. Последние также известны как интегрированные, а также Fake-RAID. Они работают быстрее чисто софтверных решений за счет специального чипа для управления массивом. Недавно публиковался текст о развертывании таких технологий. Дополнительной железки при этом никакой нет и в любом случае будут использоваться ресурсы вычислительной машины.

Аппаратные RAID-контроллеры выполняются в форм-факторе платы PCIe либо в составе внешнего автономного устройства — дискового массива.

Они имеют на борту собственные процессор, память, BIOS и специальный интерфейс для конфигурации. Платы PCIe также комплектуются дополнительными модулями, сохраняющими данные, если произойдет сбой в электропитании: BBU с Li-Ion аккумулятором и ZMCP на базе суперконденсатора.


Оба модуля позволяют сделать сэйв содержимого кэша. После восстановления работы эти данные будут немедленно записаны на диск. Дисковый массив, будучи автономным, располагает собственными блоком питания и системой охлаждения.


Накопители подключаются к плате либо кабелями напрямую, либо через платы расширения. Автономные дисковые массивы содержат все накопители внутри себя, а наружу смотрит все тот же интерфейс PCIe (есть и другие варианты, например, USB 3.2 и Thunderbolt 3). Кстати, известный вид дисковых массивов — сетевое хранилище данных (NAS).

Что можно подключать к RAID-контроллеру

Следующий важный параметр, по которому различаются RAID-массивы, это поддержка интерфейсов накопителей. Не будем тревожить склеп с IDE-дисками, а констатируем, что по большому счету применяются три типа: SATA, SAS и NVMe. SAS — удел серверов, а вот остальные применяются повсеместно.

Есть программные и аппаратные RAID-контроллеры, которые умеют управлять массивом дисков с одним из интерфейсов. В формате PCIe есть и такие платы, которые реализуют режим Tri-Mode, позволяющий работать со смешанным составом накопителей.


Уровни RAID

Разобравшись с основными конструктивными особенностями RAID-контроллеров, перейдем к главной характеристике — поддержке уровней RAID. В подавляющим большинстве контроллеры работают с уровнями 0, 1, 1E, 10, 5, 5EE, 50, 6, 60. Другие занесены в красную книгу и на практике встречаются редко. Простейшие программные контроллеры позволяют создать RAID 0 и 1. Более продвинутые добавляют RAID 10 и 5. В аппаратных, как правило, такой перечень минимален, и многие платы поддерживают весь спектр уровней. Рассмотрим подробнее каждый из них.

Несколько важных нюансов для понимания эффективных объема и быстродействия, получаемых в результате объединения в массив:

  • при использовании накопителей разного объема контроллер «обрезает» объем каждого из них до наименьшего из используемых. Если у вас есть много дисков 4 ТБ и один 2 ТБ, то в массиве все диски будут восприниматься как 2 ТБ;
  • при использовании накопителей с разными скоростями ввода/вывода и задержками, то операции доступа будут осуществляться с наихудшими из всех параметров. Другими словами, самым быстрым дискам придется ждать, пока отработает самый медленный.

RAID 0


Единственный массив, который не совсем оправдывает название, поскольку не обладает избыточностью. При этом скорость и эффективный объем максимальны. Данные разбиваются на одинаковые блоки, равномерно записываемые на все диски по очереди. Эти блоки называются страйпами, отсюда и сам RAID 0 часто именуют страйпом. Считывание данных также происходит параллельно. Здесь конечно же есть свое но.

Дело в том, что прирост производительности не прямо пропорционален количеству дисков (как хотелось бы). В силу специфики накопителей, особенно механических, выигрыш в конфигурации RAID 0 хорошо заметен только на операциях последовательного чтения. Другими словами, при работе с большими файлами. Типичная область применения — игры, видеомонтаж и рендеринг. При условии, что регулярно производится резервирование на сторонние накопители. Наряду с этим при случайном доступе к файлам разница с отдельно взятым диском уже не так ощутима. Более позитивная картина наблюдается в случае твердотельных накопителей, но они и так удовлетворяют большинству запросов по быстродействию.

В общем, в современных реалиях RAID 0 далеко не всегда оправдает свое применение, а основная задача RAID-массива все же в повышении надежности хранения данных.

Обратная сторона медали за скорость как раз в отсутствии избыточности, что означает нулевую отказоустойчивость. В случае сбоя хотя бы одного из элементов массива, восстановление всего содержимого практически невозможно.

RAID 1


RAID 1, известный как «зеркало», представляет собой другую крайность. Он максимально избыточен — в нем производится 100 % дублирование данных. Этот процесс «съедает» ровно половину объема массива. Число дисков в нем, соответственно, четное. Позволяет увеличить скорость чтения, но синхронная скорость записи в некоторых случаях падает. При отказе одного из дисков работа автоматически продолжается с дублером. Если доступна функция горячей замены дисков, то восстановление штатного режима происходит без остановки. RAID 1 идеален для чувствительных данных.

RAID 5


Состоит минимум из трех накопителей, при этом доступный объем уменьшается на один. Данные записываются в страйпы на все диски кроме одного, на котором размещается контрольная сумма этой части данных. Запись этого блока также чередуется между всеми накопителями, распределяя равномерную нагрузку. Если их больше четырех, то скорость чтения будет выше чем в RAID 1, но запись будет осуществляться медленнее. Контрольные суммы позволяют достать информацию в случае выхода из строя одного из элементов. Сама операция восстановления вызывает повышенную нагрузку на оставшиеся диски. Значительно падает производительность и риск утери всех данных в случае отказа еще одного диска. Желательно иметь опцию горячей замены для оперативного возвращения в нормальный режим работы.

Со всеми плюсами и минусами эти три уровня наиболее распространены и просты в развертывании.

RAID 6


Развитие RAID 5 по части надежности, позволяющее пережить потерю двух дисков. В данной конфигурации в каждом проходе пишется две независимые контрольные суммы на два накопителя. Требуется минимум четыре диска, из которых два уйдет на описанный алгоритм повышения отказоустойчивости. При этом скорость записи будет еще ниже, чем у RAID 5.

Следующие уровни — производные и комбинации перечисленных.

RAID 10


Неплохо было бы объединить достоинства RAID 0 (производительность) и RAID 1 (отказоустойчивость)? Встречайте RAID 10: страйп и зеркало, два в одном. Но и недостатки не забудьте — по-прежнему половина объема уходит на резерв. А что делать, за надежность приходится платить. В этом плане менее экономичен, чем RAID 5 И RAID 6, но более прост в восстановлении после сбоя.

RAID 50


По похожей схеме получаем RAID 50. Здесь уже страйпы не зеркалируются, а распределяются по двум и более массивам RAID 5. Требуется от шести дисков, скорость чтения значительно увеличивается. Кроме того, нивелируется и слабое место RAID 5 и RAID 6 — низкая скорость записи. Отрицательная сторона опять лежит в плоскости экономики. Из эффективного объема выпадают два диска, как и RAID 6, при этом массив выдержит потерю только одного.

RAID 60


Данный гибрид RAID 0 и RAID 6 призван решить проблему производительности последнего. Отказоустойчивость остается на том же уровне, как и часть объема накопителей, отводимая на реализацию алгоритмов контроля целостности данных. Дисков для такого удовольствия понадобится как минимум восемь.

RAID 1E


Еще одна вариация совмещения алгоритмов зеркалирования и чередования данных. Записанные на одной итерации страйпы повторно записываются на следующей, но в обратном порядке. Таким образом в RAID 1E можно использовать три диска. Массив останется тем же зеркалом с эффективным объемом, равным половине от исходного.

RAID 5EE


Один из вариантов использования RAID 5 с резервным диском. Отличается тем, что этот диск не простаивает до выхода из строя одного из элементов массива, а используется наряду с другими. На каждой итерации помимо страйпов данными и контрольной суммой записывается резервный блок. Сделано это для ускорения процесса сборки массива в случае нештатной ситуации. Платой за такую опцию становится второй диск, исключаемый из эффективного объема RAID 5EE.

В таблице ниже приведены сравнительные характеристики рассмотренных уровней RAID.


Не забудем и про массив с незатейливым названием JBOD (дословно переводится как «просто связка дисков»). Строго говоря, он не является RAID-массивом. Это объединенные в один несколько дисков без дополнительной функциональности. Позволяет развернуть логический диск с объемом, который недоступен в рамках одного накопителя. Такой диск полезен для перемещения файлов больших размеров в несколько терабайт.

Вместо заключения напомним самое главное правило для всех, кто хранит данные в RAID-массиве: RAID-массив ≠ бэкап! Регулярно делайте резервные копии данных на независимые носители и да пребудет с вами сила.


RAID (Redundant Array of Independent Disks или «избыточный массив независимых дисков») — метод виртуализации, позволяющий объединять несколько дисков в единый логический том, имеющий лучшие характеристики. Чтобы описать, чем RAID может быть полезен на практике, рассмотрим теоретические основы, классификацию и особенности использования данной технологии.

Для чего применяется RAID

RAID позволяет превратить несколько дисковых накопителей в один большой и быстрый диск. Его можно использовать в качестве хранилища данных с функцией автоматического резервного копирования или настроить как системный диск повышенной отказоустойчивости.

У технологии RAID-массивов существуют и минусы. Платой за быстродействие и надежность становится усложнение системы, а также необходимость закупать дополнительное оборудование. Однако эта цена невелика по сравнению с потенциальными убытками, которые может понести пользователь при потере информации или внезапной поломке накопителя.

Преимущества технологии

  1. Увеличенный объем. Первоначальное назначение RAID — получение диска большей емкости.
  2. Повышение быстродействия системы через параллельное подключение в массив нескольких физических дисков.
  3. Отказоустойчивость и надежность хранения данных обеспечиваются выделением на цели резервирования отдельного устройства. При повреждении одного из дисков RAID-массива информация не будет утеряна.

Условие применения

Технологию можно использовать не во всех случаях. Для этого требуется ее аппаратная и программная поддержка. BIOS должен содержать настройку вида «SATA Configuration: RAID». Если же ее по каким-либо причинам нет, то необходимо «перепрошить» базовую систему ввода-вывода.

В случае, когда поддержка RAID программным методом невозможна, нужно подключить дополнительное устройство — RAID-контроллер и установить соответствующий драйвер. В последних версиях ОС Linux (Ubuntu 20.04, POP-OS 20.04 и т. д.) драйвер для включения режима RAID инсталлируется автоматически.

Основные понятия

В основе функционирования RAID-массивов лежит несколько базовых терминов, без которых нельзя понять принципы работы этой технологии.

  1. Массив — объединение нескольких физических или виртуальных накопителей в один большой диск с возможностью единой настройки, форматирования и управления.
  2. Метод зеркалирования — способ повысить надежность хранения информации через создание копии исходного диска на другом носителе, входящем в массив.
  3. Дуплекс — один из методов зеркалирования, в котором используется вдвое большее количество накопителей для создания копий.
  4. Чередование — увеличение производительности диска, благодаря блочной разбивке данных при записи.
  5. Четность — технология, сочетающая в себе чередование и зеркалирование.

Типы RAID-массивов


  1. Программный (software RAID) — самый бюджетный и распространенный вариант. Дисковые массивы создаются в самой операционной системе посредством специальных утилит. Обработкой данных занимается центральный процессор. Основной недостаток — зависимость от предустановленной системы, которая приводит к существенному понижению быстродействия и безопасности хранения информации.
  2. Аппаратный (hardware RAID) — создается на основе отдельного устройства (RAID-контроллера), которое имеет собственные специализированный микропроцессор и кеш-память. При этом нагрузка на микропроцессор практически отсутствует. Это наиболее затратный метод реализации, характеризующийся надежностью, высокой скоростью записи и чтения.
  3. Интегрированный аппаратный (fake RAID, RAID-on-Chip) — комбинация программного и аппаратного способов. Реализована в виде дополнительного микрочипа, который встраивается в материнскую плату и работает совместно с центральным процессором. Эта технология быстрее программной, но не отличается надежностью хранения информации.

Классификация RAID по уровням

Основные отличия между конфигурациями или уровнями RAID заключаются в методах формирования и размещения данных, а также в алгоритмах распределения информации на носителях. Базовые типы RAID-массивов — RAID 0 и RAID 1. Остальные уровни считаются их производными, сочетающими в себе достоинства той или иной базовой модели.

RAID 0


Технология виртуализации RAID 0 называется striping («чередование»). Для ее реализации применяется от 2 до 4 накопителей, которые совместно выполняют процедуру «чтения/записи».

При записи информация разделяется на блоки, которые одновременно сохраняются на накопители. Первый блок — на один, второй — на другой жесткий диск и так далее. Производительность массива возрастает прямо пропорционально количеству накопителей в системе. То есть, 4 диска будут работать в 2 раза быстрее, чем два.

Однако, такая конфигурация RAID-массива чревата потерей данных, что уменьшает безопасность хранения информации. Это объясняется структурой каждого файла. Последний состоит из определенной последовательности блоков (байт), поскольку каждый из них записывается на разные диски и происходит «нарушение» его целостности. Если один накопитель выходит из строя, то блок «теряется». При этом получается «битый» файл, который практически невозможно восстановить.

Достоинства

  • Дисковый RAID-массив уровня 0 обеспечивает ощутимый прирост скорости, который прямо пропорционально зависит от кратности количества накопителей.
  • Использование всего дискового объема, т. е. при установке четырех дисков по 2 ТБ общий объем RAID-массива будет равен 2*4=8 ТБ.

Недостатки

  • Нарушение отказоустойчивости. Иногда возможен отказ в операциях чтения или записи.
  • При выходе из строя одного накопителя информация полностью теряется.

Использование

Применяется в приложениях для скоростного обмена информацией, в хранилищах временных файлов. Также RAID 0 нужен для систем, использующих некритичные по важности массивы данных.

RAID 1


Технология RAID 1 называется мirroring («зеркалирование»). Она подразумевает использование от 2 до 4 накопителей. Однако при этом теряется половина объема дисков, поскольку это пространство используется резервированием данных.

Простыми словами, если RAID-система состоит из 2 жестких дисков, то при выходе одного из них информация не потеряется полностью, поскольку один накопитель является точной копией другого.

Достоинства

  • Надежность хранения информации.
  • Простота реализации.
  • Высокая производительность при выполнении операции чтения.
  • Минимальная комплектация составляет всего 2 жестких диска.

Недостатки

  • Низкая производительность.
  • Емкость RAID-массива делится на 2, что обусловлено резервированием информации.
  • Замена неисправного накопителя требует полное отключение системы.

Использование

Уровень RAID 1 необходимо применять для увеличения надежности хранения информации на серверах.

RAID 5


Технология RAID 5 («чередование с чётностью») считается наиболее распространенной и безопасной. Для подобной конфигурации необходимо минимум 3 диска, а максимальное допустимое количество — 16.

При записи информации происходит разделение на блоки данных, но с одним условием — на один из дисков, называемый блок «чётность данных» (Parity Drive, PD), происходит запись информации для восстановления. Этот подход позволяет спасти данные при повреждении одного из накопителей.

RAID 5 может реализовываться программным методом при помощи специальных утилит, но IT-специалисты рекомендуют все же отдать предпочтение аппаратному способу.

Достоинства

  • Увеличена скорость чтения за счет одновременной обработки данных с нескольких независимых потоков от дисков массива.
  • Информация не «потеряется» при повреждении одного накопителя.
  • При замене неисправного диска происходит автоматическое восстановление информации.

Недостатки

  1. Иногда происходят отказы дисков.
  2. Если объем поврежденного накопителя 4 ТБ и более, при замене его на идентичный диск, восстановление может занять более одного дня.
  3. Если диск «чётности» вышел из строя при выполнении процедуры восстановления, то информация будет окончательно утеряна.
  4. Минимальное количество накопителей — 3.

Использование

Технология виртуализации 5 уровня (RAID 5) прекрасно подойдет для безопасного хранения данных, но при этом не будет утрачена производительность. Очень часто ее используют файловые серверы.

RAID 6


Технология виртуализации 6 уровня («чередование с двойной чётностью») похожа на RAID 5. Отличие состоит в записи информации для восстановления на два диска. Первый — блок «чётность данных» (PD) используются в архитектуре RAID 5 для резервного хранения данных. Второй диск «чётности» дублирует работу первого. Его работа основана на коде Рида-Соломона (Reed-Solomon), поэтому диск часто имеет краткое обозначение — RS или Q.

Благодаря использованию принципа двойной чётности, система может перенести без потерь информации отказ сразу двух жестких дисков. Однако для создания RAID 6 потребуется минимум четыре накопителя.

Достоинства

  • Высокая скорость считывания и записи данных.
  • Поддержка двух, одновременно вышедших из строя накопителей.

Недостатки

  • Время на операцию записи на 20% больше, чем для RAID 5.
  • Минимальная вероятность отказа дисков.
  • Восстановление после сбоя занимает много времени.
  • Для реализации необходимо 4 накопителя.

Использование

RAID 6 является более надежной конфигурацией, чем RAID пятого уровня. Она часто применяется на файловых серверах, где используются большие объемы данных.

RAID 10


Технология виртуализации 10 — «гибрид» RAID нулевого и первого уровней, сочетающая в себе все их преимущества.

Достоинства

  • Высокая скорость восстановления данных.
  • Высокая надежность.
  • Быстродействие.

Недостатки

  • Дороговизна реализации.
  • Емкость, уходящая на зеркалирование, эквивалентна 50 % от всего объема дисков.

Использование

Гибридная технология RAID 10 используется в тех же случаях, что и RAID 0 и RAID 1.

Утилиты для создания

В операционной системе Windows есть встроенная утилита для создания RAID. Однако она поддерживает только RAID-массивы первого. Поэтому для более сложных операций, а также для платформ на базе Unix/Linux требуется установка стороннего ПО.

Перед выбором соответствующей конфигурации RAID-массива, специалисты рекомендуют сохранить информацию на отдельный носитель. При создании или удалении RAID-системы данные на дисках уничтожаются.

Mdadm

Для операционных систем на основе Linux рекомендуется использовать штатную утилиту «mdadm», которую необходимо предварительно установить через терминал.

Основные возможности

  • Создание и сброс RAID-массивов.
  • Монтирование файловых систем.
  • Сохранение топологии массива.
  • Удаление отдельных элементов из RAID.

Установка

Для инсталляции утилиты требуется ввести в терминале следующие команды:

При этом в систему будет инсталлирована утилита, а также необходимый набор библиотек.

MegaRAID Storage Manager (MSM)

Бесплатное приложение от Microsoft, разработанное с целью обеспечения гибкого управления RAID-системами в ОС Windows.

Основные возможности

  • Просмотр состояния RAID-контроллера.
  • Создание RAID-массивов различных уровней.
  • Удаление элементов из массива.
  • Графический интерфейс.
  • Монтирование файловых систем.

Установка

Заключение

Использование RAID-массивов позволяет реализовать повышенние потенциала нескольких дисковых накопителей за счет их объединения. В частности, растет производительность и надежность хранения информации. Однако эффективность работы массива будет сильно зависеть от того, каким способом он создан. Оптимальным является аппаратный метод на базе отдельного RAID-контроллера, но его организация потребует больших финансовых вложений.

Помимо способа реализации для работы RAID важна конфигурация массивов, которая делится на несколько базовых уровней. Оптимальным уровнем считается RAID-10, поскольку он обеспечивает не только высокую скорость обработки данных, но и их сохранность.

Виртуальный сервер от Eternalhost — надежная площадка для современного веб-ресурса! Быстрые NVMe диски, реальная защита от DDoS, техподдержка 24/7.

IOPS используется для определения производительности диска или дискового массива.

IOPS означает Input/Output (operations) Per Second , количество “операций ввода/вывода в секунду”. Величина измеряет объем работы за определенный промежуток времени. По сути, IOPS это количество блоков, которое успевает считаться или записаться на носитель. Чем больше размер блока, тем меньше кусков, из которых состоит файл, и тем меньше будет IOPS, так как на чтение куска большего размера будет затрачиваться больше времени.

“Операция ввода/вывода” - это просто некая часть работы дисковой подсистемы, которая совершается в ответ на запрос хост-сервера и/или некоторых внутренних процессов. Обычно это чтение или запись с различными подкатегориями, например “чтение” (read), “повторное чтение” (re-read), “запись”(write), “перезапись” (re-write), “произвольный тип доступа” (random), “последовательный тип доступа” (sequential) и размер оперируемого блока данных.

Основными измеряемыми величинами являются операции линейного (последовательного) и произвольного (случайного) доступа.

Под линейными операциям чтения/записи, при которых части файлов считываются последовательно, одна за другой, подразумевается передача больших файлов (более 128 К). При произвольных операциях данные читаются случайно из разных областей носителя, обычно они ассоциируются с размером блока 4 Кбайт.

В зависимости от вида операции, этот размер может варьироваться от байт до килобайт и даже нескольких мегабайт. Существует множество типов ввода/вывода и многозадачная и многохостовая система почти никогда не использует какой-то один. Виртуализация только добавляет разнообразия к паттернам ввода/вывода.

Никакая система хранения не может показывать максимальные значения IOPS безотносительно к характеру операций ввода/вывода, значений latency и размеру блоков.

Latency это мера того, сколько времени занимает выполнение одного запроса ввода/вывода, с точки зрения приложения.

Значительные объемы I/O wait это признак того, что источник проблем - хранилище (существуют и другие источники задержек, CPU и сеть - это обычные примеры). Даже в случае хороших показателей latency, если вы видите большое количество I/O waits - это значит, что приложение хотело бы больше скорости от системы хранения.

Определение производительности дисковой системы - это часто игнорируемый аспект проектирования систем. Поскольку дисковая система является самой медленной средой на компьютере, она должна быть одной из ПЕРВЫХ компонентов, спецификация которых правильно определена.

Приложения которые интенсивно используют операции на запись являются хорошими кандидатами для RAID 10, тогда как приложения которые интенсивно используют операции на чтение могут быть размещены на RAID 5.

IOPS используются для определения производительности диска или дискового массива. Для примера можно считать, что максимальный IOPS для диска:

ПРИМЕЧАНИЕ. Для расчета фактического IOPS для диска требуется следующая информация: Average latency , Average seek time . Эту информацию можно получить от производителя

Вычислим максимальный IOPS для диска

Для примера возьмем диск: Seagate ST500DM002-1BC142

Чтобы вычислить IOPS используем уравнение:

Итого, максимальный IOPS - 79.

Вычисляем максимальное значение IOPS для дискового массива

В примечании к разработке системы хранения, вычисление производительности дисковой системы имеет решающее значение для работы данной системы. Большинство систем используют RAID для обеспечения избыточности хранилища. В этом разделе описывается, как вычисляются IOPS для RAID-массивов.

Максимальное значение IOPS для чтения

Вычисление максимального значения IOPS чтения (maxReadIops) для RAID-массива:

maxReadIops = numDisks * diskMaxIops

Соответственно для массива из 4 дисков максимальное значение IOPS чтения будет следующим:

Максимальное значение IOPS для записи

Вычисление максимального значения IOPS записи (maxWriteIops) - это совсем другое в отношении RAID-массивов. RAID-массивы имеют штраф на запись, а тип RAID-массива определяет серьёзность штрафа. Этот штраф является результатом избыточности, которую предоставляет RAID, поскольку массив обязательно должен записывать данные на несколько дисков/локаций для обеспечения целостности данных.

Штраф на запись RAID-массива

Наиболее распространенные типы RAID и их штрафы на запись определяются в следующей таблице:

RAID Type Write Penalty
RAID 1 2
RAID 5 4
RAID 6 6
RAID 10 2

Чтобы вычислить максимальное значение IOPS записи (maxWriteIops) для заданного RAID-массива, разделим максимальное значение IOPS чтения (maxReadIops) на штраф за запись RAID-массива (raidWritePenalty): maxWriteIops = maxReadIops / raidWritePenalty

Используя наш пример с 4-мя дисками и конфигурацией RAID 10, получаем следующие значения:

Итого, для нашего примера, максимальное значение IOPS на запись для массива RAID 10 - 158.

Проектирование для производительности

Простое вычисление максимального количества IOPS для чтения и записи для существующего или будущего RAID-массива недостаточно. Для обеспечения последовательной и устойчивой производительности необходимо определить требования к производительности для системы, чтобы определить лучшее решение для диска. Минимальный требуемый IOPS должен быть определен таким образом, чтобы можно было приобрести необходимое количество дисков с требуемой скоростью.

Для начала необходимо знать требования к производительности (например, чтение и запись IOPS) для данной системы или приложения. Эта информация может быть получена из документации поставщика или программного обеспечения.

Вычисление минимально необходимого IOPS

Предположим, что у нас есть приложение, которое требует 600 Read IOPS и
300 Write IOPS . Дисковый массив собран в RAID 5.

Чтобы вычислить минимальное количество IOPS (minReqdIops), добавьте количество требуемых IOPS чтения (reqdReadIops) к сумме количества требуемых IOPS записи (reqdWriteIops) и штрафа RAID (raidWritePenalty): minReqdIops = reqdReadIops + (reqdWriteIops * raidWritePenalty)

В нашем примере:

Минимальное количество IOPS, необходимое для обеспечения уровня производительности для нашего примера - 1800.

ПРИМЕЧАНИЕ. Этот расчет определяет минимальное количество IOPS, необходимое для соответствия спецификации производительности. Это означает, что дисковый массив НЕ должен работать ниже этого уровня производительности.

Вычисляем минимальное количество дисков для RAID-массива

Как только минимальное количество требуемых IOPS определено, очень легко определить минимальное количество и скорость дисков, необходимых для создания RAID-массива для удовлетворения требований к производительности.

Минимальное количество дисков по скорости диска

Минимальное количество дисков, необходимых для выполнения нашего требования к производительности (minNumDiskMinPerf), рассчитывается следующим образом: minNumDisksMinPerf = minReqdIops / maxIopsByDiskSpeed

Используя информацию из расчета минимально необходимых IOPS выше и предполагая, что мы хотим создать массив из 10 000 RPM-дисков (

125-150 IOPS), вычисление минимального количества дисков, которое будет соответствовать нашим минимальным требованиям к производительности (minNumDisksMinPerf) 1800 IOPS (minReqdIops) выглядит следующим образом:

Минимальное количество дисков 10 000 RPM, необходимых для удовлетворения наших требований к производительности, - 14.

Минимальное количество дисков по типу RAID

Тип RAID определяет минимальное количество дисков для удовлетворения требований типа RAID. Например, для RAID 5 всегда требуется как минимум 3 диска. Для RAID 10 всегда требуется как минимум 4 диска.

Для любых массивов, требующих большого количества дисков, используйте множитель в приведенной ниже таблице, чтобы определить правильное количество дисков для соответствия требованиям типа RAID:

Тип RAID Количество дисков RAID множитель
RAID5 3 N/A
RAID10 4 4

После вычисления количества дисков по скорости, определяем минимальное количество дисков, требуемых по типу RAID.

В примере, когда 10K RPM-диски были выбраны для построения массива, расчет показывает, что требуется не менее 14 дисков. Если тип RAID будет 5, 14 дисков будет достаточным. Однако, если тип RAID будет равен 10, минимальное количество дисков, требуемых этим типом RAID, будет 8, поскольку множитель для RAID 10 равен 4.

Программы для измерения IOPS

IOmeter — тест IOPS
IOzone — тест IOPS
FIO — тест IOPS
CrystalDiskMark — тест IOPS
SQLIO — набор тестов для расчета производительности (IOPS, MB, Latency) под сервера БД
wmarow — калькулятор RAID по производительности IOPS

Читайте также: