Ибп ва и вт разница

Обновлено: 07.07.2024

Ватты и вольт-амперы — извечная путаница

В настоящей статье разъясняются отличия между ваттами и вольт-амперами, а также приводятся примеры правильного и неправильного использования терминов в отношении оборудования защиты по электропитанию. При оценке нагрузки на ИБП множество людей не понимают разницы между такими единицами измерения, как ватты и вольт-амперы (V-A). Многие производители ИБП и электрооборудования еще более усиливают данную путаницу, должным образом не разграничивая данные параметры.

Предпосылки

Мощность, потребляемая вычислительным оборудованием, выражается в ваттах или вольт-амперах (VA). Мощность, выраженная в ваттах, представляет собой активную мощность, потребляемую оборудованием. Вольт-амперы называют “кажущейся мощностью” – она являются результатом умножения напряжения, подаваемого на оборудование, на силу тока, потребляемую оборудованием.

Используются обе характеристики – и ватты, и вольт-амперы, но в различных целях. Характеристика в ваттах определяет активную мощность, приобретаемую у коммунального предприятия, и тепловую нагрузку, генерируемую оборудованием. Характеристика в вольт-амперах используется для расчета проводки и размыкателей цепи.

Характеристики в вольт-амперах и ваттах для некоторых типов электрической нагрузки (например, для ламп накаливания) идентичны. Однако для компьютерного оборудования характеристики в ваттах и вольт-амперах могут значительно отличаться, при этом характеристика в вольт-амперах всегда будет больше или равна характеристике в ваттах. Отношение ватт к вольт-амперам называется “коэффициентом мощности” и выражается либо в виде числа (т.е. 0,7), либо в виде процентов (т.е. 70%).

Характеристика мощности компьютера в ваттах может отличаться от характеристики в вольт-амперах

Все оборудование информационных технологий, включая компьютеры, использует импульсные источники питания. Существует два основных типа импульсных источников питания для компьютеров: 1) источники питания с коррекцией коэффициента мощности и 2) источники с конденсатором на входе. При визуальном осмотре оборудования невозможно определить используемый источник питания, и данная информация обычно не указывается в спецификациях к оборудованию. Источники питания с коррекцией коэффициента мощности (PFC) поступили на рынок в середине 1990-х годов; их отличительная особенность – равенство номиналов в ваттах и вольт-амперах (коэффициент мощности от 0,99 до 1,0). В источниках с конденсатором на входе номинал в ваттах составляет от 0,55 до 0,75 вольтамперной характеристики (коэффициент мощности от 0,55 до 0,75).

Все крупное компьютерное оборудование (такое как маршрутизаторы, коммутаторы, дисковые массивы и серверы), произведенное после 1996 года, используют источник питания с коррекцией коэффициента мощности. Следовательно, для данного типа оборудования коэффициент мощности составляет 1.

Персональные компьютеры, небольшие концентраторы и аксессуары для ПК обычно используют источники питания с конденсатором на входе, поэтому для данного типа оборудования коэффициент мощности меньше единицы и обычно примерно равен 0,65. В крупном компьютерном оборудовании, произведенном до 1996 года, также обычно используется данный тип источников электропитания с коэффициентом мощности меньше единицы.

Номинальная мощность ИБП

ИБП имеют максимальные характеристики и в ваттах, и в вольт-амперах. Недопустимо превышение ни тех, ни других параметров.

Для небольших ИБП фактическим отраслевым стандартом является номинал в ваттах, составляющий приблизительно 60% от вольтамперной характеристики, это обычный коэффициент мощности большинства ПК. В некоторых случаях производители указывают только вольтамперную характеристику ИБП. Для небольших ИБП, рассчитанных на компьютерные нагрузки, для которых определен лишь вольтамперный показатель, можно использовать допущение, что номинальная мощность ИБП в ваттах составляет 60% от указанной фиксируемой мощности в вольт-амперах.

В более крупных ИБП в последнее время основное внимание уделяется мощности ИБП в ваттах, при этом номиналы ИБП в ваттах и вольт-амперах обычно равны, поскольку для обычных нагрузок эти характеристики идентичны. Более подробную информацию по вопросам коэффициента мощности крупногабаритных систем и вычислительных центров см. в Информационной статье APC 26 Опасности, связанные с гармоническими колебаниями и перегрузками нейтрали.

Примеры возникновения проблем при расчетах

Пример № 1: Рассмотрим типичный ИБП 1000 ВА. Пользователю требуется подать питание на 900-ваттный нагреватель с использованием ИБП. Мощность нагревателя составляет 900 Вт, а вольтамперная характеристика равна 900 ВА при коэффициенте мощности, равном 1. Хотя вольтамперная характеристика нагрузки составляет 900 ВА, то есть находится в пределах вольтамперной характеристики ИБП, последний, вероятно, не справится с задачей. Причина в том, что мощность устройства, равная 900 Вт, превышает мощность ИБП, которая, вероятнее всего, составляет 60% от 1000 ВА, т.е. примерно 600 Вт.

Пример № 2: Рассмотрим ИБП 1000 ВА. Пользователю требуется подать питание на 900-ваттный файловый сервер с использованием ИБП. Файловый сервер оснащен источником питания с коррекцией коэффициента мощности, поэтому его характеристики следующие: 900 Вт и 900 ВА. Хотя вольтамперная характеристика нагрузки составляет 900 ВА, то есть находится в пределах вольтамперной характеристики ИБП, последний не справится с задачей. Причина в том, что мощность устройства, равная 900 Вт, превышает мощность ИБП, которая составляет 60% от 1000 ВА, т.е. примерно 600 Вт.

Как избежать ошибок при расчетах

На паспортной табличке оборудования номинал зачастую указан в ВА, что затрудняет вычисление номинала в ваттах. Если для расчетов используются характеристики, указанные в паспортной табличке, пользователь может подобрать систему, на первый взгляд соответствующую характеристике ВА, но в действительности она будет превышать мощность ИБП в ваттах.

Если вольтамперная характеристика нагрузки не будет превышать 60% вольтамперной характеристики ИБП, это гарантирует отсутствие превышения номинала ИБП в ваттах. Поэтому, если нет точных данных о мощности нагрузки в ваттах, безопаснее всего придерживаться следующего правила: совокупные характеристики нагрузки на паспортной табличке должны быть менее 60% от вольтамперной характеристики ИБП.

Заключение

Указание мощности, потребляемой компьютерами, зачастую не позволяет легко подобрать мощность ИБП. Можно подобрать системы, характеристики которых будут на первый взгляд правильными, но, тем не менее, они будут приводить к перегрузке ИБП. Чтобы обеспечить бесперебойную работу системы, следует слегка завысить номинал ИБП по сравнению с характеристиками оборудования, указанными на паспортной табличке. Запас мощности также обеспечивает дополнительное преимущество, заключающееся в увеличении автономного времени работы ИБП.

Обратитесь к сотрудникам Ruba Technology для более подробной консультации в вопросах мощности устройств и источниках бесперебойного питания. Наши специалисты помогут выбрать и купить ИБП, полностью соответствующее требованиям и характеристикам технической среды того или иного оборудования.

Satec

Satec

Ватты и вольт-амперы - в чем отличие?

Часто при подборе необходимой мощности различных силовых приборов мы сталкиваемся с заявлением, что ВА (вольт-амперы) это совсем не Вт (ватты). Это, естественно, вызывает недоумение, - ведь мощность, - это напряжение, умноженное на ток (P=U*I).

Так почему же все-таки ВА не равен Вт?

Базовые определения:

В сети переменного тока на полезную работу затрачивается не вся, а только часть мощности (это активная мощность в Ваттах):

  • Полная - общая комплексная суммарная мощность - ВА.
  • Активная (полезная) мощность - Ватт.

Это соотношение определяется коэффициентом мощности, - соотношение между общей комплексной суммарной мощностью (ВА) и активной (полезной) мощностью (Ватт).

Для абсолютного большинства устройств этот коэффициент равен 0.6 или 0.7. Этот коэффициент отношение ватт к вольт-амперам называется "коэффициентом мощности".

Таким образом, умножив значение общей комплексной суммарной мощности (ВА) на 0.6 (или 0,7) мы определим значение активной (полезной) мощностью (Ватт)

Напрмер, если общая комплексная суммарная мощность стабилизатора 500 ВА, то его активная (полезная) мощность 500*0,6 = 300 Вт. Т.е. к этому стабилизатору можно подключить нагрузку до 300 Вт.

Выводы и важые замечания:

При выборе блока питания, стабилизатора и проч. следует помнить, что:

  • ВА - это полная потребляемая мощность,
  • Вт - это активная (затраченная на совершение полезной работы) мощность.

Полная - общая комплексная суммарная потребляемая мощность (ВА), - это сумма реактивной и активной мощностей. Зачастую разные потребители имеют разное соотношение полной и активной мощности. Поэтому для определения суммарной мощности всех потребителей необходимо сложение полных мощностей оборудования, а не активных мощностей.

1. Общая комплексная суммарная мощность - ВА всегда больше, чем активная (полезная) мощность - Ватт.

2. Величина коэффициента мощности сильно зависит от конструкции и электрической схемы прибора. Например, для импульсных источников питания. Есть два основных типа импульсных источников питания:

  • Импульсные источники питания с коррекцией коэффициента мощности (PFC).
  • Импульсные источники питания с конденсатором на входе.

У импульсные источников питания с коррекцией коэффициента мощности (PFC) значения общей комплексной суммарной мощности (ВА) и активной (полезной) мощности (Ватт) почти равны, - их коэффициент мощности составляет от 0,99 до 1,0.

А в импульсных источниках питания с конденсатором на входе значение в ваттах (активная, полезная мощность), - составляет от 0,6 до 0,75 вольтамперной характеристики (т.е. коэффициент мощности составляет от 0,6 до 0,75).

Номинальная мощность импульсных блоков питания

Важное замечание: для импульсных блоков питания указваются предельные значения в ваттах и в вольт-амперах. При этом недопустимо превышение ни тех, ни других значений.

Для небольших импульсных блоков питания, как правило, указывается активная (полезная) мощность в ваттах, которая составляющий примерно 60% от общая комплексная суммарная мощность (т.е. вольтамперной характеристики). Но иногда производители указывают только вольтамперную характеристику. В этом случае, при рассчете нагрузки, следует принять допущение, что номинальная мощность в ваттах составляет 60% от указанной мощности в вольт-амперах.

Таким образом, если вольтамперная характеристика нагрузки не будет превышать 60% вольтамперной характеристики блока питания, то это гарантирует отсутствие превышения мощности нагрузки в ваттах.

Т.е. если нет точных данных о мощности нагрузки в ваттах, то следует придерживаться правила: величина реальной активной нагрузки должна быть менее 60% вольтамперной характеристики блока питания.

Очевидно, что такой подход к расчетам обычно приводит к завышению мощности.

Косинус "фи" (cos(Fi))

Чаще всего мощность определяется в Ваттах. Еще эту мощность часто называют активной, - это мощность, выделяющаяся на чисто резистивной нагрузке (нагреватели, лампочки и т.д.). При этом активная мощность целиком растрачивается на полезную работу (нагрев, механическое движение), и обычно именно ее понимают под потребляемой мощностью.

Если это активная нагрузка, - чайник, лампа накаливания, нагреватель. то другой информации об этой нагрузке и не требуется. В этом случае, как правило, указывают только номинальную мощность в Вт и номинальное напряжение. В данном случае не имеет значения косинус "Fi" (угол между током и напряжением данной нагрузки), так как он равен нулю. А косинус нуля равен 1. И вэтом случае, активная мощность ("P") равна произведению тока нагрузки и напряжения нагрузки, умноженных на этот cos(Fi).
Т.е. P = I*U*cos(Fi) = I*U*1 = I*U.

Простой пример для ТЭНа с cos(Fi)=1:
Полная - общая комплексная суммарная мощность S=10 кВА cos(Fi)=1.
Активная (полезная) мощность P=10*1=10 кВт.

У нагрузок, имеющих не только активное сопротивление, но и реактивное (индуктивность, емкость), как правило указывают величину мощности "P" в Ваттах, а так же указывать величину косинуса "фи" (cos(Fi)). При этом величина косинуса "фи" определяется соотношением активных и реактивных сопротивлений.

Например, если у электродвигателя указаны значения: P=5кВт, Сos(fi)=0.8, то это значит, что данный двигатель при работе (в номинальном режиме) потребляет полную мощность (сумму активной и реактивной мощностей):

  • Активную мощность "S" равную P/Cos(fi) = 5/0,8 = 6,25 кВа
  • и Реактивную мощность «Q» величиной U*I/Sin(fi).
  • А для определения номинального тока двигателя, нужно его мощность "S" разделить на рабочее напряжение (220)
    (прим.: ток указывается, как правило, на шильдике).

Так почему на генераторах (трансформаторах, стабилизаторах напряжения)
указывается мощность в ВА (вольт-амперах)?

Допустим, что на стабилизаторе напряжения указана мощность 10000 ВА.

Если подключить к нему нагреватели, то мощность, отдаваемая трансформатором в нагреватели (в номинальном режиме работы трансформатора) не может превышать 10000 Вт. Вроде все сходится.

А если нагрузить стабилизатор напряжения катушкой индуктивности или электродвигателем с Сos(fi)=0.8? То данный стабилизатор при Сos(fi)=0.85 уже будет отдавать мощность не более 8500 Вт.

Т.е. мощность генераторов (трансформаторов и стабилизаторов напряжения) может определяться только в полной мощности (в нашем случае 1000 кВА).

Коэффициент мощности, косинус "фи" Сos(fi)

Это отношение средней мощности переменного тока к произведению действующих значений напряжения и тока. Наибольшее значение коэффициента мощности равно 1.

В случае синусоидального переменного тока, коэффициент мощности равен косинусу угла сдвига фаз между синусоидами напряжения и тока и определяется параметрами цепи:

Сos(fi) = r/Z
где:
fi («фи») - угол сдвига фаз,
r - активное сопротивление цепи,
Z - полное сопротивление цепи.

Коэффициент мощности может отличаться от 1 и в цепях с чисто активными сопротивлениями, если в них содержатся нелинейные участки. В этом случае коэффициент мощности уменьшается вследствие искажения формы кривых напряжения и тока.

Коэффициент мощности электрической цепи - это косинус фазового угла между основаниями кривых напряжения и тока.

Согласно другому определению, коэффициент мощности — это соотношение активной и полной энергий. Коэффициент мощности (Сos φ = Активная мощность/Полная мощность = P/S (Вт/ВА), потребляемых нагрузкой.

Коэффициент мощности - комплексный показатель, характеризующий линейные и нелинейные искажения, вносимые нагрузкой в электросеть.

Типовые значения коэффициента мощности:

1.00 - идеальное значение;
0.95 - хороший показатель;
0.90 - удовлетворительный показатель;
0.80 - средний показатель современных электродвигателей;
0.70 - низкий показатель;
0.60 - плохой показатель.

Как выбрать источник бесперебойного питания

Сколь бы надежен не был ваш поставщик электропитания, броски напряжения иногда случаются на любых линиях. Каждый пользователь ПК хоть раз, да сталкивался с внезапной перезагрузкой или отключением компьютера из-за неполадок на питающей линии. И компьютеры – не единственный вид техники, требующий бесперебойного электропитания.

Продолжительное отключение электропитания может привести к заморозке системы отопления частного дома. ИБП с подключаемыми аккумуляторами способен «продержать на плаву» циркуляционный насос и электронику котла в течение нескольких часов, и стоить такой ИБП будет намного дешевле, чем генератор с автозапуском.


Роутер, подключенный к ИБП, позволит оставаться «онлайн» и при отсутствии электропитания. Потребляет роутер совсем немного и емкости аккумулятора даже недорогого «бесперебойника» хватит на пару-тройку часов его работы.

Серверам и внешним дисковым накопителям бесперебойное питание совершенно необходимо – внезапное отключение электричества может привести к потере данных.


И вообще, наличия ИБП требует любая автоматика, сбой в работе которой может привести к серьезным последствиям – медицинское и технологическое оборудование, системы пожарной и охранной сигнализации и т.д. Но параметры электропитания у разных видов техники разные, поэтому и ИБП для них потребуется с различными характеристиками.

Характеристики источников бесперебойного питания.

Вид устройства.

Резервный ИБП имеет наиболее простую конструкцию. Электроника источника следит за уровнем входного напряжения, и, при его выходе за установленные рамки (обычно +10% от номинала), переключается на питание от аккумулятора.


Конструкция проста и надежна, но в некоторых ситуациях от такого ИБП будет больше вреда, чем пользы. Например, если он имеет минимальное входное напряжение 180 В и используется для защиты компьютера с блоком питания, работающим от 110 до 240 В. Без ИБП компьютер бы спокойно работал, а ИБП при падении напряжения ниже входного (180 В) перейдет на аккумулятор и после его разряда выключит питание компьютера. Поэтому для этого вида ИБП следует обеспечить соответствие минимального и максимального напряжений «бесперебойника» и потребителя – лучше всего, если диапазон напряжений ИБП будет незначительно (5-10В) уже диапазона напряжений электроприбора. Например, для диапазона рабочих напряжений потребителя 180-240 В, диапазон ИБП должен быть примерно 190-230 - это позволит перейти на питание от аккумулятора до того, как напряжение станет неприемлемым для защищаемого прибора.


Кроме того, переключение на аккумулятор занимает некоторое время, что может быть критичным для некоторых видов техники. Например, для импульсных блоков питания с активным корректором мощности (APFC), которым оснащено большинство таких БП мощностью более 400 Вт. При подборе ИБП для компьютеров, специальной аппаратуры, аудио- и видеотехники с подобными блоками питания следует оставлять большой запас по мощности, либо выбирать ИБП другого вида.

Линейно-интерактивный ИБП, фактически, состоит из резервного ИБП и стабилизатора. При наличии в сети пониженного или повышенного напряжения, автоматический регулятор напряжения (AVR) стабилизирует его, а на аккумулятор ИБП переключается только при настолько большом отклонении напряжения от нормального, что стабилизировать его уже невозможно.


Линейно-интерактивные ИБП немного дороже резервных, но для бытового применения именно этот вид является оптимальным. Единственный случай, когда ему следует предпочесть резервный – когда в вашей сети стабильно пониженное напряжение, подходящее, однако, для защищаемого электроприбора. Резервный ИБП просто пропустит это напряжение в компьютер, а линейно-интерактивный будет его повышать до нормального. Но продолжительная работа в таком режиме может сильно сократить ресурс AVR (особенно на недорогих «бесперебойниках»).


Недостаток, связанный с кратковременным отсутствием питания во время переключения на аккумулятор у линейно-интерактивных ИБП также присутствует.


Такие ИБП стоят заметно дороже остальных видов, зато выдают стабильную частоту, напряжение и форму синусоиды при любых помехах на входной линии питания.


Выходная мощность (ВА) стабилизатора определяет максимальную суммарную полную мощность подключенных к нему электроприборов. Однако следует иметь в виду, что приведенное в паспорте на электроприбор значение в Ваттах – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Многие подключаемые к ИБП электроприборы создают вдобавок к активной еще и реактивную нагрузку, и полная выходная мощность ИБП должна подбираться с её учётом. Для определения полной мощности электроприбора следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте. Если найти это значение не удается, можно воспользоваться таблицей:


Поскольку чаще всего ИБП используется для защиты ПК, часто возникает вопрос: какую мощность имеет компьютер? Самый точный способ определения мощности – расчет на основе замера потребляемого им тока. Проще и безопаснее всего это сделать с помощью токовых клещей и самодельного удлинителя с раздельными проводниками.


Измерение тока с помощью мультиметра связано с опасностью поражения электрическим током и делать это, не обладая соответствующими навыками, небезопасно.

Измерение следует производить, дав на процессор и видеокарту максимальную нагрузку – это можно сделать с помощью требовательной к ресурсам игры или с помощью специальных программ (например, OCCT в режиме power supply). Измеренное значение умножается на величину напряжения в сети – это и будет искомая полная мощность (ВА) компьютера.

Простой, но грубый способ – взять максимальную мощность блока питания (в Ваттах), обычно приведенную на корпусе БП и поделить на коэффициент мощности. Реальная мощность компьютера, скорее всего, будет ниже, но уж точно не выше.


К примеру, для защиты компьютера с блоком питания без PFC мощностью 300 Вт и монитором мощностью 50 Вт потребуется ИБП с входной мощностью (ВА) 300/0,65+50/0,8 = 524 ВА. Поскольку реальная мощность системного блока, скорее всего, ниже 300 Вт, ИБП на 500 ВА могло бы и хватить для этого компьютера. Однако с учетом того, что пусковые токи (неизбежные при переключении на аккумулятор) могут превышать номинальные вдвое, выбор ИБП на 750 или 1000 ВА представляется более оправданным.


Следует также отметить, что недорогие ИБП часто характеризуются слабой перегрузочной способностью и не могут выдерживать высокие токи даже очень непродолжительное время (менее 100 мс). Поэтому при покупке недорогого ИБП необходимо следить, чтобы пиковая мощность нагрузки не превышала выходную мощность «бесперебойника».

Если определение полной выходной мощности (ВА) представляется слишком сложным, можно подобрать ИБП по активной выходной мощности (Вт) – обычно этот параметр тоже приводится в паспорте ИБП.

Однако большинство производителей при указании активной выходной мощности ориентируются на cos(φ) = 0,6-0,7, подходящий только при использовании ИБП для защиты компьютеров с блоками питания без PFC.

Коэффициент мощности многой другой техники выше, и, подбирая ИБП по активной мощности в ваттах, вы рискуете переплатить, выбрав ИБП более мощный, чем вам действительно необходимо.

Тип формы напряжения может быть важен для некоторых видов техники. В электродвигателях, трансформаторах, катушках индуктивности «ступенчатая» форма питающего тока приводит к дополнительным нагрузкам – это может проявляться изменением звука работы, увеличенным нагревом обмоток и ускоренным износом. Проблемы могут возникнуть с некоторыми моделями аудио- и видеотехники, измерительными приборами и медицинской техникой.


Импульсные блоки питания к форме напряжения невосприимчивы – ступенчатая аппроксимация синусоиды подходит для любых компьютеров. Проблемы, возникающие на современных блоках питания с активным корректором мощности (APFC) чаще всего связаны не с формой сигнала, а с недостатком запаса по мощности и низкой перегрузочной способностью ИБП. При переключении на аккумулятор и падении входного напряжения, APFC резко увеличивает потребляемый ток, при этом нарастание потребления происходит так быстро, что ИБП часто отключается защитным автоматом (токовым реле), при том, что контроллер даже не успевает «заметить» перегрузку.


Однако, некоторые блоки питания с APFC плохо работают при ступенчатой синусоиде – корректор успевает среагировать на горизонтальную «ступеньку» как на пониженное напряжение, увеличивает ток потребления и перегружает ИБП, приводя к срабатыванию его защиты и отключению. И, хотя многие БП с APFC прекрасно «уживаются» со ступенчатой синусоидой, чтобы не оказаться в ситуации, когда ПК откажется работать с «бесперебойником», следует либо убедиться в их совместимости перед покупкой, либо выбирать ИБП подороже: с «чистой» синусоидой и запасом по мощности, либо ориентироваться на устройство с двойным преобразованием. В последнем случае чрезмерный запас по мощности не нужен, а синусоида у таких устройств и так «чистая».

Тип выходных разъемов питания на современных ИБП может быть различным. Старые ИБП все имели выходные разъемы стандарта IEC 320 C13 («компьютерные») для подключения питающих кабелей системного блока и монитора.


Но роутеры, внешние жесткие диски и многие современные мониторы для подключения к сети используют обычную «евро» вилку. Поэтому сегодня уместнее выбирать ИБП с выходными разъемами типа CEE 7/* - «евророзетками». Обратите внимание, чтобы количество розеток соответствовало количеству потребителей.


Некоторые специализированные ИБП, предназначенные для создания линий бесперебойного электропитания, оснащаются клеммами для удобства прямого подключения линейных проводов.

Удобно, если ИБП имеет какой-нибудь интерфейс, по которому он может «сообщить» работающему на ПК приложению о пропадании напряжения. Это позволит сохранить все открытые документы, записать на диск данные из буфера и корректно завершить работу компьютера в автоматическом режиме, даже если оператора поблизости нет. Особенно это важно для серверов: сбой сервера – вещь неприятная, но она может стать еще неприятнее, если «испортятся» хранящиеся на нём данные из-за некорректного завершения работы. ИБП с интерфейсом USB или RS-232 подключается интерфейсным кабелем непосредственно к защищаемому компьютеру, на котором должно быть запущено соответствующее ПО.


Функция «холодного старта» позволяет осуществить запуск подключенных к ИБП электроприборов при отсутствии питающего напряжения. Холодный старт позволяет использовать ИБП как автономный источник питания для маломощной нагрузки.

Время автономной работы зависит от емкости установленных аккумуляторов и суммарной мощности подключенных потребителей. Производителем обычно указывается продолжительность автономной работы при определенной мощности нагрузки. Но зачастую мощность нагрузки сильно отличается от приведенной производителем. В этом случае следует иметь в виду, что емкость аккумулятора сильно зависит от тока разряда. При быстрой разрядке (5-10 минут) аккумулятор выдает всего 20-30% от номинальной емкости.


Так, если производителем приводится время автономной нагрузки в 5 минут при нагрузке 200 Вт, то при вдесятеро меньшей нагрузке (20 Вт) время автономной работы будет не 50 минут, а около двух часов, потому что емкость при разряде такой продолжительности будет примерно вдвое больше. Максимальная (100%) емкость аккумуляторной батареи достигается при продолжительности разряда в 20 часов и более, это следует учитывать, если предполагается длительная работа оборудования от ИБП.

«Бесперебойники», рассчитанные на продолжительную автономную работу, часто имеют возможность подключения дополнительных батарей. Это позволяет набрать емкость, необходимую для поддержания работы потребителей в течение необходимого времени.

Имейте в виду, что аккумуляторная батарея имеет ограниченный ресурс и через некоторое время (0,5-5 лет в зависимости от качества батареи и частоты циклов заряда/разряда) она потребует замены. В этом случае возможность замены батарей будет совсем нелишней. Оборудование, которое должно работать непрерывно, следует защищать с помощью ИБП с возможностью горячей замены батарей - т.е., без отключения ИБП от сети.

Варианты выбора источников бесперебойного питания.

Для защиты от кратковременных падений напряжения маломощных потребителей (роутеров, модемов, точек доступа) предназначены ИБП с «евророзетками» мощностью до 400 ВА.


ИБП мощностью 500-1000 ВА сможет «поддержать на плаву» простой офисный компьютер в течение времени, достаточного для сохранения всех открытых документов.

ИБП с «холодным стартом» способен обеспечить автономное питание электроприборов в условиях полного отсутствия питающей сети.


Если вам важно стабильное электропитание на выходе «бесперебойника» по минимальной цене, выбирайте среди линейно-интерактивных ИБП.

ИБП с двойным преобразованием гарантируют высокое качество питающего напряжения и обеспечивают полное отсутствие переходных процессов при пропадании внешнего питания.

image

Источник бесперебойного питания важный элемент при построении сложных систем, где нужна гарантия безопасности от непредвиденных перебоев в энергоснабжении и других проблем в электросети. Под катом расскажем о том, какие критерии необходимо учесть при выборе ИБП.

Сейчас рынок забит множеством устройства отличающихся, как ценником, так и качеством. Разобраться во всем этом многообразии невероятно сложно. Если же бюджет ограничен, то нужно подходить к выбору максимально ответственно. Поэтому для начала стоит ответить себе на несколько вопросов:

— Насколько ответственное оборудование вы собираетесь защищать?

— Какое время автономной работы оборудования в случае пропадания напряжения будет оптимальным?

Дабы ответить на поставленные вопросы стоит разобраться с тем какие классы ИБП сейчас существуют, и определиться с основными критериями, которые нужно учитывать при выборе ИБП.

Классы ИБП

Классы, представленных на рынке ИБП, отличаются друг от друга поведением в разных режимах работы и схематикой. Выделяют:

— Резервные или off-line ИБП (BackUp),
— Линейно-интерактивные ИБП (Line-interactive),
— ИБП с двойным преобразованием (on-line, double-conversion).

Off-Line ИБП считаются наиболее простыми и неприхотливыми. В нормальном режиме работы от сети электричество поступает на вход такого “бесперебойника, а после транзитом подается на основную нагрузку. При возникновении неполадок сети (перепадов и потерь напряжения) ИБП автоматически переходит на работу от аккумулятора.

Недостатки такой схемы работы — это длительное переключение питания на аккумуляторы (от 4 до 10 миллисекунд). Кроме того при работе ИБП от аккумулятора на оборудование подается не привычный для сети синус, а аппроксимированный синус.

image

Следующий класс источников бесперебойного питания Line-interactive не имеет кардинальных отличий от схемы Off-line. В случае аварии питание также переключается на аккумулятора, а затрачивается на это аналогичные (от 4 до 10 миллисекунд). На выходе также получается аппроксимированный синус.

Однако в ИБП этого класса на входе присутствует трансформатор, благодаря которому удается компенсировать те самые перепады напряжения. Стоит подчеркнуть, что ИБП класса Off-line и Line-interactive не предназначены для подключения ответственного оборудования.

image

При подключении ответственного оборудования рекомендуется использовать ИБП с двойным преобразованием (double conversion) или On-line ИБП. Работа таких источников бесперебойного питания устроена так, что входящее напряжение выправляется благодаря выпрямителю. После этого инвертор преобразует постоянное напряжение в переменное. При такой схеме аккумуляторы подключены к выходу выпрямителя и входу инвертора, что обеспечивает мгновенный переход (0 миллисекунд) к работе от аккумулятора.

image

Мощность

Мощность применительно к источникам бесперебойного питания можно разделить на:

— Полную мощность — это это сумма активной и реактивной мощностей, а также отклонение от формы тока и напряжения от синусоидальной.

— Активную мощность — это та энергия, которую нагрузка отбирает от источника энергии для дальнейшего преобразования другую полезную энергию.

Чтобы определить мощность ИБП, нужно знать коэффициент мощности подключаемого оборудования. Иными словами, отношение активной мощности к полной

Для расчета мощности ИБП, которая будет необходима для обеспечения нагрузки, нужно учесть сумму номинального потребления оборудования и нагрузку при запуске оборудования. При эт не стоит забывать о запасе мощности в 25%, то есть Мощность ИБП должна быть на 25% выше мощности оборудования.

image

Коэффициент полезного действия ИБП

Определиться с КПД источника бесперебойного питания очень важно, поскольку это главный показатель эффективности его использования. Неэффективная работа ИБП приводит к необоснованным затратам.

image

Помимо этого КПД определяет какое количество тепла в окружающую среду выделяет ИБП. Этот показатель важен при проектировании серверной. Например, если будет установлен ИБП небольшой мощности, то он не будет выделять много тепла. Напротив, при большой мощности “бесперебойника” в несколько десятков киловатт, тепловыделение будет большим. Чтобы избежать перегрева оборудования придется каким-то образом удалять тепло из помещения, а это дополнительные траты на мощные кондиционеры. Итог таков: чем больше коэффициент полезного действия ИБП, тем меньше будет выделяться тепло.

В качестве примера представим несколько вариантов эффективного и неэффективного использования ИБП:

— В первом случае, к ИБП мощностью 800 Ватт подключили оборудование мощностью 50 Ватт. На самообеспечение ИБП использует около 70 Ватт. Рассчитываем КПД по формуле и получаем 42%.

— Во втором случае, при нагрузке же в 600 Вт, коэффициент полезного действия ИБП будет значительно выше — 89%. Этот вариант более предпочтителен и эффективен.

image

Время автономной работы

Время автономной работы ИБП — это время, которое источник бесперебойного питания сможет поддерживать работу оборудования в случае аварийной ситуации в электросети. Время автономной работы в больше степени зависит от состояния аккумуляторов и потребляемой нагрузки.

Когда при проблемах в сети важно лишь корректно завершить работу оборудования в течение короткого промежутка времени, то свой выбор можно остановить на ИБП со встроенными аккумуляторами.

Если есть потребность в гораздо большем времени работы оборудования, то стоит рассчитать необходимый ток разряда батарей. Для расчета этого показателя есть специальная формула:

image

Для тех у кого нет времени или желания возиться с расчетами и учитывать множество технических, так и чисто физических нюансов, на сайте нашего магазина есть удобный инструмент — Калькулятор ИБП, при помощи которого можно определить все необходимые параметры.

Читайте также: