Что такое архитектура и структура компьютера опишите принцип открытой архитектуры

Обновлено: 06.07.2024

Персональные компьютеры являются устройствами с так называемой открытой архитектурой компьютера . Это означает, что в них стандартизированы методы подключения любых периферийных устройств, которые разработчики устройств хотели бы предложить пользователям ПК.

Такой подход позволяет обеспечить конкуренцию производителей, повысить качество и снизить цены для потребителей.

Кроме того, открытая архитектура компьютера с появлением Интернета получила "второе дыхание". Точнее, каждое устройство, подключенное к ПК, стало возможным использовать в режиме коллективного доступа.

У каждого ПК в Интернете есть свой собственный адрес, а у каждого устройства ввода-вывода тоже есть адрес. Таким образом, комбинируя адрес ПК и адрес устройства ввода-вывода, можно обеспечить доступ к любому открытому для коллективного использования устройству.

Пользователям следует помнить об открытой архитектуре компьютера, и внимательно настраивать доступ к устройствам ввода-вывода. Например, любой жесткий диск или любая папка на жестком диске может быть открыта для доступа извне ПК, используя закладку «Доступ» в окне «Свойства»:

hello_html_6bf48ea8.jpg

Аналогично настраивается доступ и к другим устройствам (принтерам, сканерам и т.п.).

Конечно, предположить, что кто-то попытается вывести данные на Ваш принтер – это из области фантастики, так как забрать свои распечатки такой удаленный пользователь вряд ли сможет. Но вот получить доступ к Вашим жестким дискам для "кражи" данных – это вполне возможно.

Кроме того, общий доступ делает Ваши данные доступными другим пользователям, а это могут быть, например, Ваши персональные данные, пароли и т.п., что совсем не нужно знать другим.

Наконец, программы-вирусы легче попадают на ПК, где открыт доступ к устройствам ввода-вывода, особенно к жестким дискам. Поэтому следует тщательно проверять, нет ли случайного или несанкционированного доступа к Вашим устройствам.

Под случайным доступом можно понимать, например, ситуацию, когда обслуживающий Вас системный программист установил такой доступ для себя, но потом забыл его отключить после выполнения системных работ.

С точки зрения безопасности открытая архитектура компьютера является слишком открытой системой, доступную не только лояльным пользователям, но и вредоносным программам, хакерам и т.п.

Однако благодаря своей простоте, наличию стандартов, модульности, гибкости, непрерывному развитию, данная архитектура завоевала популярность среди производителей и пользователей. И уже никакие вирусы и хакеры не смогут повернуть обратно ход истории и технического развития.

Конечно, это нерационально, когда все открыто и доступно, когда все монтируется как бы на одной общей шине данных, пронизывающей весь мир. Но уж больно просто и красиво получается. А красота, как известно, спасет мир!

Lorem ipsum dolor

Проектирование любого устройства ведется по какой-либо схеме, принципу или архитектуре. Так же и с ПК IBM, где присутствует собственная архитектура производства устройств, которую принято называть «открытой». Именно компания IBM принесла данную структуру в производство компьютеров.

IBM — это одна из самых известных и старых компаний среди производителей электронных устройств. Она всегда стояла в первых рядах , продвигающих технологический прогресс. Начало ее деятельности датируется 1896 годом, когда было запатентовано первое устройство для работы с перфокартами — табулятор. Запатентовал его некий Герман Холлерит, который дал начало развитию этой организации, но вначале она называлась ТМС. С те х пор прошло очень много времени , и на сегодняшний день IBM — с амая известная компания, чьи компоненты используют около 95% всех компьютеров в м ире.

Именно эта компания ввела в производство компьютеров философию открытой архитектуры ПК, которую так и прозвали — «архитектура IBM».

Что такое архитектура ПК от IBM

  • конструкция устройства должна предусматривать возможность расширения возможностей системы;

  • изменени я внутри системы не должны требовать лицензионных соглашений или затрат;

  • пользователь самостоятельно может изменять базовые возможности компьютерной системы.

Архитектура ПК от IBM: основы

  • присутствует центральный процессор Intel и/или совместимые с ним процессоры других производителей;

  • присутствует BIOS;

  • регламентируется процедура стартового запуска системы;

  • есть механизм собственного конфигурирования системы;

  • присутствует реестр системы, где хранятся сведения о конфигурации устройства;

  • блочная организация памяти в устройстве, к которой организован прямой доступ;

  • наличие нормативов, которые описывают конструкцию компьютера, режимы работы, протоколы по обмену данными и др.

Альтернатива открытой архитектуре от IBM

Не сложно предположить, что раз есть открытая архитектура ПК от IBM, то , скорее всего , есть и закрытая архитектура. Это правда . Закрытую архитектуру производства компьютеров представляет компания Apple. Вообще , соперничество между Apple и IBM началось еще несколько десятков лет назад и продолжается до сих пор, но это тема другой статьи.

Отличительн ая особенност ь такой архитектуры — компания-производитель контролирует все компоненты и программное обеспечение компьютера. То есть пользователь не может совершить апгрейд устройства, а может только заменить его на новое с улучшенными характеристиками. Пользователь также не может сменить операционную систему компьютер а н а ту, которая ему по душе, а только на ту, что предлагает производитель компьютера.

С одной стороны, закрытая архитектура кажется сильно «ограниченной» и сковывающей индивидуальность пользователей, но с другой стороны , при такой реализации компания-производитель полностью несет ответственность за свое устройств о — это, в первую очередь, сказывается на безопасности и производительности устройств.

Заключение

Открытая архитектура для ПК от IBM несет в себе некую свободу для пользователей, которые самостоятельно могут собирать устройства своими руками, ч его не скажешь о закрытой архитектуре, где об этом уже позаботились производители.

Мы будем очень благодарны

если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.

Принцип открытой архитектуры компьютера — это архитектурное построение, которое позволяет выполнять сборку, модернизацию и ремонтные работы компьютера по его отдельным модульным элементам.

Общие сведения

В 1975 году был спроектирован и собран первый персональный компьютер, который стал революционным событием для общественной и промышленной сферы жизни человечества. Прежде электронная вычислительная машина (ЭВМ) была доступна только большим предприятиям или крупным научно – исследовательским центрам. Маленьким организациям было не по карману приобретать стационарные ЭВМ.

Персональные электронные вычислительные машины (ПЭВМ) принадлежат к категории компьютеров личного (индивидуального) использования. То есть, они превратились в общедоступный инструментарий, который позволяет в разы повысить эффективность умственного (и не только) труда. Решая похожие задачи, разные ЭВМ, при этом, жёстко конкурировали между собой, как и производящие их компании. Разные фирмы искали различные технологические и конструкторские решения для улучшения своей продукции. И само собой, найденные решения имели гриф секретности, и мало кто был осведомлён как функционирует тот или иной компьютер, который, к тому же, представлял собой монолитный блок, не подлежащий усовершенствованию и изменению комплектации. Архитектурные особенности реализации компьютера были недоступны простым пользователям.

Принцип открытой архитектуры компьютера

Революционным событием стало решение ведущей компьютерной фирмы IBM спроектировать и собрать компьютер с указанной в его паспорте архитектурой. Это был компьютер IBM PC (на основе процессора Intel-8086), поступивший в продажу в 1981 году. Отдельно было подчёркнуто, что этот компьютер возможно подвергнуть модернизации, устанавливая разные дополнительные блоки и устройства периферии или просто меняя их на более совершенные.

Затем другие компании стали проектировать компьютеры, которые были совместимы с IBM PC, и это возвело его в ранг стандарта компьютерной техники. Существует, однако, мнение, что этот, по сути революционный, поступок погубил компанию IBM. Сегодня её часть компьютерного рынка бесконечно маленькая, но зато термин «IBM-PC-совместимый», навечно вписал имя этой компании в историю развития компьютерной техники.

Принципиальная позиция открытой архитектуры состоит в том, что компьютерные компании не делают тайны из комплектации компьютера, и она может быть легко изменена или модернизирована. Это обстоятельство позволяет менять какой-либо модуль в компьютере, не заботясь о его совместимости с данной компьютерной модификацией.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Говоря иначе, если пользователь хочет улучшить параметры компьютера, то ему достаточно искать модуль (деталь) с лучшими характеристиками, не обращая внимания на то, кто является производителем (конечно, при условии, что этот модуль принадлежит к IBM-совместимым устройствам). Около 85% на рынке компьютеров принадлежит компьютерам, разработанным на базе открытости архитектуры.

Одним из примеров компьютеров, выполненных без применения открытости, могут служить компьютеры компании Apple. Они не имеют широкого распространения в Российской Федерации по причине высокой цены и несовместимости программного обеспечения. Но с другой стороны, на высоком уровне находится безопасность данных пользователей этих компьютеров, так как достаточно проблематично осуществить взлом «закрытой архитектуры».

Новый импульс открытая архитектура получила с развитием сети интернет. А конкретнее, любое оборудование, которое подключено к персональному компьютеру, может быть использовано в многопользовательском режиме. Каждый персональный компьютер имеет в интернете свой уникальный адрес и у каждого модуля ввода-вывода он тоже есть. Это означает, что комбинация адреса персонального компьютера и модуля ввода-вывода позволяет открыть доступ ко всем открытым для общественного пользования устройствам.

В целях безопасности личных данных, пользователям необходимо помнить об этих свойствах открытой архитектуры компьютера и тщательно отстраивать доступ к периферийным устройствам. К примеру, все жёсткие диски или какие-либо каталоги на них могут стать доступными через внешние сети при помощи закладки «Доступ» в разделе «Свойства». Таким же образом может быть открыт доступ и к другому различному оборудованию (принтеру, сканеру и тому подобное). Естественно, глупо предполагать, что кому-то потребуется распечатать что-то на удалённом принтере без возможности забрать распечатки, но вот данные с жёсткого диска вполне вероятный объект кражи. Там может быть чья-то личная информация, пароли доступа и тому подобное, что не обязательно должно быть доступно широкому кругу людей. Возможен также вариант случайного доступа, когда, к примеру, системный программист, обслуживая компьютер, открыл для себя доступ к памяти компьютера, а затем позабыл выключить его по завершению всех процедур по обслуживанию.

Комплектация компьютера

Персональный компьютер сегодняшнего дня имеет в своём составе системный блок, монитор, клавиатуру и «мышку». Эти четыре компонента являются так называемой базовой конфигурацией персонального компьютера.

К системному блоку возможно подключение разнообразной периферии при помощи разнообразных разъёмных соединений. В системном блоке расположена системная, иначе материнская, плата, которая является наиболее объёмной электронной схемой. Она синхронизирует функционирование всех других компонентов компьютера, формируя их в единый комплекс. На материнской плате расположены все другие компьютерные модули, которые соединяются с ней через различные разъёмы. Оперативная память предназначена для сохранения временной информации и построена как внутренняя энергозависимая структура. В реальности это одна или набор маленьких плат, которые вставляются в предназначенные для них разъёмы на материнской плате.

Вычислительная техника – это совокупность устройств, предназначенных для автоматической или автоматизированной обработки данных. Под вычислительной системой понимают конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным средством большинства вычислительных систем является компьютер. Компьютер (англ. computer) – это электронное устройство, предназначенное для автоматизации работы с информацией. Компьютер также часто называют электронно-вычислительной машиной (ЭВМ).

Состав вычислительной системы называется конфигурацией. Различают аппаратную конфигурацию, куда входят аппаратные средства вычислительной техники, и программную конфигурацию, куда входят программные средства вычислительной техники. Соответственно в вычислительной системе принято рассматривать:

1. Аппаратное обеспечение (англ. hardware) – это совокупность устройств, которые могут входить в состав компьютера или подключаться к нему. Набор таких устройств образует аппаратную конфигурацию.

2. Программное обеспечение (англ. software) – это совокупность программ, которые могут применяться на компьютере для реализации информационных процессов. Набор таких программ на компьютере образует программную конфигурацию. Под компьютерной программой понимается упорядоченная последовательность команд компьютера.

В конце 40-х годов ХХ в. американский математик Джон фон Нейман предложил хранить программу для ЭВМ в памяти ЭВМ. Он предложил структуру ЭВМ, названную архитектурой фон Неймана, согласно которой компьютер должен включать 5 базовых элементов:

1. Арифметико-логическое устройство (АЛУ).

2. Устройство управления (УУ).

3. Запоминающее устройство (ЗУ).

4. Устройство ввода (УВв).

5. Устройство вывода (УВыв).

Персональный компьютер (ПК, англ. Personal Computer, PC) – это компьютер для обслуживания одного рабочего места. Как правило, это небольшая ЭВМ индивидуального пользования.

Магистрально-модульный принцип функционирования ПК означает, что к системной шине (магистрали) могут подключаться различные устройства, называемые модулями.

Обязательно к шине должны подключаться:

1. Процессор (в котором совмещаются функции АЛУ, УУ, кэш-памяти и регистровой памяти).

2. Устройства ввода (обычно клавиатура и мышь).

3. Устройства вывода (обычно монитор).

4. ПЗУ (постоянное запоминающее устройство).

5. ОЗУ (оперативное запоминающее устройство).

6. ВЗУ (внешние запоминающие устройства).

Причём ПЗУ и устройства ввода передают информацию в другие устройства через шину, а устройства вывода получают информацию через неё от других устройств. Остальные устройства могут быть как приёмниками, так и передатчиками информации.

Основными характеристиками ПК являются:

1. Тактовая частота процессора (обычно 1 – 4 ГГц).

2. Объём оперативной памяти (обычно 128 МБ – 1 ГБ).

3. Объём памяти жёсткого диска (обычно 20 – 200 ГБ).

Персональный компьютер включает 4 основных устройства:

1. Системный блок.

Таким образом, устройства ПК по степени использования делятся на:

1. Основные устройства, которые почти всегда используются в ПК.

2. Периферийные устройства, которые могут использоваться не всегда.

Все аппаратные средства по отношению к системному блоку делятся на:

1. Внутренние устройства (внутри системного блока).

2. Внешние устройства (вне системного блока). К внешним устройствам относятся монитор, клавиатура, мышь и все периферийные устройства.

По назначению компьютерные устройства относят к следующим категориям:

1. Запоминающие устройства.

2. Устройства ввода информации.

3. Устройства вывода информации.

Кроме того, иногда выделяют также следующие категории:

4. Устройства обмена информацией.

5. Устройства обработки информации.

6. Компьютерные носители информации.

7. Вспомогательные компьютерные устройства.

Системный блок служит для обеспечения бесперебойной и надежной работы ПК. По форме корпуса системные блоки выпускают:

В системном блоке находятся материнская плата, процессор, винчестер, дисководы, ПЗУ, ОЗУ, блок питания, системная шина, контроллеры, разъёмы и т.д. На передней части системного блока могут находиться:

1. Кнопка «POWER» (для включения или выключения ПК).

2. Кнопка «RESET» (для перезагрузки ПК).

3. Дисковод (для считывания и записи информации на диски).

4. CD-привод или DVD-привод (для считывания и записи информации на диски CD и DVD).

Материнская плата – это основная плата персонального компьютера. На ней размещаются:

1. Процессор – основная микросхема, выполняющая большинство математических и логических операций.

2. Микропроцессорный комплект (чипсет) – набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы.

3. Шины – наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера.

6. Разъёмы (слоты) для подключения дополнительных устройств.

Все внешние устройства подключаются к материнской плате через специальные устройства, называемые контроллерами.

Системная шина – это проводник для связи между устройствами, подключаемыми к материнской плате. Основными типами шин ввода-вывода с соответствующими слотами расширения в ПК являются: ISA, EISA, PCI.

Устройство обработки информации – устройство, позволяющее производить вычисления и преобразования над информацией. К устройствам обработки информации можно отнести:

3. Звуковую карту.

Процессор (микропроцессор) – устройство для арифметико-логической обработки информации и для управления этой информацией (наиболее популярные марки процессоров – Pentium, Celeron, Xeon, Athlon, Sempron).

Основными характеристиками процессоров являются:

1. Тактовая частота – это количество операций (тактов), выполняемых процессором в единицу времени.

2. Разрядность регистров – это количество битов данных, обрабатываемых процессором за один такт.

3. Размер кэш-памяти – это количество команд, которые процессор запоминает, в результате чего получает к ним быстрый доступ.

Процессор соединяется с остальными устройствами шинами.

Видеокарта (видеоадаптер) – устройство для проведения операций по формированию изображения на экране. Видеокарта совмещает в себе функции видеоконтроллера, видеопроцессора и видеопамяти. Основными типами видеоадаптеров являются:

1. MDA (монохромный).

3. EGA (16 цветов).

4. VGA (256 цветов).

5. SVGA (16,7 миллиона цветов).

Звуковая карта – устройство для проведения операций по обработке звука, речи, музыки.

Вспомогательное компьютерное устройство не участвует в работе с информацией и выполняет дополнительные функции по обслуживанию компьютера. К вспомогательным устройствам относятся:

1. Таймер (системные часы).

3. Источник бесперебойного питания (ИБП).

5. Кулер (охлаждающее устройство).

Персональные компьютеры обычно проектируются на основе принципа открытой архитектуры.

Принцип открытой архитектуры заключается в следующем:

- Регламентируются и стандартизируются только описание принципа действия компьютера и его конфигурация (определённая совокупность аппаратных средств и соединений между ними). Таким образом, компьютер можно собирать из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-производителями.

- Компьютер легко расширяется и модернизируется за счёт наличия внутренних расширительных гнёзд, в которые пользователь может вставлять разнообразные устройства, и, тем самым устанавливать конфигурацию своей машины в соответствии со своими личными предпочтениями.


Лекция 5. Уровни программной конфигурации. Операционные системы. Файловая структура.

Под программным обеспечением (Software) обычно понимается совокупность программ, выполняемых вычислительной системой.

К программному обеспечению (ПО) относится также вся область деятельности по проектированию и разработке ПО:

- технология проектирования программ (например, нисходящее проектирование, структурное и объектно-ориентированное проектирование и др.);

- методы тестирования программ;

- методы доказательства правильности программ;

- анализ качества работы программ;

- разработка и использование программных средств, облегчающих процесс проектирования программного обеспечения, и многое другое.

Программное обеспечение – неотъемлемая часть компьютерной системы. Оно является логическим продолжением технических средств. Сфера применения конкретного компьютера определяется созданным для него ПО.

Схематично представить структуру программного обеспечения можно в таком виде:

Базовый уровень - отвечает за правильную работу аппаратных средств, является уровнем класса «низкий». Программное обеспечение данного уровня хранится в микросхемах запоминающегося устройства (ПЗУ), его задача обеспечить работу входа и выхода BIOS. В процессе эксплуатации компьютера нельзя изменять программы и данные ПЗУ, они записываются в производственных условиях.

Системный уровень– отвечает за связь программ вычислительного устройства с программами базового уровня и аппаратного обеспечения, он считается переходным уровнем. Этот уровень и его программы отвечают за эксплуатационные возможности компьютера. Когда на вычислительное устройство устанавливается новое оборудование, этот уровень должен быть обеспечен программой, которая свяжет устанавливаемое оборудование и другие программы. Программы, которые отвечают за взаимную связь с устройствами компьютера, называются драйверами.

В данном уровне есть еще и программы другого класса, которые отвечают за связь с пользователем компьютера. С помощью этих программ пользователь может вводить информацию в компьютер, пользоваться ее. Данный класс называется средствами пользовательского интерфейса, состояние этих программ регламентируют работу компьютера.

Ядром системы вычислительной машины является совокупность программ этого уровня. Задачи, выполняемые этим ядром, и за что они отвечают, это: работа входа и выхода информации, работа памяти машины, работа файловой системы, и другие.

Служебный уровень – отвечает за настройку систем компьютера, за автоматизацию процессов. Многие программы данного уровня изначально входят в операционную систему, установленную на вычислительной машине. Существует 2 направления в развитии служебных программ, это программы для автономного применения и уже интегрированные в ОС.

Прикладной уровень - отвечает за выполнение уже определенных задач, которые могут быть развлекательного направления, для решения вопросов производства, учебными программами. Между системным уровнем программ и прикладным уровнем программ есть взаимная связь, работа вычислительной машины зависит от ОС стоящей на данном устройстве. Этот уровень подключает в себе: редакторы для текста, процессоры текстовые, системы автоматического создания проектирования, графические редакторы, браузеры, программы перевода текстов, системы которые управляют базами данных, таблицы, и многие другие программы прикладного уровня.

Операционная система (ОС) – это комплекс взаимосвязанных системных программ, назначение которого – организовать взаимодействие пользователя с компьютером и выполнение всех других программ.

К операционным системам относится комплекс программ, обеспечивающих управление работой всех аппаратных устройств и доступ пользователя к ним. ОС загружается при включении или перезагрузке ПК, управляет его ресурсами, обеспечивает взаимодействие пользователя с компьютером. ОС также обеспечивает поддержку работы всех остальных программ, аппаратных средств ПК и сетей ЭВМ (наиболее известные ОС – MS-DOS, Windows, Unix, Linux,
MacOS, Free BSD, Solaris, Cisco Systems, OS/2, NetWare, CP/M).

Операционная система обычно хранится во внешней памяти компьютера – на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ.

Этот процесс называется загрузкой операционной системы.

В функции операционной системы входит:

- осуществление диалога с пользователем;

- ввод-вывод и управление данными;

- планирование и организация процесса обработки программ;

- распределение ресурсов (оперативной памяти и кэша, процессора, внешних устройств);

- запуск программ на выполнение;

- всевозможные вспомогательные операции обслуживания;

- передача информации между различными внутренними устройствами;

- программная поддержка работы периферийных устройств (дисплея, клавиатуры, дисковых накопителей, принтера и др.).

По типу использования общих аппаратных и программных ресурсов ОС делятся на:

По типу пользовательского интерфейса ОС делятся на:

- Командные (текстовые ОС).

- Объектно-ориентированные (графические ОС).

По количеству работающих пользователей ОС делятся на:

- Однопользовательские.

- Многопользовательские.

По числу выполняемых задач ОС делятся на:

- Однозадачные.

- Многозадачные (ОС пакетной обработки, ОС разделения времени, ОС реального времени).

Различают вытесняющую и невытесняющую многозадачность. ОС пакетной обработки позволяют выполнить заранее сформированный пакет задач, ОС разделения времени позволяют разделить время для выполнения каждой задачи, а ОС реального времени позволяют выполнять каждую задачу за заранее заданное время.

По количеству используемых процессоров ОС делятся на:

- Однопроцессорные.

- Многопроцессорные.

По разрядности процессора ОС делятся на:

- 32-разрядные.

- 64-разрядные.

Именованными компонентами Windows являются:

- Приложения (программы, адаптированные к работе в данной ОС).

- Документы (файлы, представляющие собой результаты работы приложения).

- Папки (области, хранящие группу файлов или обозначающие устройства, подключаемые к ПК).

Компоненты можно просматривать в окне (прямоугольная область экрана).

Файл – это именованная область на диске, обозначаемая именем и расширением. Расширение означает назначение файла. Наиболее известные расширения такие:

exe – выполняемые файлы;

com – командные файлы;

bat – пакетные файлы;

bak – резервные копии файлов;

arj, rar, zip – архивные файлы;

txt, rtf – текстовые файлы;

doc – файлы текстовых документов;

xls – файлы электронных таблиц;

mdb – файлы баз данных;

mcd – файлы вычислительных документов;

bmp, jpg, gif – файлы растровых рисунков и фотографий;

ppt, pps – файлы презентаций;

dwg – файлы чертежей;

pas, bas, c – файлы с текстами программ на языках Pascal, Basic, C;

htm – файлы с описанием Web-страницы на языке HTML;

wav, mp3 – звуковые файлы;

avi – файлы аудиовидеоклипов.

Файловая система – это средство для организации хранения файлов на каком-либо носителе.

Файлы физически реализуются как участки памяти на внешних носителях – магнитных дисках, флеш-картах, картах памяти или CD-ROM.

Каждый файл занимает некоторое количество блоков дисковой памяти.

Каталог (иногда называется директорией или папкой) доступен пользователю через командный язык операционной системы.

Каталог может иметь собственное имя и храниться в другом каталоге наряду с обычными файлами: так образуются иерархические файловые структуры.

Драйвер файловой системы обеспечивает доступ к информации, записанной на магнитный диск, по имени файла и распределяет пространство на магнитном диске между файлами.

Для выполнения этих функций драйвер файловой системы хранит на диске не только информацию пользователя, но и свою собственную служебную информацию. В служебных областях диска хранится список всех файлов и каталогов, а также различные дополнительные

Структура файловой системы и структура хранения данных на внешних магнитных носителях определяет удобство работы пользователя, скорость доступа к файлам и т.д. (на жестком диске Fat32, NTFS)


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Архитектура персонального компьютера"

На этом уроке мы с вами познакомимся с магистрально-модульным принципом построения компьютера, узнаем, что относится к основным логическим узлам компьютера, рассмотрим, какие устройства находятся на материнской плате, и многое другое.

Компьютер – это многофункциональное электронное устройство, предназначенное для накопления, обработки и передачи информации.


К основным логическим узлам компьютера относятся центральный процессор, основная память, внешняя память, периферийные устройства.


Персональные компьютеры начали появляться благодаря развитию микропроцессоров в 1980-х годах.

Архитектура персонального компьютера – это логическая организация, структура и ресурсы, то есть средства вычислительной системы, которые могут быть выделены процессу обработки данных на определённый интервал времени.

В основе архитектуры современных персональных компьютеров лежит магистрально-модульный принцип. Давайте рассмотрим рисунок.


Итак, перед вами изображена архитектура персонального компьютера. На ней изображены функциональные блоки персонального компьютера, к которым относятся устройства ввода/вывода, внешние запоминающие устройства, центральный процессор, память и видеопамять. Все эти блоки соединены между собой информационной магистралью, которая называется системной шиной. Она состоит из трёх частей: шина данных, шина адреса, шина управления. Шина данных используется для передачи данных к функциональным блокам. Шина адреса предназначена для передачи адресов устройств, которым передаются данные. И последняя, шина управления используется для передачи управляющих сигналов, которые синхронизируют работу разных устройств. То есть через шину передаются все данные от одного устройства к другому.

Также на рисунке у нас есть такие элементы, как контроллеры. Контроллеры – это периферийные устройства, которые управляют внешними устройствами. Передача всех данных осуществляется через шину.

Также мы можем видеть на рисунке сплошные и пунктирные стрелки. Сплошными стрелками изображены направления потоков информации, а пунктирными – направление управляющих сигналов.

В этой архитектуре существует такое значительное достоинство, как принцип открытой архитектуры. То есть мы можем подключать к компьютеру новые устройства или заменять старые на более современные. Для каждого типа и модели устройства используется свой контроллер.

Например, если мы подключим компьютерную мышь через USB-порт, то она определится у нас на компьютере только после установки в операционную систему специальной программы для управления этим устройством. Такие программы называются драйверами устройств.

Таким образом, можно сформулировать следующее определение: открытая архитектура персонального компьютера – это архитектура, предусматривающая модульное построение компьютера с возможностью добавления и замены отдельных устройств.

Это то, что касается принципов обмена информацией между устройствами.

Материнская плата – это сложная многослойная печатная плата, являющаяся основой построения вычислительной системы.


Изначально дополнительные устройства (например, внутренний модем, сетевой адаптер беспроводной связи Wi-fi, звуковая плата и так далее) подключались к материнской плате с помощью слотов расширения и разъёмов.


В наше время такая необходимость отпала, так как большинство дополнительных устройств уже встроены в современные материнские (системные) платы.

Основными (несъёмными) частями материнской платы являются разъём процессора, разъёмы оперативной памяти, микросхемы чипсета, загрузочное ПЗУ, контроллеры шин и их слоты расширения, контроллеры и интерфейсы периферийных устройств.

Важнейшей частью материнской платы является чипсет. Чипсет – это набор микросхем, который связывает память, процессор, видеоадаптер, устройства ввода/вывода и другие элементы персонального компьютера, для выполнения совместных функций.

В современных компьютерах находятся две основные большие микросхемы чипсета: контроллер-концентратор памяти (северный мост) и контроллер-концентратор ввода/вывода (южный мост).

Давайте рассмотрим схему архитектуры персонального компьютера.


Северный мост отвечает за работу процессора с оперативной памятью и видеосистемой. От его параметров (тип, частота, пропускная способность) зависят параметры подключённых к нему устройств: системной шины, оперативной памяти, видеоадаптера. Северный мост подключается напрямую к центральному процессору через системную шину.

Южный мост обеспечивает работу с внешними устройствами и обычно подключается к центральному процессору через северный мост при помощи внутренней шины.

Все устройства компьютера соединены между собой шинами различных видов.

Быстродействие процессора, оперативной памяти и периферийных устройств существенно различаются. Быстродействие устройства, в свою очередь, зависит от тактовой частоты обработки данных, которая обычно измеряется в мегагерцах, и разрядности. Разрядность – это количество битов данных, обрабатываемых за один такт. Такт – это промежуток времени между подачами электрических импульсов, которые синхронизируют работу устройств компьютера.

Пропускная способность шины – это скорость передачи данных между устройствами, которые она соединяет. А исходя из вышесказанного, можно сделать вывод, что скорость передачи данных различных шин будет также отличаться. Рассмотрим формулу для вычисления пропускной способности шины (измеряется в битах в секунду). Она равна произведению разрядности шины и частоты шины. Разрядность измеряется в битах, частота – в герцах, в свою очередь, 1 герц равен 1 такту в секунду.

Например, для быстрой работы компьютера пропускная способность шины оперативной памяти должна совпадать с пропускной способностью шины процессора.


Как говорилось ранее, Северный мост связан с процессором системной шиной. Например, если разрядность системной шины составляет 64 бита, а частота – 1066 МГц, то пропускная способность будет равна:

Перейдём к частоте процессора. Тактовая частота процессора показывает, сколько процессор может произвести вычислений в единицу времени. Из этого следует вывод, что чем больше частота, тем больше операций в единицу времени может выполнить процессор. Тактовая частота современных процессоров составляет от 1 до 4 ГГц. Рассмотрим формулу. Тактовая частота равна произведению внешней или базовой частоты на определённый коэффициент. Коэффициент зависит от характеристик процессора. Например, процессор Intel Core i7 920 использует частоту шины 133 МГц и множитель 20. Значит, тактовая частота будет равна:

133 · 20 = 2660 МГц.

Шина памяти соединяет оперативную память и северный мост, и, соответственно, служит для передачи данных между этими устройствами.


Частота шины памяти может быть больше частоты системной шины.

Следующая шина, которую мы рассмотрим, – PCI Express. Она соединяет видеоплату с северным мостом.


Так как в наше время очень быстро развивается компьютерная графика, то потребность в скорости передачи данных от видеоплаты к оперативной памяти и процессору возрастает. Наибольшее распространение получила шина PCI Express – это ускоренная шина взаимодействия периферийных устройств. Её пропускная способность может достигать до 32 гигабайт в секунду.

К самой же видеоплате с помощью аналогового разъёма VGA (графический адаптер) или цифрового разъёма DVI (цифровой видеоинтерфейс) подключается монитор или проектор.

Жёсткие диски, CD-дисководы, DVD-дисководы подключаются к южному мосту при помощи шины SATA – это последовательная шина подключения накопителей.


Скорость передачи данных по ней может достигать 300 Мбайт в секунду.

Для подключения периферийный устройств (принтера, клавиатуры, сканера и других), которые имеют USB-выход, к южному мосту используется шина USB – это универсальная последовательная шина.


Её пропускная способность достигает 60 Мегабайт в секунду. При помощи шины USB к компьютеру можно одновременно подключить до 127 периферийных устройств.

При увеличении производительности процессора происходит увеличение производительности самого компьютера.

Увеличение производительности процессора происходит за счёт увеличения частоты. Но, как говорится, всему есть свой предел. При увеличении частоты процессора происходит также увеличение тепловыделения, которое не может быть не ограниченным. Выделение процессором теплоты Q пропорционально потребляемой мощности P, которая, в свою очередь, пропорциональна квадрату частоты.

Поэтому для того, чтобы увеличить производительность процессора, начали увеличивать количество ядер процессора (арифметических логических устройств).

В 2005 году был создан первый двухъядерный микропроцессор. Это сделали практически одновременно две фирмы – Intel и AMD. Такая архитектура позволяет производить на персональном компьютере параллельную обработку данных, что существенно увеличивает его производительность. Можно сказать, что в архитектуре находятся 2 центральных процессора, работа которых согласована между собой, и они объединены между собой, например, контроллером. За счёт этого поток данных идёт не к одному центральному процессору, а разделяется на два. И увеличивается быстродействие компьютера.


В настоящее время количество ядер в микропроцессорах достигает 8.

А сейчас пришло время подвести итоги урока.

Сегодня мы с вами познакомились с магистрально-модульным принципом построения компьютера. Рассмотрели, какие устройства находятся на материнской плате. А также подробно ознакомились с архитектурой персонального компьютера.

Читайте также: