Что лежит в основе современного компьютера

Обновлено: 07.07.2024

Во второй половине XX века два крупнейших ученых независимо друг от друга сформулировали основные принципы построения компьютера.

К основополагающим принципам Неймана-Лебедева можно отнести следующие:

1. Состав основных компонентов вычислительной машины.

2. Принцип двоичного кодирования.

3. Принцип однородности памяти.

4. Принцип адресности памяти.

5. Принцип иерархической организации памяти.

6. Принцип программного управления.

Рассмотрим подробно каждый из принципов Неймана-Лебедева. Любое устройство, предназначенное для автоматических вычислений, должно содержать определённый состав основных компонентов: блок обработки данных, блок управления, блок памяти и блоки ввода/вывода информации.

Перечисленные в функциональной схеме блоки есть и у современных компьютеров. К ним относятся:

  1. Арифметико-логическое устройство — АЛУ, в котором происходит обработка данных.
  2. Устройство управления (УУ) отвечает за выполнение программы и согласование взаимодействий всех узлов компьютера. В современных компьютерах АЛУ и УУ изготавливаются в виде единой интегральной схемы — микропроцессора.
  3. Память — устройство, где хранятся программы и данные. Различают внутреннюю и внешнюю память. Основная часть внутренней памяти предназначена для оперативного хранения программ и данных, её принято называть оперативным запоминающим устройством — ОЗУ. К внутренней памяти относится и ПЗУ (постоянное запоминающее устройство, англ. ROM — Read Only Memory для диктора рид онли мемори), в нём содержится программа начальной загрузки компьютера. Основное отличие ПЗУ от ОЗУ заключается в том, что при решении задач пользователя содержимое ПЗУ не может быть изменено. Внешняя память, называемая ещё долговременной, используется для длительного хранения программ и данных.
  4. Устройства ввода используются для преобразования данных в удобную для обработки компьютером форму.
  5. Устройства вывода преобразуют работу ЭВМ в удобную для восприятия человеком форму.

Отличительной особенностью функциональной схемы компьютеров первых поколений от являлось то, что программное управление всеми процессами ввода-вывода происходило от процессора.

Рассмотрим принцип двоичного кодирования информации. Он заключается в том, что в ЭВМ используется двоичная система счисления. Это означает, что любая информация, предназначенная для обработки на компьютере, а также и программы, представляются в виде двоичного кода, т. е. последовательности нулей и единиц.

Благодаря использованию двоичного кодирования для представления не только данных, но и программ, форма их представления становится одинаковой, а это означает, что их можно хранить в единой памяти, поскольку нет принципиальной разницы между двоичным представлением машинной команды, числа, символа и др. В этом заключается принцип однородности памяти.

Оперативная память компьютера представляет собой набор битов — однородных элементов с двумя устойчивыми состояниями, одно из которых соответствует нулю, другое — единице. Группы соседних битов объединяются в ячейки памяти, которые пронумерованы, т. е. имеют свой адрес. Это соответствует принципу адресности памяти.

На современных компьютерах может одновременно извлекаться из памяти и обрабатываться до 64 разрядов, т. е. восьми байтовых ячеек. Это стало возможным при реализации принципа параллельной обработки данных.

С позиции пользователя существуют два противоречивых требования, предъявляемых к памяти компьютера: память должна быть как можно больше, а скорость работы — как можно быстрее.

Противоречие заключается в том, что при увеличении объёма памяти неизбежно уменьшается скорость работы, поскольку увеличивается время на поиск данных. С другой стороны, более быстрая память является и более дорогой, что увеличивает общую стоимость компьютера.

Преодолением противоречия между объёмом памяти и её быстродействием стало использование нескольких различных видов памяти, связанных друг с другом. В этом состоит принцип иерархической организации памяти.

Основным отличием компьютеров от любых других технических устройств является программное управление их работой.

Важным элементом устройства управления является счётчик адреса команд, где в любой момент времени хранится адрес следующей по порядку выполнения команды. Используя значение из счётчика, процессор поочередно считывает из памяти команду программы, расшифровывает её и выполняет. Действия выполняются до завершения работы программы.

Современные персональные компьютеры разнообразны — это и настольные, и переносные, и планшетные устройства. Они различаются по размерам, назначению, но фунциональное устройство у них одинаковое.

Оно определяется архитектурой персонального компьютера.

Архитектура — это наиболее общие принципы построения компьютера, отражающие программное управление работой и взаимодействием его основных функциональных узлов.

Для рассмотрения взаимодействие основных функциональных узлов обратимся к функциональной схеме компьютера.

На ней представлены основные узлы современного компьютера, к которым, как вам уже известно, относятся процессор, внутренняя память, устройства ввода, устройства вывода и внешняя память.

В компьютерах с классической фон-неймановской архитектурой все процессы ввода-вывода находились под управлением процессора. Поскольку процессор является самым быстрым устройством, то любое обращение к устройствам ввода-вывода и ожидание отклика от них замедляло общее время работы.

В современных компьютерах эту проблему решают специальные электронные схемы, которые обеспечивают обмен данных между процессором и внешними устройствами. Они называются контрОллерами, а на функциональной схеме они обозначены буквой К.

При наличии контроллеров данные могут передаваться по магистрали между внешними устройствами и внутренней памятью без использования процессора.

Это существенно снижает нагрузку на работу центрального процессора, а значит приводит к повышению эффективности работы всей вычислительной системы.

Обмен данными между устройствами осуществляется с помощью магистрали.

Магистраль (шина) — устройство для обмена данными между устройствами компьютера.

Магистраль включает в себя шину адреса, шину данных и шину управления.

Шина адреса используется для указания физического адреса устройства;

Шина данных используется для передачи данных между узлами компьютера;

Шина управления организует сам процесс обмена (сигналы чтение/запись, данные готовы/не готовы, обращение к внутренней/внешней памяти и др.)

В современных компьютерах применяется магистрально-модульная архитектура, главное достоинство которой лежит в гибкости конфигурации, т. е. возможности изменить конфигурацию компьютера путём подключения к шине новых внешних устройств, а также замене старых внешних устройств.

Если спецификация на шину опубликована производителем, т. е. является открытой, то говорят о принципе открытой архитектуры. В этом случае пользователь самостоятельно может выбрать дополнительные устройства для формирования компьютерной системы, учитывающей именно его предпочтения.

Мир современных компьютеров широк и многообразен. Персональные компьютеры давно стали многоядерными. Это относится в том числе к смартфонам и планшетным компьютерам.

Однако, существуют не только персональные компьютеры, но и значительно более нагруженные вычислительные системы. Мы начали урок с путешествия в один из дата-центров Яндекса и вы видели огромное количество серверов, которые позволяет обеспечивать пользователей качественными сервисами в режиме 24х7 с высокой скоростью доступа.

Существуют сегодня и суперкомпьютеры, способные решать научные задачи, производить вычисления, связанные с космическими телами, исследованиями микромира и др.

Технические характеристики электронной техники находятся вблизи предельных значений, а это означает необходимость новых технологических решений. Сегодня ведутся исследования в области нанотехнологий, квантовых и биологических компьютеров. Одна из задач вашего поколения — найти новые технологические решения для увеличения мощности компьютеров будущего.

Каждый логический узел компьютера выполняет свои функции.

Центральный процессор 1 — электронный блок либо интегральная схема, исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

hello_html_m55fb894a.jpg

Рисунок 1 – Процессор

обработка данных (выполнение над ними арифметических и логических операций);

управление всеми остальными устройствами компьютера.

Тактовая частота (в МГц, ГГц) и подразумевает под собой количество тактов (вычислений) в секунду.

Частота шины – тактовая частота (в МГц), с которой происходит обмен данными между процессором и системной шиной материнской платы.

Множитель – коэффициент умножения, на основании которого производится расчет конечной тактовой частоты процессора, методом умножения частоты шины на коэффициент (множитель).

Разрядность (32/64 bit) — максимальное количество бит информации, которые процессор может обрабатывать и передавать одновременно.

Кэш-память первого уровня, L1 — это блок высокоскоростной памяти, который расположен на ядре процессора, в него помещаются данные из оперативной памяти. Сохранение основных команд в кэше L1 повышает быстродействие процессора, так как обработка данных из кэша происходит быстрее, чем при непосредственном взаимодействии с ОЗУ.

Кэш-память второго уровня, L2 — это блок высокоскоростной памяти, выполняющий те же функции, что и кэш L1, однако имеющий более низкую скорость и больший объем.

Кэш-память третьего уровня обычно присутствует в серверных процессорах или специальных линейках для настольных ПК.

Ядро – определяет большинство параметров центрального процессора: тип сокета, диапазон рабочих частот и частоту работы FSB. характеризуется следующими параметрами:

Техпроцесс Масштаб технологии (мкм), которая определяет размеры полупроводниковых элементов, составляющих основу внутренних цепей процессора.

Напряжение, которое необходимо процессору для работы и характеризует энергопотребление.

Тепловыделение – мощность (Вт), которую должна отводить система охлаждения, чтобы обеспечить нормальную работу процессора.

Тип сокета – то есть разъём для установки процессора на материнской плате.

Оперативная память 2 или оперативное запоминающее устройство (ОЗУ) — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.

Рисунок 2 – Оперативная память

Функции оперативной памяти:

прием информации от других устройств;

передача информации по запросу в другие устройства компьютера.

Характеристики оперативной памяти:

тип DDR — 1, 2, 3, 4;

тайминги – длительность импульсов и пауз обновления ячеек памяти;

тактовая частота оперативной памяти — частота в МГц (количество импульсов в секунду), с которой работает оперативная память;

тактовая частота шины — частота канала, по которому идёт обмен данными между оперативной памятью и процессором;

пропускная способность — это сколько за секунду времени может быть «пропущено» данных через плату оперативной памяти;

Жёсткий диск, винчестер (накопитель на жёстких магнитных дисках, или НЖМД) 3 — запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.

Винчестер является основным накопителем данных в большинстве компьютеров. Именно на жёсткий диск устанавливается операционная система или другое программное обеспечение.

hello_html_55daf82.jpg

Рисунок 3 – Жёсткий диск

Характеристики жёстких дисков:

скорость вращения шпинделя;

наработка на отказ;

среднее время ожидания;

энергопотребление и тепловыделение.

Видеокарта 4 — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора.

hello_html_397f50b4.jpg

Рисунок 4 – Видеокарта

производитель видеопроцессора (GPU);

частота GPU, МГц;

количество занимаемых слотов на материнской плате;

объем видеопамяти, ГБ;

тактовая частота видеопамяти, МГц;

шина обмена данными с памятью, бит;

поддержка SLI и CrossFire;

поддержка разных версий DirectX;

необходимость дополнительного питания.

В основе архитектуры современных ЭВМ лежит магистрально-модульный принцип (рис. 26), который позволяет комплектовать нужную конфигурацию и производить необходимую модернизацию. Он опирается на шинный принцип обмена информацией между модулями

hello_html_m5b7f3863.jpg

Рисунок 5 – Магистрально-модульный принцип построения компьютера

Системная шина или магистраль компьютера включает в себя три многоразрядные шины:

шину данных – для передачи различных данных между устройствами компьютера;

шину адреса – для адресации пересылаемых данных, то есть для определения их местоположения в памяти или в устройствах ввода/вывода;

шину управления, которая включает в себя управляющие сигналы, которые служат для временного согласования работы различных устройств компьютера, для определения направления передачи данных, для определения форматов передаваемых данных и т. д.

Основой построения модульного устройства компьютера является материнская (или системная) плата 5 — печатная плата, которая содержит основную часть устройства (рис. 6).

hello_html_79888f61.jpg

Рисунок 6 – Материнская плата

На системной (материнской) плате размещаются:

генератор тактовых импульсов;

контроллеры внешних устройств;

звуковая и видеокарты;

Многообразие компьютеров

В настоящее время рынок персональных компьютеров представлен огромным количеством моделей различных конфигураций. Основными факторами, влияющими на дальнейшее развитие компьютерной индустрии, станет снижение цен, появление в этом сегменте рынка все большего числа производителей. Компьютерный бизнес — одна из самых динамично развивающихся сфер как российской, так и мировой экономики.

Также положительную динамику рынка персональных компьютеров связывают с глобальной «мобилизацией» потребителей. Сегодня все больше рядовых пользователей переходят с громоздких настольных машин на портативные ПК — например, ноутбуки и нетбуки. Немудрено, что при таком невероятном многообразии компьютеров пользователю практически невозможно выбрать персональный компьютер самостоятельно.

Существует различные системы классификации ЭВМ:

по производительности и быстродействию;

по уровню специализации;

по типу используемого процессора;

по особенностям архитектуры;

Рассмотрим одну из таких классификаций.

1. Персональные компьютеры

1.1 Стационарные компьютеры. Занимают постоянное место, например, компьютерный стол. Обладают большими вычислительными мощностями чем переносные гаджеты. Выделим основные виды подобных устройств:

Десктопы. Самые мощные и производительные персональные компьютеры, основным компонентом которого является системный блок, занимающий постоянное место. К блоку подключаются периферийные устройства – клавиатура, мышь, монитор и прочее. Такое устройство является модульным, то есть отдельные его части подлежат замене, что позволяет постоянно обновлять и улучшать показатели работы компьютера.

Неттопы. По сути это те же десктопы, но они обладают меньшими габаритами и более экономным энергопотреблением. Их производительность меньше, но для некоторых задач она не настолько важна, а вот отсутствие шума для некоторых покупателей является приоритетом. Такой девайс занимает меньше места и его значительно проще разместить в домашних или офисных условиях, что также имеет высокую ценность в некоторых ситуациях.

Моноблоки. У данного вида стационарных ПК отсутствует видимый системный блок – все его компоненты размещены в мониторе, который так же служит корпусом для комплектующих. Такие устройства обладают высокой эстетичностью и меньшими требованиями к наличию свободного места, а топовые моноблоки практически не уступают по характеристикам привычным десктопам.

1.2. Портативные компьютеры – переносные персональные компьютеры, имеют высокие требования к мобильности конструкции и ее весу, способны работать в автономном режиме, для увеличения которого производители зачастую жертвуют производительностью системы. Этот вид ПК классифицируют следующим образом:

Ноутбуки – переносные компьютеры, оснащенные батареей, которая позволяет устройство работать без подключения к электрической сети. В одном корпусе такого гаджета одновременно находятся все необходимые элементы – монитор, клавиатура, процессор и прочая начинка.

Нетбуки – это компактные ноутбуки, которые приносят производительность в жертву легкости веса и упрощения мобильности, они отлично подходят для тех, кто любит работать не только за определенным рабочим местом, но и буквально где придется – в поезде, кафе или библиотеке.

Планшеты – нечто среднее между смартфонами и ноутбуками. Обладают довольной большой диагональю экрана порядка 10 дюймов, весят заметно меньше ноутбуков. Управляются посредством сенсорного дисплея, хотя, например, планшетные ноутбуки обладают полноценной клавиатурой.

Карманные компьютеры и смартфоны. Форм-фактор КПК был крайне популярен на заре нулевых, когда мобильные телефоны еще не предоставляли широких возможностей. Пришедшие на смену КПК смартфоны проигрывают в производительности более тяжелым и мощным ноутбукам, зато они имеют неоспоримое достоинство – они умещаются в карман и их всегда можно иметь под рукой.

2. Вычислительные серверы – благодаря таким компьютерам обеспечивается доступ к сетям, в том числе и интернету. Все файлы и информация, которую пользователь видит на экране монитора при веб-серфинге, хранится на таких серверах. Для таких компьютеров огромную роль играет производительность, но есть и более важная характеристика подобных систем – надежность. Вычислительные серверы должны без сбоев работать весь срок своей службы. Такие типы компьютеров всегда имеют резервные копии данных, что сказывается на общей концепции их архитектуры.

В основе такой аппаратуры лежит параллельная обработка информации, потому серверы стали пионерами в развитии многопроцессорности и многоядерности, которая сегодня используется уже повсеместно.

3. Суперкомпьютеры –профессиональные машины с наиболее высокой на сегодняшний день производительностью, они используются в научных лабораториях и крупном бизнесе. Такое устройство представляет собой целый комплекс компьютерных устройств, который может занимать огромные помещения. Каждый составной элемент подобной махины отвечает за свою конкретную задачу, подобная структуризация и векторная организация позволяют решать самые сложные проблемы, требующие невероятного объема расчетов.

4. Другие виды – многие устройства, которые привычно воспринимаются опосредовано от компьютерной составляющей, например, банкоматы или игровые приставки, также по большому счету являются компьютерами. Бытовая техника тоже имеет в себе встроенные компьютеры, ответственные за выполнение ряда функций. Роботы, которые постепенно получают все большее распространение в нашей жизни, так же являются компьютерными устройствами.

Многообразие внешних устройств, подключаемых к компьютеру

Периферийные 6 (внешние) устройства персонального компьютера подключаются к его интерфейсам и предназначены для выполнения вспомогательных операций. Благодаря этим устройствам компьютерная система приобретает гибкость и универсальность.

По назначению периферийные устройства можно подразделить на:

устройства ввода данных;

устройства вывода данных;

устройства хранения данных.

Рисунок 7 – Классификация периферийных устройств

Виды программного обеспечения компьютеров

Программное обеспечение (ПО, англ. software) – это совокупность программ, обеспечивающих функционирование компьютеров и решение с их помощью задач предметных областей. Программное обеспечение – неотъемлемая часть компьютерной системы, является логическим продолжением технических средств и определяет сферу применения компьютера.

ПО современных компьютеров включает множество разнообразных программ, которые можно условно разделить на две группы:

1. Системное программное обеспечение (системные программы);

2. Прикладное программное обеспечение (прикладные программы);

Системное программное обеспечение – это программы, управляющие работой компьютера и выполняющие различные вспомогательные функции, например, управление ресурсами компьютера, создание копий информации, проверка работоспособности устройств компьютера, выдача справочной информации о компьютере и др. Они предназначены для всех категорий пользователей, используются для эффективной работы компьютера и пользователя, а также эффективного выполнения прикладных программ.

Центральное место среди системных программ занимают операционные системы (англ. operating systems).

Операционная система управляет работой компьютера с момента включения до момента выключения питания. Она загружается автоматически при включении компьютера, ведет диалог с пользователем, осуществляет управление компьютером, его ресурсами (оперативной памятью, дисковым пространством и т.д.), запускает другие программы на выполнение и обеспечивает пользователю и программам удобный способ общения – интерфейс – с устройствами компьютера. Другими словами, операционная система обеспечивает функционирование и взаимосвязь всех компонентов компьютера, а также предоставляет пользователю доступ к его аппаратным возможностям.

Сервисные системы расширяют возможности ОС по обслуживанию системы, обеспечивают удобство работы пользователя. К этой категории относят системы технического обслуживания, программные оболочки и среды ОС, а также служебные программы.

Системы технического обслуживания – это совокупность программно-аппаратных средств ПК, которые выполняют контроль, тестирование и диагностику и используются для проверки функционирования устройств компьютера и обнаружения неисправностей в процессе работы компьютера. Они являются инструментом специалистов по эксплуатации и ремонту технических средств компьютера.

Служебные программы (утилиты, лат. utilitas – польза) – это вспомогательные программы, предоставляющие пользователю ряд дополнительных услуг по реализации часто выполняемых работ или же повышающие удобство и комфортность работы. К ним относятся:

программы-упаковщики (архиваторы), которые позволяют более плотно записывать информацию на дисках, а также объединять копии нескольких файлов в один, так называемый, архивный файл (архив);

антивирусные программы, предназначенные для предотвращения заражения компьютерными вирусами и ликвидации последствий заражения;

программы оптимизации и контроля качества дискового пространства;

программы восстановления информации, форматирования, защиты данных;

драйверы – программы, расширяющие возможности операционной системы по управлению устройствами ввода/вывода, оперативной памятью и т.д. При подключении к компьютеру новых устройств необходимо установить соответствующие драйверы;

коммуникационные программы, организующие обмен информацией между компьютерами и др.

Прикладное программное обеспечение предназначено для решения задач пользователя. В его состав входят прикладные программы пользователей и пакеты прикладных программ различного назначения.

Прикладная программа пользователя – это любая программа, способствующая решению какой-либо задачи в пределах данной проблемной области. Прикладные программы могут использоваться либо автономно, либо в составе программных комплексов или пакетов.

Пакеты прикладных программ – это специальным образом организованные программные комплексы, рассчитанные на общее применение в определенной проблемной области и дополненные соответствующей технической документацией.

1 англ . central processing unit, CPU

2 англ . Random Access Memory , RAM , память с произвольным доступом

3 англ . hard (magnetic) disk drive, HDD, HMDD

4 также видеоадаптер, графический адаптер, графическая плата, графическая карта, графический ускоритель

В повседневное использование всё чаще входит понятие «архитектура персонального компьютера», но что оно в себя включает? По факту, это – функциональная система, которая сочетает в себе структурные элементы персонального компьютера (начиная от логических узлов и заканчивая схемами) и его программное обеспечение.

В основе работы современных компьютеров лежит программное управление, которое является базовым принципом их работы. Архитектура компьютера актуализируется в результате создания связей между частями компьютера, а именно – между логическими узлами и другими устройствами. Так, к логическим уздам можно отнести как оперативное запоминающее устройство, так и внешние, и периферийные устройства.

Истоки

Одной из первых появилась в середине прошлого века классическая архитектура персонального компьютера, авторство которой принадлежит Д. Нейману. В статье, изданной Д. Нейманом, Г. Голдштейном и А. Бёрксом были изложены основы конструкции и работы ЭВМ, благодаря этим знаниям и появились новые устройства, которые к нашему времени стали повсеместно доступны и распространены. Конечно, каждый новый выпуск устройств отличался от предыдущего: его характеристики улучшались, модифицировались, добавлялись новые функции, но основа, которой являются сформулированные принципы, оставалась неизменной.

Данные принципы заключаются в следующем:

  1. Машинам гораздо проще использовать двоичный код счисления и руководствоваться им при выполнении различных операций.
  2. Для корректной и системной работы компьютера, ему необходима операционная система. Она служит некой главной программой, которая запускает и контролирует внутренние процессы устройства. Без открытия этого факта, было бы невозможным развитие программирования, так как операционная система в современных компьютерах является базисом его работы.
  3. У персонального компьютера есть память, которая позволяет хранить какой-то объём данных, включая различные программы. При этом все данные и произведённые с ними операции кодируются в двоичном коде.
  4. Благодаря тому, что каждая ячейка памяти имеет свой адрес, компьютер в любой момент времени может обратиться к какой-то из них. Данное открытие позволило программированию перейти к использованию переменных.
  5. Любая часть кода доступна практически в любой момент. Это доказывается тем, что при использовании какой-либо программы, пользователь имеет возможность перейти к использованию другой. Причём эти процессы происходят параллельно друг другу.

Главная особенность заключается в том, что аппаратура остаётся статичной, в то время как набор программ может меняться.

Структура персонального компьютера, предложенная Д. Нейманом, изображена на данной схеме (рис. 1).


Рисунок 1. Структура персонального компьютера

Таким образом, в состав компьютера входили такие части как внешнее и оперативное запоминающее устройство, устройство ввода, устройство вывода, устройство управления (координация) и устройство выполнения арифметико-логических операций.

Последовательность работы компьютера

  • В запоминающее устройство вводились данные и программы.
  • Через устройство арифметико-логических операций проходили данные из запоминающего устройства. Запись в память происходила посредством последовательных команд, направляющих содержимое в ячейки, чего не сказать о данных обработки, которые направлялись в ячейки произвольно.
  • Из арифметико-логического устройства результаты обработки переходят в запоминающее устройство, если информацию сохраняют, или в устройство вывода, если её нужно распространить. Особенность здесь заключается в том, что все команды кодируются в понятном для компьютера формате, а когда происходит вывод информации, она становится пригодной для использования человеком, и понятна ему без дешифровки.
  • Команда для компьютера заключается в том, что необходимо установить связь между запросом пользователя и адресом ячейки. Таким образом реализуется определённая операция, которая проводит эту связь и записывает результат, в зависимости от запроса, в определённую ячейку. Затем эта память остаётся на хранение в запоминающем устройстве.
  • В управляющем устройстве содержится ячейка, которая позволяет В случае с управляющим устройством, команды могут быть двух видов – поступающие от управляющего устройства и получаемые управляющим устройством результаты команд. После обработки команды управляющего устройства, содержимое ячеек помещается в регистр команд, что даёт ему возможность зафиксировать процессы, проходящие в памяти и проконтролировать их. Тем не менее, все операции на этом этапе переходят в компетенции арифметико-логических операций и аппаратных средств.
  • Затем счётчик команд увеличивает показатели на 1 соответствующе и прописывается новая команда. При этом возможен переход из определённой ячейки в конкретно отведённую, то есть в командах есть последовательность.

Архитектура современных компьютеров: структура и принципы работы

В качестве основополагающего условия работы персональных компьютеров в наше время можно назвать работу по магистрально-модульному принципу. Это реализуется за счёт того, что персональный компьютер состоит из модулей, каждый из которых является самобытной единицей. К таковым можно отнести, например, принтер или даже процессор.

Архитектура современного компьютера позволяет компоновать аппаратуру и делать самостоятельный выбор в пользу использования тех или иных средств – она открыта и предполагает возможность встраивания в систему дополнительных средств для достижения установленных целей и реализации задач.Установленный принцип позволяет пользователю самостоятельно определять комплектацию своих устройств и даже самостоятельно обновлять их. Магистральный аспект позволяет качественно и своевременно обмениваться информацией при помощи установления связей, за что отвечает магистральная шина. Она представляет собой элемент, располагающийся на материнской плате.

Примечание 1
Принципа архитектуры компьютера постоянно усовершенствуется для того, чтобы иметь возможность устанавливать всё новые и новые связи, при этом делать это быстро, мобильно и качественно. Современные потоки информации предполагают совершенствование аппаратных средств. Все команды компьютера реализуются за счёт средств системной памяти, поэтому в связке с процессором, ускорение процесса обмена информацией между элементами компьютера, приводит к ускорению работы компьютера, в целом.

Однако существует одна важная деталь: чтобы эти процессы проходили быстрее, необходимо учитывать скоростные возможности магистрали. Как же решить эту задачу? Решение нашлось. Чтобы ускорение стало возможным, необходимо подключить системную память не к магистрали, а к высокоскоростной шине. В связи с особенностями работы этого элемента, обмен будет реализовываться проще и быстрее.

Таким образом, использование компьютера с магистралью сходит на нет и на смену ему приходит компьютер с шиной, а затем – с тремя шинами. Что мы и имеем на данный момент времени.


Рисунок 2. Трехшинная структура ПК

Процессор в современных компьютерах состоит из управляющего устройства и арифметико-логического устройства. Если спустится ещё на один структурный уровень, то структуру процессора, в частности, составляют интегральные схемы. В зависимости от количества этих схем, можно говорить о микропроцессорах или микропроцессорных комплектах.

Многопроцессорная архитектура ПК: особенности и нюансы

Если в компьютере несколько процессоров, то его работа выглядит следующим образом – много различных потоков информации реализуются одновременно. Конечно, такие компьютеры имеют преимущества перед компьютерами с одним процессором.


Рисунок 3. Архитектура многопроцессорного ПК

Устройство компьютера: архитектура с параллельными процессорами

В такой архитектуре работает одно управляющее устройство, но под его управлением находятся несколько арифметико-логических устройств. Это подразумевает то, что команд много, но все они обрабатываются аналогичным образом.

Компьютер, в обыденном понимании, состоит из системного блока, монитора, клавиатуры, мышки, аудиосистемы. К нему можно подключить геймпад, принтер, сканер и много других устройств.

Но самой главной, сложной и дорогостоящей частью компьютера является системный блок. Собственно, это и есть компьютер (в классическом понимании). Остальные устройства предназначены лишь для ввода и вывода информации в различной форме. Потому они и называются периферийными (английское слово peripheral переводится как "второстепенный, внешний, окружной, удаленный").

Если к системному блоку присоединить более современный монитор, клавиатуру или мышь, станет удобней смотреть фильмы, работать с текстом или играть, но возможности компьютера от этого не улучшатся. Более того, при отключении любого из периферийных устройств компьютер будет продолжать работать, поскольку все вычислительные процессы происходят внутри системного блока.

О его строении и пойдет речь в этой публикации.

Системный блок состоит из нескольких ключевых частей, без которых компьютер не может функционировать - это материнская плата, процессор, оперативная память, постоянное запоминающее устройство и блок питания. Критически важным является также наличие видеокарты, без которой невозможен вывод из компьютера графической информации.


Внутрь системного блока могут устанавливаться другие устройства, которые, по сути, являются "внутренними" аналогами периферийных устройств и без них вполне можно обойтись (телевизионные тюнеры, карты захвата видео, звуковые карты, модемы, wi-fi модули, дисководы, карт-ридеры и др.).

Материнская плата

Основой любого компьютера (системного блока) является материнская плата (главная плата, англ. motherboard, MB, mainboard, разг. – мамка, материнка, мать и др.). Ее невозможно не заметить, если открыть крышку системного блока (она самая большая).

К материнской плате подсоединяются центральный процессор, оперативная память, видеокарта, запоминающие устройства и др. На ней же размещены USB и другие разъемы для подключения остального оборудования (см. рис.). Главная задача материнской платы – соединить все эти компоненты и заставить их работать как единое целое.

Подробнее о материнской плате читайте здесь.


Процессор

Процессор (центральный процессор, CPU) – главная микросхема компьютера. Он исполняет все команды пользователя и "руководит" остальным "железом". От него напрямую зависит быстродействие компьютера и его возможности.

Внешне процессор представляет собой небольшую плату с множеством контактов с одной стороны и плоской металлической коробочкой с другой (см. рис.). Внутри он имеет очень сложную микроструктуру, включающую миллионы транзисторов. Подробнее о процессоре можно узнать здесь.


На материнской плате процессор крепится в специальном разъёме, называемом разъёмом центрального процессора или сокетом (socket). Есть много видов сокетов, в каждый из которых можно установить только процессоры определенного типа (с таким-же разъёмом). Например, на материнскую плату с Socket LGA1151 можно установить только процессоры Intel Celeron, Pentium, Core i3, Core i5 и Core i7 с разъёмом LGA1151. Для процессоров AMD (Athlon, Phenom, Ryzen и др.) понадобятся материнские платы с другими подходящими разъемами.

Сверху установленного на материнской плате процессора крепится охлаждение. Чаще всего, оно представляет собой радиатор с вентилятором (кулером) для рассеивания тепла (см.рис.). Это тоже важная часть компьютера, поскольку без охлаждения процессор будет перегреваться и при достижении им критической температуры (у каждой модели процессора она своя) компьютер выключится. Запустить его снова будет невозможно до тех пор, пока процессор не остынет.

Между кулером и процессором обязательно прокладывается слой термопасты. Подробнее об этом здесь.


Постоянное запоминающее устройство

Постоянное запоминающее устройство предназначено для хранения информации. Главными его характеристиками являются объем хранимых данных и скорость чтения/записи. Чем больше объем запоминающего устройства, тем больше на нем можно хранить разного рода файлов. Ну а от скорости чтения/записи зависит то, насколько быстро система сможет получать к ним доступ.

Постоянные запоминающие устройства бывают двух основных типов – SSD (англ. solid-state drive) и HDD (англ. hard disk drive, он же "жесткий диск", в простонародье - "винчестер").

Главным преимуществом SSD-устройств является высокая скорость чтения/записи, что позитивно сказывается на "отзывчивости" компьютера (быстрее запускаются программы, открываются файлы и т.д.). Жесткие диски отличаются более высокой долговечностью и лучшим соотношением показателей "объем хранимых данных / стоимость устройства".

Чтобы пользоваться всеми преимуществами, в компьютеры часто устанавливают два запоминающих устройства. Одно из них – SSD, которое служит для хранения системных файлов и программ, второе – HDD для хранения остальной информации (видео, фото и т.п.). Внутренних запоминающих устройств в системном блоке может быть больше двух. Но для работы компьютера достаточно и одного такого устройства (любого типа).

К материнской плате SSD и HDD обычно подключаются через интерфейс (разъем) SATA. Существуют более быстрые варианты SSD, предназначенные для подключения к разъемам M.2 или PCI-E материнской платы (см. рис.)

Подробнее о постоянных запоминающих устройствах можно узнать здесь.


Оперативная память

В состав компьютера обязательно входит оперативная память (оперативное запоминающее устройство, сокращенно - ОЗУ). Это очень быстрый буфер памяти, используемый процессором. В упрощенной схеме его предназначение можно объяснить следующим образом.

Процессор работает по конвейерной схеме. Для обработки данных он делит их на блоки. Временно эти блоки нужно где-то хранить, но так, чтобы получать к ним моментальный доступ. Использовать с этой целью постоянные запоминающие устройства нельзя, поскольку скорость доступа к находящейся на них информации слишком низкая. Для этого и предназначена оперативная память, скорость которой выше в разы.

Важно, чтобы у компьютера был достаточный объем ОЗУ. Если при выполнении каких-то расчетов свободная оперативная память заканчивается, процессор для ее расширения начинает использовать постоянное запоминающее устройство. Скорость работы компьютера в такие моменты сильно снижается.

Оперативная память компьютера состоит из одного или нескольких модулей ОЗУ - микросхем памяти (см. рис.), которые устанавливаются в специальные разъемы материнской платы. Эти микросхемы энергозависимы. То есть, все находящиеся в них данные "исчезают" при отключении питания (если вынуть модуль из разъема материнской платы или выключить компьютер).

Модули ОЗУ бывают нескольких типов. Самым современным и быстрым типом ОЗУ сейчас является DDR4, хотя более старые и медленные DDR3 и DDR2 по-прежнему в ходу и являются достаточно распространенными. Разъемы разных типов ОЗУ отличаются. На материнскую плату, рассчитанную на установку DDR3, невозможно установить модули DDR4 или DDR2. Даже физически они туда не войдут.

Подробнее об оперативной памяти можно узнать здесь.


Видеокарта

Видеокарта (видеоадаптер, графический адаптер, графический процессор, GPU) – часть компьютера, отвечающая за обработку видеоинформации и ее вывод на монитор (см. рис.). Современные видеокарты подсоединяются к разъему PCI-Express x16. Некоторые материнские платы имеют несколько разъёмов PCI-Express x16. Это позволяет одновременно использовать в системном блоке две или больше видеокарт, что делает графическую подсистему компьютера более быстрой.

Во многих случаях компьютер может успешно работать и без отдельной видеокарты, поскольку многие современные процессоры оснащены интегрированными (встроенными) графическими чипами. Такой чип заменяет видеокарту. Он может быть интегрирован также и в материнскую плату (в очень старых компьютерах). Возможностей встроенных чипов вполне достаточно для офисной работы, т.е. обработки текста, чтения страниц Интернета, просмотра видео, фотографий и даже игры в несложные игры (типа пасьянс "Косынка" или "Солитер"). Если же компьютер предназначен не только для офисных задач, но и для серьезной работы с графикой или игры в 3D-игры, без отдельной (дискретной) видеокарты не обойтись.

В игровом компьютере отсутствие отдельной видеокарты не может компенсироваться наличием быстрого процессора. Процессор среднего уровня в паре с хорошей видеокартой в играх оставит далеко позади самый быстрый процессор с интегрированным видеоадаптером. Необходимо также учитывать, что слишком слабый процессор не даст возможности видеокарте раскрыть весь свой игровой потенциал. Здесь важно найти баланс.

Подробнее о видеокарте можно узнать здесь.


Блок питания

Для питания компьютера необходим блок питания. От его надежности зависит стабильность работы компьютера. Устанавливается блок питания в специальный отсек системного блока и подключается к материнской плате, видеокарте и некоторым другим внутренним устройствам посредством кабелей.

При выборе блока питания необходимо учитывать его суммарную мощность, силу тока на линии 12В (эти показатели должны удовлетворять требования видеокарты, процессора и других "потребителей электричества"), а также наличие выводов с необходимыми разъемами и другие характеристики.

Подробнее о выборе блока питания и его характеристиках можно узнать здесь.


Другие важные устройства

В системном блоке любого современного компьютера также есть:

• Сетевая карта.

Как правило, она уже встроена в материнскую плату компьютера и приобретать ее не нужно. Но если, например, встроенная карта вышла из строя или ее возможностей недостаточно, можно купить отдельную сетевую карту. Как правило, устанавливается она в разъем PCI-E материнской платы.

• Звуковая карта.

Здесь аналогичная ситуация. Все современные материнские платы оснащаются встроенной звуковой картой, которая выдает вполне качественный звук. Но если качество звучания "встройки" не устраивает, или же она вышла из строя, всегда можно приобрести отдельную звуковую карту и установить ее в PCI-E материнской платы.


Для полноценной работы важно не только собрать компьютер в единое целое. Чтобы "оживить" все это "железо" обязательно нужна операционная система и другое программное обеспечение, которое устанавливается на постоянное запоминающее устройство.

Подробнее об операционной системе можно узнать здесь.

Выше перечислены только важные устройства, которые должны быть в компьютере. Однако, в системный блок можно установить еще много другого оборудования: дисководы оптических дисков, Wi-Fi-адаптеры, Bluetooth-адаптеры, модемы, карты захвата видео, ТВ-тюнеры, карт-ридеры и т.д.

Если компьютер перегревается, в системный блок можно поставить дополнительные кулеры (вентиляторы). Если они создают много шума, можно установить реобас для ручной регулировки скорости их вращения. Для охлаждения процессоров и видеокарт существуют также высокоэффективные и тихие системы водяного охлаждения.

Если важен внешний вид, можно купить прозрачный корпус системного блока и установить внутрь цветную подсветку.

В общем, как и в случае с автомобилем, компьютер можно "тюнинговать" до бесконечности.

Читайте также: