Ega vga что это

Обновлено: 03.07.2024

CGA - Colour Graphics Ad. - Поддрежка 16 цветов, максимальное разрешение 640х200. В тектстовом и в графическом режиме.

EGA – Extended Graphics Ad. - Платформа i80286, ставится на шину ISA. 16 цветов при разрешении 640х350. EGA+ - 800х600, 256 цветов, шина таже.

VGA - Шина ISA, 16 bit, 800x600, 262144 оттенка

SVGA-1024х768 при 256 цветах (2 в 16),1280х1024 при 16 цв.

XGA-1600х1200,2 в 24 – 16 млн оттенков, 256 цветов.

Аналоговый интерфейс видеокарт RGB TTL используется для подключения ЭЛТ мониторов.

14.ЭЛТ. Ее состав и назначение. ЭЛТ - электронновакуумный прибор, предназначенный для преобразования цифрового сигнала или электрического аналогового сигнала в изображение. В ЭЛТ изображение создается за счет возвратно поступательны движений электронных лучей создаваемых электронной пушкой. Экран ЭЛТ покрыт люминафором – веществом которое обладает способностью светиться при попадании на него электронов. Электронная пушка - предназначена для формирования узкого электронного пучка.Она состоит из подогревателя и термокатода. Подогреватель разогревается термокатод, с поверхности которого вылетает электрон. Интенсивность полученного электронного луча пропорциональна напряжению подаваемому на модулятор. Модулятор – главная оптическая линза монитора, поскольку он с помощью катушек отдельно для каждого цвета может менять интенсивность луча и его направление. Для формирования электронного пучка предназначен ускоряющий электрод, напряжение на котором превышает потенциал катода на 700-900ВТ, это разность потенциалов создает сильное электрическое поле. В плоскости ускоряющего электрода сечение пучка минимально, но после электрода пучек начинает расходиться. Для фокусировки полученного пучка предназначен фокусирующий электрод (наз: 1 анод), на него подуется напряжение около 5000ВТ. Магнитное поле, индуцированное с помощью напряжения заставляет пучок опять сходится. Далее лучи пучка попадают на цветоделительную маску. Маска обеспечивает попадание каждого из типов лучей (RGB) на свои частицы люминофора. Цветоделительная маска, люминофорное покрытие, и внутреннее покрытие формы образуют второй анод. Триада – три обьединенных зерна люминофора (пикселя) разного цвета Поверхность монитора покрыто частицами люминофора трех типов, которые восприимчивы только к своему типу лучей. Поскольку в каждой триаде частицы расположены очень близко друг к другу, то из-за свечения соседнего элемента происходит переналожение цветов.

Когда светятся все элементы люминофора, то из-за переналожения всех трех цветов можно получить остальные цвета палитры.

15.ЭЛТ. Типы цветоделительных масок. Плюсы и минусы.ЭЛТ - электронновакуумный прибор, предназначенный для преобразования цифрового сигнала или электрического аналогового сигнала в изображение. В ЭЛТ изображение создается за счет возвратно поступательны движений электронных лучей создаваемых электронной пушкой. Экран ЭЛТ покрыт люминафором – веществом которое обладает способностью светиться при попадании на него электронов.

Маска теневая - Пластина являющаяся частью второго анода с круглыми отверстиями. В каждой триаде зерен соответствует одно отверстие в теневой маке. Электронной пушке такого типа расположены ассиметрично в виде дельны (треугольником) все три пушки сдвинуты относительно главной оптической оси проходящей через главный центр треугольника на угол-полтора (1-1,5) градуса. Проходя через одно отверстие теневой сачки 3-ри луча от пушек проходя через свои отверстия попадают на пикселя только одно триады. Причем луча от пушки зеленого цвета попадают на зеленый, красный на красный, зеленый на зеленый. Плюсы:- Дешевая реализация. Минусы:1.Сложенная система сведения лучей по вертикали и горизонтали из-за того что все три пушки не находятся на главной оптической оси.2.Невысокая яркость и цветность из-за того что большое количество электронов сталкиваются с теневой маской.

ЭЛТ с щелевой маской (Slot Mask) - Щелевая цветоделительная маска образована множеством тонких вертикальных щелей, а люминофор нанесенный на обратную сторону экрана в виде чередующихся вертикальных полос. Все пушки ЭЛТ такого типа находятся на одной линии, причем пушка зеленого цвета находится на главной оптической оси, а Р и Б сдвинуты относительно ее на 1,5 градуса. Плюсы:1.отсутствует необходимость сведения лучей по вертикали.2. Меньше искажения растра (изображение формируется попиксельно).3.Большая прозрачность маски – больше яркости.Минусы:Меньше площадь растры на дисплее. ЭЛТ с апертурой решеткой (Aperture grill) - ОС1. Этот ЭЛТ имеет одну пушку но с тремя планарно-расположенными катодами. За счет этого удалось повысить точность фокусировки лучей их сведения.ОС2. Использование не электромагнитной, а электростатической системы сведения лучей по горизонтали.В ЭЛТ установлены пластины, на которые подаются высоковольтные импульсы.

ОС3. Светоделительная маска в виде апертурной решетки.

Апертурная решетка – набор тонких вертикально натянутых металлических струн. За счет этого кривизна поверхности ЭЛТ практически равна нулю, это обеспечивает практически полное отсутствие искажения по вертикали.Поскольку апертурная решетка является усовершенствованным типом щелевой маски, прозрачность у нее еще на двадцать процентов выше (тем самым выше и яркость)

Для устранения колебаний нитей устанавливаются две поперечные горизонтальные оси. При близком (физически) расстоянии видно их свечение. Плюсы:1.Точность сведения лучей. 2. Отсутствие искажения по горизонтали.3.Практически плоски дисплей.4.Наилучшая яркость. Минусы:1.Наличие светящейся полосы.2.Требуется хорошая электроника.

Изначально персональные компьютеры IBM PC комплектовались видеоадаптером MDA с монохромным диплеем. Этот адаптер имел небольшую разрешающую способность, не мог оторажать графическую информацию и был монохромным. Через некоторое время небольшая фирма Hercules Computer Technology выпустила монохромный видеоадаптер Hercules, который имел возможность вывода графики и имел большую разрешающую способность. CGA стал первым цветным видеоадаптером фирмы IBM. Он уже обеспечивал возможность отбражать цветную графическую и текстовую информацию, но имел слишком маленькую разрешающую способность. Затем IBM выпустила два, наиболее распространенных в настоящее время видеоадаптера EGA и VGA. Они созданы на другой элементной базе и имеют лучшую, чем у CGA, разрешающую способность при большем числе отображаемых цветов.

В последнее время различные фирмы - производители видеоадаптеров выпустили большое количество плат, превосходящи по своим возможностям VGA. Эти платы, которые можно объединить под общмим названием Super VGA, не имеют пока единого стандарта. Фирма IBM начала выпуск нового видеоадаптера XGA, который, как предполагается, станет новым стандартом для компьютеров на базе процессоров Intel 386/486.

Видеоадаптер содержит встроенный графический процессор, значительно увеличивающий его возможности и скорость работы. XGA аппаратно поддерживает перерисовку изображений в окнах экрана. При обмене данными между видеопамятью и основной памятью сам XGA вместо цетрального процессора реализует управление шиной данных, что позволяет быстро передавать изображение на экран. Следует также отметить, что предусмотрена совместимость видеоадаптеров VGA и XGA на уровне регистров. Базовая конфигурация XGA содержит 512 Кбайт видеопамяти, что обеспечивает разрешение 1024*768 пикселов при 16 цветах. Увеличение объема видеопамяти до 1 Мбайта при той же разрешающей способности позволяет получить 256 цветов.

АРХИТЕКТУРА ВИДЕОАДАПТЕРОВ EGA И VGA

ВИДЕОАДАПТЕРЫ EGA И VGA УСЛОВНО ДЕЛЯТСЯ НА ШЕСТЬ ЛОГИЧЕСКИХ БЛОКОВ, ОПИСАНИЕ КОТОРЫХ ПРИВЕДЕНЫ НИЖЕ

I Видеопамять

Видеопамять адаптеров EGA и VGA разделена на четыре банка, или на четыре цветовых слоя. Эти банки размещаются в одном адресном пространстве таким образом, что по каждому адресу расположено четыре байта (по одному байту в каждом банке). Какой из банков памяти используется для записи или чтения данных процессором, определяется при помощи установки нескольких регистров адаптера. Так как все четыре банка находятся в одном адресном пространстве, то процессор может производить запись во все четыре банка за один цикл записи. Благодаря этому некоторые операции, например заполнение экрана, происходят с большей скоростью. В том случае, когда записсь во все четыре банка не требуется, можно разрешать или запрещать запись во все четыре банка при помощи регистра разрешения записи цветового слоя. Для операции чтения в каждый момент времени может быть разрешен с помощью регистра выбора читаемого цветового слоя только один цветовой слой.

В большинстве режимов видеоадаптера видеопамять разделена на несколько страниц. При этом одна из них является активной и отображается на экране. При помощи функций BIOS или программирования регистров видео-адаптера можно преключать активные страницы видеопамяти. Вывод информации может производиться как в активную, так и в неактивные страницы видеопамяти.

Видеопамять в текстовом режиме

Для кодирования каждого знакоместа экрана используется два байта: первый из них содержит ASCII код отображаемого символа, второй - атрибуты символа. ASCII коды символов экрана располагаются в нулевом цветовом слое, а их атрибуты - в первом цветовом слое. Атрибуты определяют цвет символа и цвет фона. Благодаря такому режиму хранения информации достигается значительная экономия памяти. При отображении символа на экране происходит преобразование его из формата ASCII в двумерный массив пикселов, выводимых на экран. Для этого преобразования используется таблица трансляциии символов (таблица знакогенератора). Таблица знакогенератора хранится во втором слое видеопамяти. При непосредственном доступе к видеопамяти нулевой и первый цветовые слои отображаются на общее адресное пространство с чередованием байтов из слоев. Коды символов имеют четные адреса, а их атрибуты - нечетные. При установке текстовых режимов работы видеоадаптеров EGA и VGA BIOS загружает таблицы знакогенератора из ПЗУ во второй цветовой слой видеопамяти. Впоследствие таблицы используются при отображении символов на экране.

Благодаря этому можно легко заменить стандартную таблицу знакогенератора своей собственной. Это широко применяется при русификации компьютеров. EGA и VGA обеспечивают возможность одновременной загрузки соответственно четырех и восьми таблиц знакогенераторов в память. Каждая таблица содержит описание 256 символов. Одновременно активными могут быть одна или две таблицы знакогенератора. Это дает возможность одновременно отображать на экране до 512 символов. При этом один бит из байта атрибутов указывает, какая из активных таблиц знакогенератора используется при отображении данного символа. Номера активных таблиц знакогенератора определяются регистром выбора знакогенератора.

EGA поддерживает два размера для матриц символов: 8х8 и 8х14 пикселов. Один из этих наборов символов автомаически загружается BIOS в видеопамять при выборе текстового режима. Так как VGA имеет большую разрешающую способность, то его матрица символа имеет размеры 9х16. На каждый символ отводится 32 байта. Первая таблица имеет в видеопамяти адреса: 0000h-1FFFh, вторая: 2000h-3FFFh, . , восьмая: E000h-FFFFh. Каждый символ, отображаемый на экране в текстовом режиме, определяется не только своим ASCII кодом, но и байтом атрибутов. Атрибуты задают цвет символа, цвет фона, а также некоторые другие параметры. Биты D0-D2 байта атрибутов задают цвет символа, D4-D6 цвет фона.

Если активной является одна таблица знакогенератора, то D3 используется для управления интенсивностью цвета символа, что позволяет увеличить количество воспроизводимых цветов до 16. Если одновременно определены две таблицы знакогенератора, то D3 задает таблицу знакогенератора, которая будет использована для отображения данного символа. Бит D7 выполняет две различные функции в зависимости от состояния регистра режима контроллера атрибутов. Данный бит либо управляет интенсивностью цвета фона, увеличивая количество отображаемых цветов до 16, либо разрешением гашения символа, в результате чего символ на экране будет мигать. По умолчанию данный бит управляет разрешением гашения символа.

Видеопамять в графическом режимае

Распределение видеопамяти в графическом режиме работы адаптеров отличается от распредления видеопамяти в текстовом режиме. Ниже рассмотрена структура распределения видеопамяти отдельно для каждого графического режима.

Режимы 4 и 5

Это режимы низкого разрешения (320х200), используются 4 цвета. Поддерживаются видеоадаптерами CGA, EGA и VGA. У EGA и VGA видеоданные расположены в нулевом цветовом слое, остальные слои не используются. Для совместимости с CGA отображение видеопамяти на экране не является непрерывным: первая половина видеопамяти (начальный адрес В800:0000) содержит данные относительно всех нечетных линий экрана, а вторая (начальный адрес В800:2000) - относительно всех четных линий. Каждому пикселу соответствует два бита видеопамяти. За верхний левый пиксел экрана отвечают биты D7 и D6 нулевого байта видеопамяти.

В режимах 4 и 5 имеются два набора цветов: стандартный и альтернативный: 00 - черный; 01 - светло-синий (зеленый); 10 - малиновый (красный); 11 - ярко-белый (коричневый).

Режим 6

Режим 6 является режимом наибольшего разрешения для CGA (640х200). Видеоадаптеры EGA и VGA используют для хранения информации только нулевой слой. Как и в режимах 4 и 5 первая половина видеопамяти отвечает за нечетные линии экрана, а вторая половина - за четные. В данном режиме на один пиксел отводится один бит видеопамяти. Если значение бита равно 0, то пиксел имеет черный цвет, а если единице - то белый.

Режимы 0Dh и 0Еh

Разрешающая способность в режиме 0Dh составляет 320х200, а в режиме 0Eh 640х200 пикселов. Данный режим поддерживается только видеоадаптерами EGA и VGA .

Для хранения видеоданных используются все четыре цветовых слоя. Адресу видеопамяти соответствуют четыре байта, которые вместе определяют восемь пикселов. Каждому пикселу соответствуют четыре бита - по одному из каждого цветового слоя. Четыре бита на пиксел, используемые в данных режимах, позволяют отображать 16 различных цветов. Запись в каждый из этих цветовых слоев можно разрешить или запретить при помощи разрешения записи цветового слоя.

Управление доступом к цветовым плоскостям осуществляется при помощи регистров:

  • Адресный регистр графического контроллера, порт вывода для этого регистра 3CEh; биты 0-3 содержат адрес регистра, остальные не используются.
  • Регистр цвета: для доступа к этому регистру значение адресного регистра должно быть 00h, адрес порта вывода для этого регистра 3CFh; биты 0-3 определяют значение для соответствующей плоскости, остальные не используются.
  • Регистр разрешения цвета: для доступа к этому регистру значение адресного регистра должно быть 01h, адрес порта вывода для этого регистра 3CFh; биты 0-3 означают разрешение соответствующего слоя, а остальные не используются.
  • Регистр выбора плоскости для чтения: для доступа к этому регистру значение адресного регистра должно быть 04h, адрес порта вывода для этого регистра 3CFh; биты 0-2 содержат номер плоскости для чтения, а остальные не используются.

II Графический контроллер

Графический контроллер осуществляет обмен данными между видеопамятью и процессором. Он может выполнять над данными, поступающими в видеопамять, простейшие логические операции: И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ, циклический сдвиг. Таким образом, видеоадаптер может выполнять часть работы по обработке видеоданных. Хотя процессор может читать данные только из одного цветового слоя, запись данных в регистры-защелки происходит из всех цветовых слоев. Эту особенность можно использовать для быстрого копирования областей экрана. Во время цикла чтения данных из видеопамяти, графический контроллер может выполнять операцию сравнения цветов. В отличие от обычной операции чтения. когда читается только один цветовой слой, при операции сравнения цветов графический контроллер имеет доступ ко всем четырем слоям одновременно. В случае совпадения вырабатывается определенный сигнал.

III Последовательный преобразователь

Последовательный преобразователь - это устройство запоминает данные, читаемые из видеопамяти в течении цикла регенерации, преобразует их в последовательный поток бит, а затем передает их контроллеру атрибутов.

IV Контроллер ЭЛТ

Контроллер атрибутов - в графических режимах управляет цветами. Значениям цветовых атрибутов ставится в соответствие определенный цвет при помощи таблицы цветовой палитры. Эта таблица ставит в соответствие четырем битам из видеопамяти шесть битов цветовой информации. Для ЕGA эта информация поступает непосредственно на дисплей, а для VGA - преобразуется в соответствии с таблицей цветов тремя ЦАП в RGB-сигнал и передается на дисплей. Контроллер ЭЛТ выполняет следующие функции: вырабатывает сигналы управления работой ЭЛТ, определяет формат экрана и символлов текста, определяет форму курсора, управляет световым пером, управляет скроллингом содержимого экрана. Синхронизатор управляет всеми временными параметрами видеоадаптера.

В 70-е годы компьютеры даже не считались роскошью — они банально были недоступны массовому потребителю. Примерно в это же время компанией IBM было принято решение о создании «массового» компьютера. В 1981 году увидел свет первый персональный компьютер IBM PC. Несмотря на то, что прежде известнейшая корпорация предпочитала использовать комплектующие собственного производства, этот десктоп состоял в основном из деталей сторонних производителей. В роли центрального процессора выступил кристалл Intel 8088 с тактовой частотой 4,77 МГц, объем оперативной памяти составлял от 16 до 256 Кбайт. Базовая версия компьютера поставлялась без флоппи-дисководов, жесткого диска и монитора, их необходимо было приобретать отдельно. Кроме этого, отдельно приобретались различные платы расширения, среди которых были и видеоадаптеры.

IBM PC был выпущен в 1981 году

Начало эры IBM. Видеоадаптеры MDA и CGA

Покупателю предлагались на выбор два видеоадаптера: MDA (Monochrome Display Adapter) и CGA (Color Graphics Adapter). Как показало время, первый акселератор оказался более популярным, нежели второй. Его особенностью была работа с монохромными (одноцветными) мониторами. Он поддерживал исключительно текстовый режим (80 столбцов на 25 строк) и не имел графических режимов. Ядром видеоадаптера служил чип Motorola MC6845, а объем памяти составлял 4 Кбайт. Максимальное рабочее разрешении составляло 720x350 пикселей, или, вернее, 80x25 символов. Тем не менее стоит отметить, что из-за текстового режима MDA не умел работать с отдельными пикселями. Видеоадаптер банально помещал в определенное знакоместо один из 256 символов. Каждый из этих символов мог обладать некоторыми атрибутами. Например, он мог быть невидимым, подчеркнутым, обычным, жирным, инвертированным или мигающим. При этом была возможность комбинировать атрибуты. Цвет символов зависел исключительно от монитора. В зависимости от типа дисплея буквы могли быть белого, изумрудного или янтарного цвета.

Кстати, интересной архитектурной особенностью видеоадаптера MDA являлось то, что сама плата, помимо видеоядра, содержала контроллер параллельного порта, который отвечал за работу с принтером.

Видеоадаптер CGA считался своего рода противоположностью MDA. Помимо работы в текстовом режиме, он также мог функционировать в графическом режиме, причем поддерживалось как черно-белое, так и цветное изображение. В роли ядра адаптера выступал все тот же чип Motorola MC6845, но объем памяти был больше в четыре раза. В режиме работы с цветной графикой максимальное разрешение составляло 320x200 пикселов, с монохромной — 640x200 точек. При этом была возможность обращения к отдельно взятому пикселу. Цветовая глубина адаптера составляла 4 бита. Это позволяло использовать палитру из 16 цветов.

Так же, как и MDA, видеоадаптер CGA поддерживал стандартный текстовый режим. Его разрешение составляло 40x25/80x25 символов, где тоже не было возможности обращения к отдельным пикселам. Может возникнуть вопрос: зачем нужен был видеоадаптер MDA, если CGA поддерживает такие же режимы и к тому же имеет более богатый функционал? Все дело в том, что MDA изначально ориентировался на бизнес-потребителя и «затачивался» под работу с текстом. Поэтому он работал с нестандартными вертикальными и горизонтальными частотами, обеспечивая более четкое изображение символов. CGA же поддерживал только стандартные частоты и заметно проигрывал MDA в качестве выводимого на экран текста.

Работали адаптеры стабильно, однако в случае с CGA известны некоторые баги. Так, временами на экране появлялись рандомные короткие горизонтальные линии, также известные как «снег». Возникали они из-за того, что CGA не поддерживал одновременное чтение и запись в память. Также известно, что цветной графический адаптер не полностью использовал видеопамять.

Очень интересно, что в IBM PC была возможность использования двух адаптеров одновременно. Само собой, эта технология ни в коем случае не была прародителем сложных графических подсистем SLI и CrossFire — она предназначалась для одновременной работы двух мониторов. В ту эпоху адаптеры имели лишь один порт вывода. Забегая вперед, скажем, что ситуация изменилась лишь в 1996 году.

Видеоадаптер EGA

Логическим продолжением MDA и CGA стало тоже решение IBM под названием EGA (Enhanced Graphics Adapter), представленное в сентябре 1984 года для нового персонального компьютера IBM PC/AT. По своей сути новый видеоадаптер стал первым в своем роде решением, способным воспроизводить нормальное цветное изображение. Так же как и CGA, EGA поддерживал текстовый и графический режимы, при этом максимальное разрешение составляло 640x350 пикселов при использовании 16 цветов из 64 возможных. На архитектурном уровне EGA был схож со своими предшественниками: он также использовал видеоконтроллер Motorola MC6845, оснащался увеличенным объемом памяти, равным 64 Кбайт. Для передачи данных применялась шина ISA. Со временем объем памяти был увеличен до внушительных 256 Кбайт. Вся память подразделялась на 4 сегмента (4 цветовых слоя). Процессор умел заполнять сегменты параллельно, что значительно повысило скорость заполнения кадра. Кстати, адаптер дополнительно оснащался 16 Кбайт памяти для расширения графических функций BIOS.

Enhanced Graphics Adapter ( EGA ) является IBM PC видеоадаптер и де - факто стандартный дисплей компьютера с 1984 , который заменил CGA стандарт , введенную с оригинальной IBM PC, и сам был заменен VGA стандарта в 1987 году В дополнение к оригинальной EGA карты производства IBM, многие совместимые карты сторонних производителей были произведены, а графические режимы EGA продолжали поддерживаться стандартами VGA и более поздними.

СОДЕРЖАНИЕ

История

EGA была представлена IBM в октябре 1984 года , вскоре после своего нового PC / AT . EGA можно было установить в ранее выпущенные ПК IBM, но требовалось обновление ПЗУ на материнской плате.

Между 1984 и 1987 годами несколько сторонних производителей выпустили совместимые карты, такие как набор микросхем Autoswitch EGA или Genoa Systems Super EGA . Более поздние карты, поддерживающие расширенную версию VGA, были также названы Super VGA .

Стандарт EGA был устаревшим с введением в 1987 году MCGA и VGA с линейкой компьютеров PS / 2 .

Аппаратный дизайн


Мониторы IBM MDA, CGA и EGA, все поддерживаемые картой EGA

Вывод был через RGB с прямым приводом, как и в случае с CGA, но композитный видеовыход не был включен. Могут использоваться мониторы MDA и CGA, а также недавно выпущенные мониторы с улучшенной цветопередачей, специально предназначенные для использования с EGA.

В мониторах, специально предназначенных для EGA, использовалась конструкция с двойной синхронизацией, которая могла переключаться с 15,7 кГц в режимах с 200 строками на 21,8 кГц для режимов с 350 строками.


Многие карты EGA имеют DIP-переключатели на задней стороне карты для выбора типа монитора. Если выбран CGA, карта будет работать в режиме 200 строк и использовать 8x8 символов в текстовом режиме. Если выбран EGA, карта будет работать в режиме 350 строк и использовать текст 8 × 14.

Некоторые сторонние карты, использующие спецификацию EGA, продавались с завода с полными 128 КБ ОЗУ, в то время как другие включали целых 256 КБ для поддержки нескольких графических страниц, нескольких наборов символов текстового режима и больших дисплеев с прокруткой. Некоторые сторонние карты, такие как ATI Technologies EGA Wonder, построены на стандарте EGA, чтобы дополнительно предлагать такие функции, как расширенные графические режимы до 800x560 и автоматическое определение типа монитора.

Возможности

EGA обеспечивает отображение до 16 цветов (с использованием фиксированной палитры или одного из 64 цветов, в зависимости от режима) с несколькими разрешениями до 640 × 350 пикселей, а также в двух монохромных режимах с более высоким разрешением. Карты EGA включают ПЗУ для расширения системного BIOS для дополнительных графических функций и настраиваемый контроллер CRT (CRTC) .

IBM EGA CRTC поддерживает все режимы адаптеров IBM MDA и CGA через определенные параметры режима, но он не полностью совместим с регистрами Motorola MC6845, используемым в этих картах, поэтому программное обеспечение, которое напрямую программирует регистры для выбора режимов, может производить разные результаты на EGA.

Поддерживаемые разрешения: 320 × 200 и 640 × 200 (на мониторе CGA), 720 × 350 и 640 × 350 (на мониторе MDA) и 320 × 350 и 640 × 350 (на мониторе EGA). Разрешения CGA также поддерживаются при использовании монитора EGA. EGA сканирует с частотой 21,8 кГц при использовании 350-строчного режима и 15,7 кГц при использовании 200-строчного режима.

В режиме высокого разрешения 640 × 350, который требует улучшенного монитора EGA, можно выбрать 16 цветов из палитры, содержащей все комбинации двух битов на пиксель для красного, зеленого и синего, что позволяет использовать четыре уровня интенсивности для каждого основного цвета и 64 цвета. цвета в целом. Графические режимы 640 × 200 и 320 × 200 обеспечивают обратную совместимость с программным обеспечением и мониторами CGA, но позволяют одновременно использовать все шестнадцать цветов в палитре CGA вместо фиксированных четырех цветов, доступных в этих режимах на фактическом CGA.

В 16-цветных графических режимах EGA используются битовые плоскости и регистры маски вместе с поразрядными операциями ЦП, чтобы обеспечить ускоренную графику , методы, которые в дальнейшем будут использоваться в VGA .

Читайте также: