Если компьютеры подключены к сети с коммутацией пакетов то число промежуточных компьютеров

Обновлено: 05.07.2024

Назначение любой сети — обеспечение обмена данными (информацией) между абонентами. Этими абонентами могут быть удаленные компьютеры, локальные сети, факс-аппараты или просто собеседники, общающиеся с помощью телефонных аппаратов. Практически невозможно предоставить каждой паре взаимодействующих абонентов свою собственную некоммутируемую физическую линию связи, которой они могли бы монопольно «владеть» в течение длительного времени. Поэтому в любой сети всегда применяется какой-либо способ коммутации, который обеспечивает доступность имеющихся физических каналов одновременно для нескольких сеансов связи между абонентами сети.

Под коммутацией данных понимается их передача, при которой канал передачи данных может использоваться попеременно для обмена информацией между различными пунктами информационной сети в отличие от связи через некоммутируемые каналы, обычно закрепленные за определенными абонентами. Различают следующие способы коммутации данных: коммутация каналов— осуществляется соединение двух или более станций данных и обеспечивается монопольное использование канала передачи данных до тех пор, пока соединение не будет разомкнуто;

Коммутация каналов может быть пространственной и временной.

Пространственный коммутатор размера NxM представляет собой сетку (матрицу), в которой N входов подключены к горизонтальным шинам, а М выходов — к вертикальным (рис. 2).


Рисунок 2 – Пространственный коммуникатор

В узлах сетки имеются коммутирующие элементы, причем в каждом столбце сетки может быть открыто не более чем по одному элементу. Если N < М, то коммутатор может обеспечить соединение каждого входа как минимум с одним выходом; в противном случае коммутатор называется блокирующим, т. е, не обеспечивающим соединения любого входа с одним из выходов. Обычно применяются коммутаторы с равным числом входов и выходов NxN.

Недостаток рассмотренной схемы — большое число коммутирующих элементов в квадратной матрице, равное N2. Для устранения этого недостатка применяют многоступенчатые коммутаторы.

Временной коммутатор строится на основе буферной памяти, запись производится в ее ячейки последовательным опросом входов, а коммутация осуществляется благодаря записи данных на выходы из нужных ячеек памяти. При этом происходит задержка на время одного цикла «запись—чтение». В настоящее время преимущественно используются временная или смешанная коммутация.

Любой пакет состоит из трех обязательных компонентов: заголовка, данных, информации для проверки ошибок передачи. Заголовок содержит:

· адрес источника, идентифицирующий компьютер-отправитель;

· адрес места назначения, идентифицирующий компьютер-получатель;

· инструкции сетевым компонентам о дальнейшем маршруте данных;

· информацию компьютеру-получателю о том, как объединить передаваемый пакет с остальными, чтобы получить данные в исходном виде.

В зависимости от типа сети размер поля данных составляет от 512 байтов до 4 Кбайт. Так как обычно размер исходных данных гораздо больше 4 Кбайт, для помещения в пакет их необходимо разбивать на мелкие блоки. При передаче объемного файла может потребоваться много пакетов.

Информация для проверки ошибок обеспечивает корректность передачи. Эта информация называется циклическим избыточным кодом, который представляет собой число, получаемое в результате математических преобразований над пакетом с исходной информацией. Когда пакет достигает места назначения, эти преобразования повторяются. Если результат совпадает с циклическим избыточный кодом, значит, пакет принят без ошибок. В противном случае необходимо повторить передачу пакета, поскольку при передаче данные изменились.

В сетях коммутации пакетов различают два режима работы — виртуальных каналов (другое название — связь с установлением соединения) и дейтаграммный (связь без установления соединения).

Вопрос 15 - Сетевые кабели.

Сетевые кабели почти невидимы, но они являются весьма важным компонентом всей сети. К решающим факторам, влияющим на выбор типа кабеля, можно отнести расстояние между рабочими станциями и среду, в которой должна работать сеть, созданная с их помощью. Поэтому выбор типа кабеля определяется типом создаваемой сети отдельно в каждом конкретном случае. Одним из важнейших параметром при выборе кабеля является максимальная допустимая часто сигнала.

Частота характеризуетколичество колебаний некоторой величины (например, напряжения) за секунду. Она выражается в герцах (число периодов колебаний за секунду). В самом простом случае колебания можно представить как синусоидальные волны. Иными словами, синусоидальное колебание, частота которого составляет 8 МГц, в течение одной секунды восемь миллионов раз проходит через максимум. Чем выше частота, тем больше скорость перемещения данных, поскольку в единственную секунду можно "упаковать" большее количество единиц и нулей.


Высокочастотные сигналы в большей степени подвержены помехам, чем низкочастотные, поскольку за единицу времени они переносят большее число данных. Максимальная частота сигналов в определенной степени характеризует кабель данного типа (это предельное значение не связано с рабочей частотой). Она только указывает, что теоретически физическая среда кабеля способна обеспечивать работу на данной частоте, если табель не поврежден и правильно смонтирован.

К другим физическим характеристикам кабелей разных типов относится предельно допустимая длина отрезка кабеля, обеспечивающая передачу сигнала. Для разных частот длина такого отрезка будет разная. С ростом частоты эта величина будет уменьшаться. Длина такого отрезка зависит от затухания. Затухание - это степень ослабления сигнала на участке кабеля фиксированной длины (обычно 100 м на заданной частоте). Чем более подвержен кабель воздействию помех, тем сильнее затухает в нем сигнал. Следует различать затухание в кабеле, вызванное собственными потерями (обусловленное, например, потерями сигнала в диэлектрическом заполнении низкого качества), и затухание, обусловленное излучением сигнала из кабеля (вызванное недостаточным экранированием сигнальных проводников). В первом случае предельно допустимая длина отрезка кабеля будет небольшой, но внешние помехи не окажут воздействия на сигнал. Во втором - внешние сигналы могут наложиться на передаваемый сигнал (полезный сигнал) и исказить его. Для уменьшения затухания сигнала в сети используют различные устройства, например, повторители (репетиры), которые усиливают сигнал на длинных участках кабелей.

Вопрос 16 - Кабели типа "витая пара".

Если вы обернете один хороший проводник вокруг другого, то получите систему проводов, в определенной степени защищенную от внешних помех (RF-шумов). Именно так изготовлен кабель с витой парой. На практике используют два типа таких кабелей: неэкранированная витая пара (UTP) и экранированная витая пара (STP).

Кабель UTP и STP имеют два отличия. Первое: в UTP используются четыре пары проводников, а в STP - две. Второе, и основное, отличие заложено в самом названии кабелей. В STP предусмотрен дополнительный проводящий слой, окружающий витые провода, который обеспечивает дополнительную защиту от помех. Это отнюдь не означает, что кабель STP всегда лучше защищен от RF-шумов по сравнению с UTP. Просто в кабелях использован разный подход к проблеме защиты. Теоретически, в кабелях UTP, где два провода скручены друг с другом, каждый в отдельности провод является приемником шума, но эти шумы противофазные.



В кабелях же STP проводники защищены, в основном, дополнительным проводящим слоем, а не скручиванием друг с другом. В то же время, дополнительный защитный слой затрудняет работу с кабелем, поскольку придает ему жесткость. Кроме того, такая защита эффективна только при правильном заземлении и целостности экранирующего слоя.

Ассоциация электронной промышленности (EIA), Ассоциация телекоммуникационной промышленности (TIA) и Национальная ассоциация производителей электрооборудования; (NEMA) установили стандарт кабелей UTP, подразделяющий их на семь категорий. Затем они уполномочили организацию Underwriter's Laboratories сертифицировать и сортировать в соответствии с этим стандартом кабели, продаваемые на территории Соединенных Штатов. Чем выше номер категории кабеля, тем больше в нем-должно быть скруток на погонный фут ; и чаще меняться форма этих витков для исключения' радиочастотных помех (RFI). Таким \ образом, хотя и не существует кабелей, которые совершенно нечувствительны к помехам, чем выше категория кабеля UTP, тем менее он подвержен помехам RFI и EMI и, соответственно, обеспечивает более быструю и точную передачу данных. Другими словами, кабели категории 3 обеспечивают передачу данных со скоростью до 10 Мбит/с и содержат не менее трех скруток на погонный фут. Однако практически во всех локальных сетях используют кабели UTP категории 5, которые допускают скорость передачи до 100 Мбит/с и позволяют расположить компьютеры на расстоянии до 90 м.

Кроме того, в изделиях фирмы IBM предусмотрено использование кабелей различных типов с витой парой и двух типов оптоволоконных кабелей. Кабели подразделяются по функциональным признакам, а не по степени устойчивости к RFI. Ниже перечислены типы кабелей с витой парой.

Тип 1. Одножильный кабель STP, используемый для передачи данных. Каждый кабель состоит из двух пар проводов.

Тип 6. Состоит из двух пар многожильных кабелей. Во многом подобен типу 1, однако вместо одножильного используется многожильный провод.

Тип 8.Специальный плоский кабель STP, что позволяет прокладывать его под коврами.

Тип 9. Состоит из двух экранированных пар STP, покрытых специальной оболочкой, а не поливинилхлоридом (PVC), поэтому его можно прокладывать в перекрытиях между этажами здания. При горении PVC выделяет токсичные газы, поэтому в соответствии - правилами пожарной безопасности используют иную оболочку.

Назначение сети – обмен данными (информацией) между компьютерами.

Любые сети связи поддерживают некоторый способ коммутации своих абонентов между собой. Этими абонентами могут быть удаленные компьютеры, локальные сети, факс-аппараты или просто собеседники, общающиеся с помощью телефонных аппаратов. Практически невозможно предоставить каждой паре взаимодействующих абонентов свою собственную некоммутируемую физическую линию связи, которой они могли бы монопольно «владеть» в течение длительного времени. Поэтому в любой сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает доступность имеющихся физических канатов одновременно для нескольких сеансов связи между абонентами сети.

Под коммутацией данных понимается их передача, при которой канал передачи данных может использоваться попеременно для обмена информацией между различными пунктами информационной сети в отличие от связи через некоммутируемые каналы, обычно закрепленные за определенными абонентами.

Различают следующие способы коммутации данных:

– коммутация каналов – осуществляется соединение двух данных станций или более и обеспечивается монопольное использование канала передачи данных до тех пор, пока соединение не будет разомкнуто;

Любой пакет состоит из трех обязательных компонентов:

– информации для проверки ошибок передачи.

– адрес источника, идентифицирующий компьютер-отправитель;

– адрес местоназначения, идентифицирующий компьютер-получатель;

– инструкции сетевым компонентам о дальнейшем маршруте данных;

– информацию компьютеру-получателю о том, как объединить передаваемый пакет с остальными, чтобы получить данные в исходном виде.

Данные – это часть пакета, представляющая передаваемые данные. В зависимости от типа сети ее размер составляет от 512 байтов до 4 Кбайтов (Кб). Так как обычно размер исходных данных гораздо больше 4 Кб для помещения в пакет их необходимо разбивать на мелкие блоки. При передаче объемного файла может потребоваться много пакетов.

Информация для проверки ошибок обеспечивает корректность передачи. Эта информация носит название циклический избыточный код. Это число, получаемое в результате математических преобразований над пакетом с исходной информацией. Когда пакет достигает местоназначения, эти преобразования повторяются. Если результат совпадает с циклическим избыточным кодом, пакет принят без ошибок. В противном случае необходимо повторить передачу пакета, поскольку при передаче данные изменились.

1. Неопределенность скорости передачи данных между абонентами сети, обусловленная тем, что задержки в очередях буферов коммутаторов сети зависят от общей загрузки сети.

2. Переменная величина задержки пакетов данных, которая может быть достаточно продолжительной в моменты мгновенных перегрузок сети.

3. Возможные потери данных из-за переполнения буферов.

В настоящее время активно разрабатываются и внедряются методы, позволяющие преодолеть указанные недостатки, которые особенно остро проявляются для чувствительного к задержкам трафика, требующего при этом постоянной скорости передачи. Такие методы называются методами обеспечения качества обслуживания (Quality of Service, QoS).

Сети с коммутацией пакетов, в которых реализованы методы обеспечения качества обслуживания, позволяют одновременно передавать различные виды трафика, в том числе такие важные как телефонный и компьютерный. Поэтому методы коммутации пакетов сегодня считаются наиболее перспективными для построения конвергентной сети, которая обеспечит комплексные качественные услуги для абонентов любого типа. Тем не менее, нельзя сбрасывать со счетов и методы коммутации каналов. Сегодня они не только с успехом работают в традиционных телефонных сетях, но и широко применяются для образования высокоскоростных постоянных соединений в так называемых первичных (опорных) сетях технологий SDH и DWDM, которые используются для создания магистральных физических каналов между коммутаторами телефонных или компьютерных сетей. В будущем вполне возможно появление новых технологий коммутации, в том или ином виде комбинирующих принципы коммутации пакетов и каналов.

Модель OSI. Понятие об интерфейсах и протоколах.

Рекомендация ITU-T X.200

Организация взаимодействия между элементами сети является сложной задачей, поэтому ее разбивают на несколько более простых задач.

Международной организацией по стандартизации (ISO) был предложен стандарт, который покрывает все аспекты сетевой связи в сетях с коммутацией пакетов, — это модель взаимодействия открытых систем (OSI). Он был введен в конце 1970-х.

Открытая система — это стандартизированный набор протоколов и спецификаций, который гарантирует возможность взаимодействия оборудования различных производителей. Она реализуется набором модулей, каждый из которых решает простую задачу внутри элемента сети. Каждый из модулей связан с одним или несколькими другими модулями. Решение сложной задачи подразумевает определенный порядок следования решения простых задач, при котором образуется многоуровневая иерархическая структура на рис.1.2. Это позволяет любым двум различным системам связываться независимо от их основной архитектуры.



Рис. 1.2. Модель взаимодействия открытых систем OSI

Модель OSI составлена из семи упорядоченных уровней: физического (уровень 1), звена передачи данных (уровень 2), сетевого (уровень 3), транспортного (уровень 4), сеансового (уровень 5), представления (уровень 6) и прикладного (уровень 7).

Заголовки добавляются к началу передаваемых данных, как это показано на рис.1.2 в уровнях 6, 5, 4, 3 и 2. На уровне 2 кроме заголовков добавляются конечные метки (окончания). На уровне 1 полный комплект преобразуется к форме, которая может быть передана к приемному устройству.

Прохождение данных и сетевой информации вниз через уровни устройства передачи и назад через уровни устройства приема делается возможным с помощью интерфейсов и протоколов между каждой парой смежных уровней.


Четкие интерфейсы и протоколы обеспечивают модульность, реализация функций каждого уровня может быть обновлена или удалена, не требуя изменений уровней, находящихся выше или ниже его.

Семь уровней можно рассматривать, исходя из принадлежности их к трем подгруппам. Нижние уровни 1, 2 и 3 — физический, звена данных и сетевой — имеют дело с физическими аспектами данных, перемещающихся от одного устройства до другого (таких как электрические спецификации, физические подключения, физическая адресация и синхронизация передачи и надежность). Верхние уровни 5, 6 и 7 — сеансовый, представления и прикладной — позволяют обеспечивать способность к взаимодействию среди несвязанных программных систем. Уровень 4 — транспортный уровень — связывает эти две подгруппы и гарантирует, что более низкие уровни передачи находятся в формате, который верхние уровни могут использовать. Верхние уровни OSI почти всегда реализовывались в программном обеспечении; более низкие уровни — комбинация аппаратных средств и программного обеспечения, исключая физический уровень, который является главным образом аппаратным.

Нажмите, чтобы узнать подробности

3. Если узел 7 принимает запрос на установление соединения Составной канал становится с коммутированным, и узлы 1 и 7 могут обмениваться по нему данными.

4. Коммутатор F передает запрос коммутатору 7

5. Передаётся специальный запрос на установление соединения коммутатору A, указав адрес назначения 7

3. Достоинства « Коммутации каналов»

  1. Постоянная передачи данных между конечными узлами по установленному каналу.
  2. Низкая пропускная способность сети при передаче пульсирующего трафика.

4. Недостатки « Коммутации каналов»

  1. Отказ сети в обслуживании запроса на установление соединения.
  2. Неопределенность скорости передачи данных между абонентами сети из - за задержки в очередях буферов коммутаторов сети.
  3. Переменная величина задержки пакетов данных, которая может быть достаточно продолжительной в моменты мгновенных перегрузок сети.
  4. Нерациональное использование пропускной способности физических каналов

5. Процедура установления соединения

1.Если узел 4 принимает запрос на установление соединения, он направляет по уже установленному каналу ответ к исходному узлу, после чего составной канал считается с коммутированным, и узлы 1 и 4 могут обмениваться данными.

2. Коммутатор 2 передает запрос коммутатору 3.

3. Коммутатор 1 должен выбрать маршрут образования составного канала, а затем передать запрос следующему коммутатору, в данном случае 2.

4. Коммутатор 3 передает запрос коммутатору 4.

5. Узел 1 передаёт данные узлу 4, сначала должен передать специальный запрос на установление соединения коммутатору 1, указав адрес назначения 4.

6.Коммутация пакетов это

1. При этой коммутации коммутационная сеть образует между конечными узлами непрерывный составной физический канал из последовательно соединенных коммутаторами промежуточных канальных участков

2.Эта техника коммутации была специально разработана для эффективной передачи компьютерного трафика.

3. Этот вид коммутации не позволяет достичь высокой общей пропускной способности сети.

4. Этот вид коммутации позволяет достичь высокой общей пропускной способности сети.

7.В какой момент работы происходит пульсация трафика?

1.При обращении к удаленному файловому серверу пользователь просматривает содержимое каталога сервера.

2. Пользователь открывает требуемый файл в текстовом редакторе на сервере.

3. Пользователь некоторое время работает с открытыми файлами локально.

4. Пользователь возвращает модифицированные копии страниц на сервер.

8.В процессе коммутации пакетов -

9.Информация, которая содержится в пакете, перед отправкой в сеть

10.Движение пакетов по маршруту.Вариант1.

1. Для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование с коммутированном канала связи.

2.Данные нарезаются порциями – пакетами, каждый из которых обрабатывается коммутаторами независимо.

3. Каждый пакет сожержит адрес назначения и адрес отправителя.

4. Данные без задержек передаются от одного абонента другому без внутренней буферизации памяти.

5. Не требуется предварительной процедуры установления соединения.

6. Сеть с коммутацией разрывает процесс взаимодействия конкретной пары абонентов.

11.Достоинства коммутации пакетов

  1. Высокая общая пропускная способность сети при передаче трафика.
  2. Возможность динамически перераспределять пропускную способность физических каналов связи.

12.Недостатки коммутации пакетов

  1. Передачи данных между абонентами сети зависят от общей загрузки сети.
  2. Задержки пакетов данных в моменты мгновенных перегрузок сети.
  3. Возможные потери данных из-за переполнения буферов

1. Постоянная передачи данных по установленному между конечными узлами каналу.

2.Передача единого блока данных между транзитными компьютерами сети с временной буферизацией этого блока на диске каждого компьютера

3. Высокая общая пропускная способность сети при передаче пульсирующего трафика.

5. Хранится в транзитном компьютере на диске, причем довольно продолжительное время, если компьютер занят другой работой или сеть временно перегружена.

1. Уменьшается до одного.

2. Уменьшается до двух.

3. Уменьшается до трёх

17.Что исторически было разработано раньше, что позже?

Читайте также: