Gt s что это значит в компьютере

Обновлено: 02.07.2024

На крышке процессора и на упаковке с ним указывается базовая тактовая частота. Это количество циклов вычислений, которые процессор может выполнить за одну секунду.

Разгон процессора, или оверклокинг, — это повышение его тактовой частоты. Если он будет выполнять больше циклов вычислений, то станет работать производительнее. В результате, например, программы будут загружаться быстрее, а в играх вырастет FPS (количество кадров в секунду).

Для оверклокинга предназначены прежде всего процессоры с разблокированным множителем. У Intel это серии К и Х, у AMD — Ryzen.

Что такое разблокированный множитель

Тактовая частота работы процессора — это произведение тактовой частоты (BCLK, base clock) системной шины материнской платы (FSB, front side bus) на множитель самого процессора. Множитель процессора — это аппаратный идентификатор, который передаётся в BIOS или UEFI (интерфейсы между операционной системой и ПО материнской платы).

Если увеличить множитель, тактовая частота работы процессора вырастет. А с ней — и производительность системы.

Если же множитель заблокирован, у вас не получится изменить его с помощью стандартных инструментов. А использование нестандартных (кастомных) BIOS/UEFI чревато выходом системы из строя — особенно если у вас нет опыта в оверклокинге.

Какие параметры важны для производительности

В BIOS/UEFI и программах для оверклокинга вы, как правило, сможете менять такие параметры:

  • CPU Core Ratio — собственно, множитель процессора.
  • CPU Core Voltage — напряжение питания, которое подаётся на одно или на каждое ядро процессора.
  • CPU Cache/Ring Ratio — частота кольцевой шины Ring Bus.
  • CPU Cache/Ring Voltage — напряжение кольцевой шины Ring Bus.

Кольцевая шина Ring Bus связывает вспомогательные элементы процессора (помимо вычислительных ядер), например контроллер памяти и кеш. Повышение параметров её работы также поможет нарастить производительность.

Набор параметров бывает и другим, названия могут отличаться — всё зависит от конкретной версии BIOS/UEFI или программы для оверклокинга. Часто встречается параметр Frequency — под ним понимают итоговую частоту: произведение CPU Core Ratio (множителя) на BCLK Frequency (базовую тактовую частоту).

Насколько безопасно разгонять процессор

В AMD прямо заявляют AMD Ryzen Master 2.1 Reference Guide : «На убытки, вызванные использованием вашего процессора AMD с отклонением от официальных характеристик или заводских настроек, гарантия не распространяется». Похожий текст есть и на сайте Intel Ответы на часто задаваемые вопросы о программе Intel Performance Maximizer : «Стандартная гарантия не действует при эксплуатации процессора, если он превышает спецификации».

Вывод: если при разгоне что‑то пойдёт не так, ответственность за это будет лежать только на вас.

Подумайте дважды, прежде чем повышать рабочую частоту процессора: так ли важен прирост производительности, или стабильность и отсутствие рисков всё же в приоритете.

Для разгона новых процессоров Intel Core i5, i7, i9 десятого поколения с разблокированным множителем можно купить Turing Protection Plan. Он предполагает однократную замену процессора, который вышел из строя в результате оверклокинга.

Также отметим, что существует «кремниевая лотерея». Процессоры одной и той же модификации могут демонстрировать разные показатели после разгона. Всё дело в том, что чипы не идентичны — где‑то микроскопические дефекты после нарезки кристаллов кремния более выражены, где‑то менее. Таким образом, если вы зададите для своего процессора параметры удачного разгона, который выполнил опытный и успешный оверклокер, нет гарантии, что добьётесь тех же результатов.

Как подготовиться к разгону процессора

Для начала стоит понять, получится ли вообще безопасно разогнать систему.

Определите модель процессора

Кликните правой кнопкой по значку «Мой компьютер» («Этот компьютер», «Компьютер») и выберите пункт «Свойства». В открывшемся окне будет указана модель процессора.

Чтобы получить о нём более подробную информацию, можно установить бесплатную программу CPU‑Z. Она покажет ключевые характеристики чипсета и других компонентов, которые отвечают за производительность вашей системы.

Если у вас чипсет Intel серий К или Х либо AMD Ryzen, вам повезло. Это процессоры с разблокированным множителем, и их можно разгонять без «грязных хаков».

Повышать производительность других моделей не рекомендуем — по крайней мере, новичкам.

Все возможные нештатные ситуации, которые могут возникнуть в процессе оверклокинга, выходят за пределы этой инструкции.

Отметим, что производители регулярно выпускают патчи безопасности для программного обеспечения процессоров, защищающие от разгона. Конечно, они не дают оверклокерам годами использовать одни и те же инструменты, но также предохраняют систему от внезапного выхода из строя.

Проверьте материнскую плату

Если чипсет материнской платы не поддерживает оверклокинг, то у вас не получится изменить значение даже разблокированного множителя. Узнать модель материнской платы можно в приложении «Сведения о системе» для Windows 7 или 10. Нажмите Win + R, введите msinfo32 и посмотрите на пункты «Изготовитель основной платы» и «Модель основной платы».

Затем найдите в Сети информацию о чипсете, на котором построена плата.

  • Модели на базе чипсетов B350, B450, B550, X370, X470, X570 для процессоров AMD поддерживают разгон, на А320 — нет. Информация о платах и чипсетах есть на этой странице. Можно установить галочку Overclock, чтобы сразу видеть нужную информацию.
  • Платы для процессоров Intel на чипсетах Х- и Z‑серий позволяют без проблем разгонять процессоры с разблокированным множителем. Платы на чипсетах W-, Q-, B- и H‑серий разгон не поддерживают. Смотреть спецификации чипсетов Intel удобно здесь.

Кроме того, модели со словами Gaming, Premium и так далее обычно подходят для оверклокинга.

Рекомендуем обновить BIOS/UEFI материнской платы. Новую версию ПО и инструкции по установке можно найти на сайте производителя.

Уточните характеристики блока питания

Разгон потребует дополнительной энергии. Причём, если вы рассчитываете на 10% роста мощности процессора, ресурсопотребление вырастет не на 10%, а куда сильнее.

Вы можете воспользоваться калькулятором мощности BeQuiet и определить энергопотребление системы. А затем посмотреть на наклейку на блоке питания: если цифра там меньше рассчитанного значения или равна ему, стоит выбрать модель большей мощности.

Оцените систему охлаждения

Если у вас не слишком мощный, бюджетный кулер, то перед разгоном стоит установить модель большей производительности. Или перейти на водяное охлаждение: это недёшево, но значительно эффективнее единственного «вентилятора на радиаторе».

Всё дело в том, что с ростом рабочей частоты процессора тепловыделение повышается очень сильно. Например, когда Ryzen 5 2600 работает на частоте 3,4 ГГц, он выделяет около 65 Вт тепла. При разгоне до 3,8 ГГц — более 100 Вт.

Загрузите ПО для стресс‑тестов и оценки результатов разгона

Стресс‑тесты и бенчмарки помогут проверить стабильность конфигурации вашей системы после разгона. Такие функции есть в этих программах:

    ; ; ; (есть бесплатные демоверсии); (при использовании нужно выбрать вариант Just stress testing); .

Другие бенчмарки можно найти, например, в Steam.

Сбросьте характеристики

Перед разгоном стоит сбросить все настройки в BIOS/UEFI до заводских — по крайней мере те, что касаются работы процессора. Как правило, комбинация клавиш для этого выводится на экран после входа в BIOS/UEFI.

Клавиша или их сочетание для входа в BIOS/UEFI обычно выводится при загрузке компьютера. Чаще всего это F2, F4, F8, F12 или Del. Нужно нажимать эти кнопки до загрузки системы. Если ни один из вариантов не подошёл, поищите комбинацию для своей модели материнской платы в Сети.

Также рекомендуем отключить Turbo Boost в BIOS/UEFI. Эта технология автоматически повышает характеристики процессора на высоких нагрузках, но её активация может повлиять на результаты разгона. Название конкретных пунктов зависит от модели вашей материнской платы и версии ПО для неё.

Не забудьте сохранить внесённые изменения перед выходом.

Как разогнать процессор в BIOS/UEFI

Алгоритм одинаковый и для процессоров Intel, и для AMD.

Определите исходные характеристики системы

Запустите один из бенчмарков (Cinnebench, Fire Strike, Time Spy, встроенные инструменты CPU‑Z, AIDA64 и так далее) в режиме для одного и всех ядер процессора и определите исходные характеристики системы. Например, Cinnebench выведет не только оценку вашей системы в баллах, но и сравнит её с популярными моделями процессоров.

У CPU‑Z аналитика проще, но эти баллы вы сможете использовать в качестве отправной точки для оценки эффективности разгона.

Также рекомендуем определить температуру процессора под нагрузкой. Эта информация выводится, например, в AIDA64 и некоторых бенчмарках.

Увеличьте один из параметров

В BIOS/UEFI найдите параметр CPU Core Ratio (CPU Ratio, название может отличаться в зависимости от версии ПО) и увеличьте его значение. Рекомендуем наращивать мощность постепенно, добавлять одну‑две единицы к множителю, чтобы риск выхода системы из строя был минимальным.

Сохраните настройки, и компьютер перезагрузится. Вы также можете наращивать производительность только для определённых ядер.

Посмотрите на результат после перезагрузки

Запустите тест в бенчмарке и оцените результаты: насколько повысилась производительность системы, стабильно ли она работает, как сильно нагревается процессор.

Максимально допустимую температуру для продуктов Intel ищите на этой странице: выберите семейство и модель процессора, найдите параметр T Junction.

На сайте AMD можно ввести модель процессора и посмотреть на значение максимальной температуры в характеристиках.

Повторите

Если система смогла загрузиться, продолжайте постепенно увеличивать значения CPU Ratio. Если после изменения параметров работа нестабильная, установите предыдущее значение.

Затем постепенно увеличивайте другие доступные параметры: CPU Core Voltage, CPU Cache/Ring Ratio, CPU Cache/Ring Voltage и так далее. Можно наращивать значения и попарно (частоту вместе с напряжением), чтобы быстрее добиться нужных результатов.

Параллельно следите за температурой процессора. Она должна быть стабильно ниже максимальных значений.

Проведите нагрузочный тест

Запустите бенчмарк и оставьте его работать на полчаса‑час. Желательно в это время находиться рядом с компьютером и следить за изменением показателей. Если в какой‑то момент температура процессора достигнет критической отметки, система станет работать нестабильно или перезагрузится, сделайте ещё один шаг назад: уменьшите значения параметров в BIOS/UEFI и снова запустите бенчмарк на полчаса‑час.

Сравните результаты до и после разгона, чтобы узнать, насколько сильно выросла производительность вашей системы.

Как разогнать процессор с помощью утилит

Производители процессоров облегчили задачу оверклокерам и выпустили удобные программы для разгона.

Intel Performance Maximizer

Утилита для автоматического разгона разработана для процессоров Intel Core девятого поколения — моделей с индексом К: i9‑9900K, i9‑9900KF, i7‑9700K, i7‑9700KF, i5‑9600K, i5‑9600KF. Для её работы нужны от 8 ГБ оперативной памяти, от 16 ГБ свободного места на диске, материнская плата с поддержкой оверклокинга, улучшенное охлаждение и 64‑битная Windows 10.

Intel Performance Maximizer использует собственные тесты, чтобы подобрать оптимальные параметры для вашего процессора. Эксперименты проводятся отдельно для каждого ядра и порой длятся несколько часов, но затем вы сможете использовать найденную конфигурацию для максимальной производительности.

После установки достаточно запустить утилиту и нажать «Продолжить». Компьютер перезагрузится, запустится UEFI, там будут меняться параметры и проводиться тесты. По завершении процедуры вы увидите такое окно:

Intel Extreme Tuning Utility

Утилита подходит для разгона процессоров Intel серий К и Х (конкретные модели перечислены на этой странице). Для корректной работы нужны 64‑битная Windows 10 RS3 или новее, материнская плата с поддержкой оверклокинга.

Работа с Intel Extreme Tuning Utility похожа на разгон процессора в BIOS/UEFI, но в более комфортном интерфейсе. Здесь есть и бенчмарк, и функции измерения температуры, и другие инструменты.

После установки вам нужно запустить утилиту, перейти на вкладку Basic Tuning и нажать Run Benchmark. Программа оценит производительность вашей системы до разгона и выдаст результат в баллах.

После этого вы можете постепенно увеличивать значения множителя для всех ядер процессора в разделе Basic Tuning или более тонко настроить параметры производительности на вкладке Advanced Tuning. Алгоритм один и тот же: увеличиваете на одну‑две единицы, запускаете бенчмарк, оцениваете результаты.

После того как вы достигли максимально возможных значений, перейдите на вкладку Stress Test. Пяти минут хватит для базовой проверки. Получасовой тест даст понять, не перегревается ли процессор под нагрузкой. А длящийся 3–5 часов позволит проверить стабильность системы, которая сможет работать с максимальной производительностью круглые сутки.

AMD Ryzen Master

Утилита для комплексного разгона: она может повысить не только производительность процессора, но также видеокарты и памяти. Здесь мы расскажем только о разгоне процессора с AMD Ryzen Master.

Отметим, что раньше производитель предлагал утилиту AMD Overdrive. Но она больше не поддерживается официально, а у AMD Ryzen Master гораздо шире возможности.

После запуска вы увидите компактное окно:

Здесь можно постепенно повышать значения CPU Clock Speed и CPU Voltage, затем нажимать Apply & Test, чтобы применить и проверить новые настройки.

Опция Advanced View позволяет менять значения отдельных параметров (напряжения и частоты ядер, частоты встроенной видеокарты, тайминга памяти) и сохранять их в виде профилей для разных игр и режимов работы.

Также есть функция Auto Overclocking для автоматического разгона системы.

В: Какие процессоры лучше AMD или Intel?
О: Совершенно очевидно, что одназначного ответа на этот вопрос не существует. Все зависит от поставленных целей, бюджета и даже личных предпочтений.

Intel или AMD

Может быть, ответу на этот вопрос может помочь представленный график распространнености процессоров AMD » и Intel » в реально работающих системах. Этот график построен компанией PassMark Software, на основе тысяч результатов тестирования производительности компьютеров пользователей их ПО.

В: Что означают буквы A и P в названии модели процессоров Intel Xeon?
О: Буквы A и P в названиях моделей процессоров Intel » Xeon обозначают тип радиатора, который поставляется в комплекте с процессором (в том случае, когда поставляется Box версия).

  • A - активный (active) радиатор;
  • P - пассивный (passive) радиатор.

В каком случае, какой радиатор нужно использовать, зависит от того, в каком корпусе будет собираться сервер.

В: Что такое Dual-Core, Quad-Core, SIx-Core, Threads?
О: Dual-Core , Quad-Core , Six-Core означает, что процессор имеет, соответственно, 2, 4, 6 ядер, между которыми распределяется вычислительная нагрузка. В некоторых моделях процессоров, каждое из ядер может дополнительно обеспечивать распаралеливание нагрузки между несколькими потоками ( Threads ) внутри ядра. Подробнее см. описание технологии Hyper-Threading » .

В: Что такое GT/s?
О: GT/s это сокращение от giga-transfers/second (милиардов пересылок в секунду). Чаще всего используется как численная характеристика скорости работы с оперативной памятью процессоров Intel® » , поддерживающих технологию Intel® » QuickPath .

Иногда сокращение GT/s встречается в описании материнских плат. В этом случае имеется ввиду максимально возможное значение GT/s . Реальная скорость работы памяти будет зависеть от процессора, который вы поставите на эту материнскую плату.

Одна передача содержит 16 бит, следовательно, если для процессора указана скорость в 6,4 GT/s , то теоретическая суммарная пропускная способность одного соединения - 25,6 гигабайт в секунду (то есть 12,8 ГБ/с в каждую сторону); при этом один процессор может иметь несколько соединений.

Каждое процессорное ядро имеет встроенный контроллер памяти и высокоскоростное соединение для подключения других компонентов, что обеспечивает:

  • Динамически масштабируемую полосу пропускания соединений процессора с остальными компонентами системы.
  • Выдающуюся производительность и гибкость при работе с памятью.
  • Надежность, доступность и обслуживаемость (availability, and serviceability - RAS) для достижения оптимального баланса между ценой, производительностью и энергоэффективностью.

В: Что такое Direct Media Interface (DMI)?
О: Direct Media Interface , сокр. DMI — последовательная шина разработанная Intel® » для подсоединения южного моста материнской платы (ICH) к северному мосту (MCH или GMCH). В материнских платах для процессоров с разъемом LGA 1156 (то есть для Core i3 , Core i5 и некоторых серий Core i7 и Xeon ) и со встроенным контроллером памяти, DMI используется для подсоединения чипсета (PCH) непосредственно к процессору. (Процессоры серии Core i7 для LGA 1366 подсоединяется к чипсету через шину QPI .)

Первыми чипсетами с DMI было семейство Intel® » i915, выпущенное в 2004 году.

В: Что такое Front Side Bus (FSB)?
О: Front Side Bus ( FSB ) — шина, обеспечивающая соединение между x86-совместимым центральным процессором и внутренними устройствами.

Персональный компьютер, использующий FSB , устроен следующим образом: микропроцессор через FSB подключается к системному контроллеру, который обычно называют «северным мостом», (англ. Northbridge). Системный контроллер имеет в своём составе контроллер ОЗУ (в некоторых современных персональных компьютерах контроллер ОЗУ встроен в микропроцессор), а также контроллеры шин, к которым подключаются периферийные устройства. Получил распространение подход, при котором к северному мосту подключаются наиболее производительные периферийные устройства, например, видеокарты с шиной PCI Express 16x, а менее производительные устройства (микросхема BIOS'а, устройства с шиной PCI) подключаются к т. н. «южному мосту» (англ. Southbridge), который соединяется с северным мостом специальной шиной. Набор из «южного» и «северного» мостов называют набором системной логики, но чаще применяется калька с английского языка «чипсет» (англ. chipset).

Таким образом, FSB работает в качестве магистрального канала между процессором и чипсетом.

Каждая из вторичных шин работает на своей частоте (которая может быть как выше, так и ниже частоты FSB ). Иногда частота вторичной шины является производной от частоты FSB , иногда задаётся независимо.

В настоящее время FSB используется все реже. Ее место зянимают новые технологии, например, такие как Intel® » QuickPath Interconnect ( QPI ).

Увеличена пропускная способность по сравнению с предыдущей версией шины в 2 раза.

Проведен ряд оптимизаций для улучшенной передачи сигналов и целостности данных, включая выравнивание передатчика и приемника, усовершенствования системы ФАПЧ (фазовой автоподстройки частоты), восстановление тактовых данных и усовершенствования каналов для поддерживаемых в настоящее время топологий.

PCI Express 3.0 обновляет схему кодирования до 128b / 130b по сравнению с предыдущей кодировкой 8b / 10b, уменьшая накладные расходы на полосу пропускания с 20% от PCI Express 2.0 примерно до 1,54%

Краткое описание и внешний вид всех разъемов

Разъем PCIe x1

Разъем PCIe x1

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Разъем предназначен для подключения разнообразных плат расширения. Обладает наименьшей пропускной способностью среди остальных разъемов.

Разъем PCIe x4

Разъем PCIe x4

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Разъем предназначен для подключения разнообразных плат расширения.

Разъем PCIe x8

Разъем PCIe x8

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Разъем предназначен для подключения разнообразных плат расширения.

Разъем PCIe x16

Разъем PCIe x16

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Разъем предназначен для подключения разнообразных плат расширения, требующих высокую скорость обмена данными. Это видеокарты, контроллеры, сетевые карты.

Разъем PCIe x32

Разъем PCIe x32

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Разъем предназначен для подключения разнообразных плат расширения, требующих высокую скорость обмена данными. Встречается в серверных системах.

Разъем M.2 (NGFF) [B key]

Разъем M.2 (NGFF) [B key]

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Разъем поддерживает несколько шин: PCIe x2 / SATA / USB 2.0 / USB 3.0 / HSIC / SSIC / Audio / UIM / I2C. Применяется в самых разнообразных устройствах, поддерживающих вышеуказанные шины.

Разъем M.2 (NGFF) [M key]

Разъем M.2 (NGFF) [M key]

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Поддерживаемые шины: PCIe x4 / SATA. Данный разъем используется преимущественно в скоростных и компактных твердотельных накопителях (SSD NVMe).

Разъем M.2 (NGFF) [B & M key]

Разъем M.2 (NGFF) [B & M key]

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Гнезда M.2 B&M key не бывает. Бывают только платы расширения с данным разъемом, которые совместимы с гнездами M.2 B key и M.2 M key. Данный разъем применяется, как правило, в твердотельных накопителях с интерфейсом SATA 3, но могут быть и PCIe x2 SSD.

Фнукционал: передача данных + питание | Расположение:

Разъем Mini PCI Express (Mini PCIe, Mini PCI-E, mPCIe, PEM)

Разъем Mini PCI Express (Mini PCIe, Mini PCI-E, mPCIe, PEM)

Фнукционал: передача данных + питание | Расположение: внутренний

Описание: Разъем Mini PCI Express не совместим механически с полноразмерными разъемами PCIe, но полностью совместим электрически. Специальные пассивные адаптеры реализуют эту совместимость. К разъему можно подключить устройства с поддержкой не только шины PCIe, но и USB 2.0.

Разъем SATAe (SATA Express)

Разъем SATAe (SATA Express)

Фнукционал: передача данных | Расположение: внутренний

Описание: SATAe - разъем, поддерживающий как шину SATA 3.0 (2 порта), так и PCIe 2.0, 3.0 (2 линии, 1 порт) и предназначенный для подключения накопителей информации. На момент написания данной статьи (2020 г.) является устаревшим интерфейсом, который был вытеснен M.2.

Все, что вам нужно знать о современных возможностях PCI Express и пропускной способности Thunderbolt и ограничениях при создании вашего следующего ПК.

Настало время продолжить наш сцинтилляционный взгляд на интерфейсы и ограничения на пропускную способность.М ы обратили внимание на PCI Express и Thunderbolt.

Во-первых, PCI Express: что именно это означает, когда у вас есть соединение PCIe 2.0 x8? И имеет ли значение, является ли ваше соединение x8 или x16?

PCI Express and Thunderbolt

PCI Express

Интерфейс PCI Express немного запутан. Соединение PCIe состоит из одной или нескольких полос передачи данных, соединенных последовательно. Каждая полоса состоит из двух пар проводников, одна для приема и одна для передачи. У вас может быть один, четыре, восемь или шестнадцать дорожек в одном слоте PCIe для потребителя - обозначены как x1, x4, x8 или x16. Каждая полоса является независимым соединением между контроллером PCI и картой расширения, а линейная ширина полосы линейно, поэтому восьмиполосное соединение будет иметь вдвое большую пропускную способность четырехполосного соединения. Это помогает избежать узких мест между, скажем, процессором и графической картой. Если вам нужна большая пропускная способность, просто используйте больше дорожек.

Существует несколько разных физических соединений, каждый из которых может функционировать электрически как слот с меньшим количеством полос движения и может также вмещать физически меньшую карту. В физическом слоте PCIe x16 можно разместить карту x1, x4, x8 или x16 и выполнить запуск x16-карты по x16, x8, x4 или x1. Слот PCIe x4 может вмещать карту x1 или x4, но не может соответствовать карте x16. И, наконец, существует несколько различных версий интерфейса PCIe, каждый из которых имеет разные ограничения пропускной способности, а многие современные материнские платы имеют слоты PCIe различного физического размера, а также разные поколения PCIe.

PCI Express and Thunderbolt 1

Начнем с максимальной теоретической пропускной способности. Одна линия PCIe 1.0 (или 1.1) может переносить до 2,5 Гбит / с в секунду (GT / s) в каждом направлении одновременно. Для PCIe 2.0, который увеличивается до 5 Гбит / с, а одна линия PCIe 3.0 может нести 8 Гбит / с.

Гигатрансферы в секунду - это то же самое (в данном случае) как гигабиты в секунду . Все версии PCI Express теряют часть своей теоретической максимальной пропускную способность для физических расходов, связанных с электронными передачами. PCIe 1. * и 2.0 используют кодирование 8b / 10b (например, SATA), результатом чего является то, что каждые 8 ​​бит данных стоят 10 бит для передачи, поэтому они теряют 20 процентов своей теоретической пропускной способности . Это просто затраты на ведение бизнеса.

Максимальная скорость передачи данных на PCI-1.0 составляет восемьдесят процентов от 2,5 Гбит / с. Это дает нам два гигабит в секунду, или 250 Мбайт / с (помните, восемь бит в байт). Интерфейс PCIe является двунаправленным, так что это 250 Мбайт / с в каждом направлении, на дорожку. PCIe 2.0 удваивает пропускную способность на одну полосу до 5 Гбит / с, что дает нам 500 МБ / с фактической передачи данных на полосу.

Интерфейс PCIe 3.0 имеет удвоеную скорость передачи данных по сравнению PCI 2.0.

И так мы знаем, что PCIe 3.0 вдвое превышает скорость PCI 2.0, но, как мы видели выше, теоретическая пропускная способность каждой полосы составляет 8 Гбит / с, что на 60 процентов больше, чем 5GT / s PCIe 2.0. Это потому, что PCIe 3.0 и выше используют более эффективную схему кодирования под названием 128b / 130b , поэтому потребление ресурсов намного меньше - всего 1,54 процента. Это означает, что один слот PCIe 3.0 с пропускной способностью 8 Гбит / с может отправлять 985 МБ / с. Это не совсем вдвое 500 Мбайт / с, но это достаточно близко для маркетинговых целей.

Это означает, что соединение PCIe 3.0 x4 (3,94 ГБ / с) имеет почти такую ​​же пропускную способность, как PCIe 1.1 x16 или PCIe 2.0 x8 (оба 4 ГБ / с).

Современные графические процессоры используют интерфейс x16 PCIe 2.0 или 3.0. Это не значит, что они всегда работают со скоростью x16. На многих материнских платах имеется несколько физических слотов x16, но имеется меньшее количество реальных полос PCIe.

И так ,у нас на примере на рабочем столе Z87 (Haswell) или Z77 (Ivy Bridge) процессор имеет 16 линий PCIe 3.0 . На чипсетах Intel есть еще восемь дорожек PCIe 2.0, но они обычно используются для звуковых карт, RAID-карт и т. Д. (Чипсет AMD 990FX включает в себя 32 полосы PCIe 2.0 и четыре на северном мосту). В приведенной выше плате Asus слоты PCIe 3.0 являются полосами ЦП, в то время как всем остальным приходится делиться восемью чипсетами PCIe 2.0. Использование слота PCIe 2.0 x16 в режиме x4 отключает три слота PCIe 2.0 x1.

PCI Express and Thunderbolt 2

Таким образом, одна видеокарта x16 будет использовать все 16 PCI-дорожек с процессором PCI, но добавление графического процессора во вторую полосу x16 приведет к отключению обоих подключений видеокарт до восьми полос . Добавление третьего графического процессора приведет к отключению подключеной первой карты к x8, а к подключению второй и третьей карт - к x4.

Вот почему многие люди, которые запускают установки с несколькими GPU, предпочитают архитектуры энтузиастов Intel, такие как Sandy Bridge-E и Ivy Bridge-E так как некоторые Процессоры с технологией Ivy Bridge-E имеют возможность до сорока полос в PCIe 3.0 . Этого достаточно, чтобы запустить две карты по x16 и одну на x8, одну карту на x16 и три карты на x8 или одну на x16, две на x8 и еще две на x4.

Это важно для производительности?

Два графических процессора PCIe 3.0, работающие на x8 каждый на материнской плате PCIe 3.0, имеют примерно такую ​​же пропускную способность, что и два графических процессора PCIe 2.0, работающих на x16 - первый набор работает со скоростью 7,88 ГБ / с каждый, а второй второй работает со скоростью 8 ГБ / с. Если ваша материнская плата или видеокарта ограничена подключением PCIe 2.0, вы будете зависать из за более медленного интерфейса.

TechPowerUp продемонстрировал огромный объем производительности PCIe. В то время они тестировали две мощные карты с одним GPU - AMD Radeon HD 7970 и Nvidia GeForce GTX 680 - на x4, x8 и x16 с использованием PCIe 1.1, 2.0 и 3.0, все на одной материнской плате. Это, безусловно, лучший тест, который я когда-либо видел на масштабировании полосы пропускания PCIe. Н а странице сводки производительности собраны относительные результаты с первого взгляда.

Как и следовало ожидать, эквивалентные конфигурации пропускной способности работают примерно одинаково. Цитируем авторов TechPowerUp : «Наше тестирование подтверждает, что современные графические карты отлично работают при меньшей скорости шины, однако производительность ухудшает скорость работы шины. Все вплоть до x16 1.1 и его эквивалентов (x8 2.0, x4 3.0) обеспечивает достаточную игровую производительность даже при использовании новейшего графического оборудования, теряя всего лишь 5% в среднем в худшем случае. [выделено мной] Только на более низких скоростях мы видим резкие потери частоты кадров, что оправдывало бы действие ».

Самая интересная часть этих результатов - это вывод о том, что самые мощные графические карты прошлого года отлично работают на PCIe 2.0 x8 или даже PCIe 3.0 x4. Это означает, что трехсторонний SLI или CrossFireX должен быть жизнеспособным, даже в x8 / x4 / x4, на Ivy Bridge или рабочих столах Haswell . Но даже если у вас нет PCIe 3.0, вы не пропустите большую производительность на x8 на подключении PCIe 2.0.

Двойная пропускная способность PCIe 3.0 x16 по сравнению с PCIe 2.0, похоже, пока не имеет большого значения. Ryan Smith от AnandTech протестировал две Nvidia GeForce GTX Titans - самые быстрые карты с одним GPU в SLI на PCIe 3.0 и 2.0 и в лучшем случае обеспечила улучшение производительност и на 57 % по сравнению с 5760 x 1200.

Так что это хорошая новость для людей со старыми материнскими платами или видеокартами. Если у вас есть хотя бы PCI Express 2.0 x8, вы вряд ли оставите какую-либо надежду на производительность , даже на самых быстрых картах.

Интерфейс Thunderbolt

PCI Express and Thunderbolt 3

Thunderbolt - это интерфейс передачи данных, который может проходить через сигналы PCI Express и DisplayPort в зависимости от того, к чему он подключен. Контроллер Thunderbolt состоит из двух двунаправленных каналов данных, причем каждый канал содержит вход и выходную полосу.

Микросхемы Thunderbolt на каждом конце кабеля используются как в DisplayPort 1.1a, как и в четырехполосной шине PCIe 2.0. Каждый канал независим и может либо переносить DisplayPort, либо PCIe, но не оба. Каждое направление в каждом канале имеет теоретическую максимальную пропускную способность 10 Гбит / с - то же, что и две полосы PCIe 2.0. Как обсуждалось выше, из-за кодирования 8b / 10b то 20 процентов теоретического предела PCI Express 2.0 посвящено служебным нагрузкам сигнала, поэтому максимальная теоретическая пропускная способность одного канала Thunderbolt составляет 1 ГБ / с в каждом направлении.

В Thunderbolt для первого поколения это так же быстро на сколько это возможно, поскольку каждое устройство может получить доступ только к одному из двух каналов, и вы не можете их комбинировать. Передача данных происходит довольно быстро, так как вы можете отправлять видео высокого разрешения на монитор DisplayPort со скоростью 10 Гбит / с по одному каналу, одновременно считывая 1 ГБ / с с SSD RAID .

PCI Express and Thunderbolt 4

Итак, сколько производительности вы можете вытащить из соединения Thunderbolt?

В пример: Gordon Ung at Maximum PC записывает максимальную скорость чтения 931 МБ / с при чтении с RAID 0 четырех SSD SandForce SF-2281 на 240 ГБ в шасси Pegasus R4.

Четырехпотоковый RAID 0 SSD будет довольно быстрым для соединения Thunderbolt первого поколения. Двухдисковый RAID 0 может приближаться к скорости отдельных дисков , хороший SSD с пропускной способностью 6 Гбит / с может достигать 515 Мбайт / с. RAID 0 из двух 6 Гбит / с SSD может легко насытить соединение 10 Гбит / с, доступное в Thunderbolt первого поколения.

Очень короткая заметка о производительности PCIe SSD (по сравнению с Thunderbolt)

Несмотря на ограничения в Thunderbolt первого поколения, он по-прежнему намного лучше внешнего интерфейса для хранения данных, чем USB 3.0.

Жёсткий SSD диск OCZ RevoDrive 3 x2, подключенный к PCIe SSD, может достигать максимума 1,5 ГБ / с в некоторых последовательных тестах чтения на PCIe 2.0 x4-соединении. Этот диск использует контроллер SAS-PCIe, а не контроллер SATA для RAID-карты для подключения PCIe, но, безусловно, это не может объяснить всю разницу в скорости. В конце концов, Thunderbolt - это соединение PCIe 2.0 x4, верно?

Следующая версия Thunderbolt

Следующая версия Thunderbolt, искусно названная Thunderbolt 2, позволит вам объединить оба канала в один, с теоретическим максимумом 20 Гбит / с (2 ГБ / с, после кодирования), позволяя устройствам использовать все четыре полосы PCIe 2.0 в соединении Thunderbolt , Это также увеличивает пропускную способность на стороне дисплея; вы сможете транслировать 4K-видео на этот фантастический монитор 4K, который у вас есть. Пока Thunderbolt 2 доступен только на нескольких материнских платах от Asus

Всем привет! Сегодня разберем тему — частота шины процессора: что это за параметр и на что он влияет. А также для чего нужна шина и как она работает.


Центральный процессор — самый резвый компонент компьютера. Скорость его работы измеряется уже в гигагерцах, то есть миллионах вычислительных операций в секунду. Прочие компоненты уже подстраиваются под CPU, фактически обеспечивая его эффективную эксплуатацию.

Со всеми компонентами ЦП связан с помощью последовательной шины на системной плате типа DMI (Direct Media Interface). Называется она FSB — сокращенно от Front Side Bus.

Скорость ее работы приличная и может достигать до 8 Gt s, то есть миллионов микротранзакций в секунду, но у топовых моделей. У массовых системных плат такой параметр обычно ниже.

Не буду слишком углубляться в дебри и расписывать в целом, как работает каждый из компонентов компьютера — акцентируем внимание именно на шине. Единственная ее задача — транспортировать данные, которые обрабатывает CPU, к прочим деталям ПК.

А насколько быстро это будет происходить, и определяется ее базовой частотой. Обычно FSB оборудована контроллером, с помощью которого можно снизить или поднять ее частоту.

Как я уже говорил, частота процессора выше в несколько раз частоты FSB. Такая особенность обусловлена тем, что нет необходимости отправлять все данные прочим компонентам — многие цифры «перевариваются» внутри ЦП, пока не получится итоговый результат, который уже можно переслать в дальнейшую обработку.

Кратность, на которую герцовка ЦП превышает частоту шины, называется множителем. Фактически, можно поднять производительность системы в целом, если поднять герцовку шины FSB, что успешно практикуется многими оверклокерами.

Однако и тут есть некоторые ограничения — сам CPU должен поддерживать такую «фичу». О возможности его разгона свидетельствует буква K в маркировке. Настраивается все это через BIOS или UEFI.

И в завершение хочу отметить, что разогнать в несколько раз ни шину, ни сам «камень» не получится. Максимум, что удается выжать в большинстве случаев — прирост производительности до 30% от номинальной мощности. С другой стороны, это тоже неплохо — почти на треть.

Подписывайтесь на меня в социальных сетях, чтобы не пропустить уведомления о новых публикациях. До скорой встречи!

Читайте также: