Индикатор уровня звукового сигнала на транзисторах схема

Обновлено: 04.07.2024

Не смену стрелочным индикаторам уровня сигнала все чаще приходят световые. Их можно встретить в современных высококачественных радиоприемниках, магнитофонах, звуковоспроизводящих устройствах.
Несложный световой индикатор можно собрать на нескольких светодиодах н транзисторах. По сравнению со стрелочным такой индикатор будет обладать большим входным сопротивлением и высокой чувствительностью, что позволит подключать его непосредственно к детектору радиоприемника или высокоомной нагрузке источника сигнала звуковой частоты.

Схема светодиодного индикатора приведена на 4-й с. вкладки (рис. 3). Он состоит из усилителя на транзисторах VT1, VT2 и «световой» шкалы, образованной семью рядом расположенными светодиодами (HL1 — HL7).
Пока нет входного сигнала, полевой транзистор VTt почти закрыт — это состояние определяется напряжением на истоке транзистора, которое, в свою очередь, устанавливают подстроенным резистором R4. В цепи стока протекает незначительный ток, и падения напряжения на резисторе R2 недостаточно для открывания транзистора VT2. Сеетодиоды погашены.
При подаче на затвор полевого транзистора положительного (по отношению к истоку) напряжения этот транзистор открывается тем сильнее, чем больше напряжение. Соответственно изменяется тон стока, а значит, падение напряжения на резисторе R2.
Аналогичное явление наблюдается и в каскаде на транзисторе VT2: чем больше падение напряжения на резисторе R2, тем сильнее открывается транзистор, тем больший ток протекает в его коллекторной цепи. По мере увеличения этого ток* поочередно зажигаются светодиоды HL1 — HL7, начиная с самого нижнего по схеме. Вот как это происходит.
В момент появления коллекторного тока транзистора VT2 он практически полностью протекает через резистор R12 и саетодиод HL7, создавая падение напряжения на этом участке (в точке А относительно общего провода)* При определенном токе саетодиод вспыхивает, напряжение на нем становится равным 1,8. 1,9 В и при дальнейшем росте тока не изменяется. Иначе говоря, светодиод становится стабилитроном.
Но зато с ростом токе будет увеличиваться напряжение в точке А. Как только оно достигнет суммы падений напряжений на «работающем» светодиоде и открытом диоде VD6 (0,7 В), т. о. примерно 2,5. 2,6 В, вспыхнет светодиод HL6.
Следующий светодиод (HL5) загорится при дальнейшем увеличении коллекторного тока транзистора VT2, когда напряжение на аноде этого саето-диода (в точке Б) превысит сумму падений напряжений на горящем свето-диоде и открытых диодах VD4, VDS. Последующие светодиоды будут вспыхивать только после увеличения напряжения на их анодах (относительно общего провода) примерно на 0,7 В по сравнению с напряжением пл аноде предыдущего (более нижнего по схеме) с вето диоде.
При снижении же коллекторного тока транзистора VT2 светодиоды поочередно гаснут от верхнего, по семе, до нижнего.
Светодиодный индикатор обладает неплохой линейностью — об >том свидетельствует его «амплитудная» характеристика, приведенная на рис- 2 вкладки,— зависимость включения (зажигания) того или иного с ее то диода от уровня входного сигнала. Линейность определяется как точностью подбора резисторов R7 — RI2, так и одинаковостью параметров светодиодов и диодов.
Индикатор способен работать не только от постоянного напряжения на входе, но и от сигнала звуковой частоты. В этом случае он управляется лишь положительными полуволнами переменного напряжения.
Кроме указанных на схеме, в индикаторе можно применить транзисторы КП302А, КП303Д КП307Б, КП307Ж
(VT1), KT208K. KT209A — KT20$K, KT501A — KT501K, KT502A, КТ502Б (VT2), светодиоды АЛ102А — АЛ102Г, АЛ307А, АЛ307Б, любые диоды серий КД102, КДЮЗ, Д220. Д223, Д226, КД521. Подстроечный резистор может быть СПЗ-1, СП5-2, СП5-16, остальные резисторы — МЛТ или ВС мощностью 0,125 или 0,25 Вт.
Детали индикатора смонтированы на печатной плате (рис. 4 на вкладке) из одностороннего фольгированного
стеклотекстолита. Светодиоды расположены в ряд (рис. I вкладки), чтобы образовалась своеобразная световая шкала, когда плата будет укреплена на лицевой панели устройства, скажем, тюнера.
Налаживание индикатора сводится к установке подстроечным резистором R4 такого коллекторного тока транзистора VT2, чтобы светодиод HL7 едва светился либо был на грани зажигания.
При необходимости уменьшить чувствительность индикатора следует включить между его входом и источником сигнала резистор и подобрать его сопротивление. Если индикатор будет использоваться для контроля сигнала звуковой частоты, вместо дополнительного резистора на входе включают конденсатор (КЛС, КМ-1) емкостью примерно 0,033 мкФ, а резисторы R7 — R12 берут вдвое меньших номиналов по сравнению с указанными на схеме. В случае подключения индикатора непосредственно к выходу мощного усилителя каскады на транзисторах можно вообще изъять, включив между левым по схеме выводом резистора R6 и выходом усилителя любой диод из вышеуказанных. Катод диода должен соединяться с резистором.

Всем привет. Раньше собирал такие схемы на лампочках, а когда уже в более свободном доступе появились светодиоды, увлёкся светодиодными мигалками. Когда же появился интернет, вообще такое обилие схем хлынуло, но появилась большая проблема - спаяешь схему, а она или совсем не работает или работает но не так как нужно, и начинаешь потом эксперименты с нею проводить, добиваться нужного результата. Но за то за время что возишься со схемой узнаёшь много интересного, понимаешь какая деталь на что влияет, развиваешься в общем по полной. Здесь приводится несколько реально проверенных и 100% рабочих схем, которые смело можете делать.

Сборник схем LED индикаторов ЗЧ


Вот ещё несколько схем индикаторов уровня подогнанные под хорошее мигание от музыки




Вот такой ещё стробоскоп управляемый звуковым сигналом как-то делал, может ещё кому сгодится:


Вот такие два стробоскопчика делал, один типа полицейского, другой просто дискотечный.



Вот такой индикатор ещё паял.


И вот этот индикатор усиливал под мощную нагрузку.


А по поводу этого индикатора, тут светодиоды должны быть все одного цвета это обязательное условие, поскольку сама шкала пассивная.


Теперь вот интересная схемка, как-то появился у меня двухцветный светодиод, ну и решил его заставить красиво мигать под музыку - вот такая схемка вышла.


Далее хочу немного остановиться на работе индикатора на основе LM3915. С этой схемой управления что здесь, столбик реагирует на весь частотный диапазон мелодии.


Но даже такая специализированная схема индикатора как 3915 и то требует своей схемы управления, наиболее подходящая вот такая как в схеме, детали тоже подобраны по наилучшей работе. Поскольку у неё очень чувствительный вход, то добавлен делитель на входе сигнала. Добавлен резистор R7 для того что бы не светился первый светодиод. Но схема прекрасно преобразуется в простой активный частотный фильтр. Возьмём для примера вот этот рисунок, всё зависит от ёмкости входного конденсатора С1 и добавочного С5 который ставится между коллектором и общим проводом.


Таким образом можно сделать три частотных канала и уже применить всё это дело для ЦМУ, для начала можно спаять вот такой усилитель пред раскачки с регуляторами на каждый канал, и на выходы регуляторов (переменных резисторов) уже нагрузить ЛМ-ку с управляющими схемами, настроенными на свой частотный диапазон.


Ещё если кому нужно что бы индикатор работал чисто по ударники или иначе говоря инструмент задающий такт мелодии, для этих целей очень хорошо подходит вот такой вариант схемы управления.


И последнее, в обвязке микросхемы есть такой резистор R6 , через него подаётся общий плюс на светодиоды, его можно отсоединить от основного плюса и подключить к вот такой схемке прерывателя, тогда светодиоды в столбике не просто светиться будут но и в добавок мерцать, эффект прикольный, это я тоже делал.


Предыдущий сборник по цветомузыкам смотрите по ссылке. Автор: senya70

Форум по обсуждению материала ИНДИКАТОРЫ УРОВНЯ ЗВУКА НА LED


Почему электрические провода нагреваются, откуда берется вообще тепло и сколько энергии теряется из-за сопротивления?


Обзор готового модуля усилитель звуковой частоты на TDA7377 с модулем Bluetooth для беспроводной передачи аудиосигнала.


Самодельный активный предварительный усилитель с НЧ-ВЧ регулировками на ОУ TL072, для УМЗЧ.


Классический фонарик со встроенным зарядным устройством можно неплохо улучшить, добавив пару микросхем и 18650 АКБ.

Индикаторы уровня звука (точнее, уровня электрического сигнала в звуковом тракте) могут быть очень ответственными приборами, а могут служить и просто для украшения аппаратуры. Часто для краткости их называют VU-meter («волюметр»).

В профессиональной аппаратуре VU-meter — необходимейшее устройство, которое должно точно отображать требуемый параметр для предотвращения перегрузки или недогрузки звукового тракта.

А в бытовой аппаратуре это — не очень ответственный элемент, который может служить или для приблизительной оценки уровня сигнала, или вообще просто для красоты — чтобы огоньки бегали или стрелка двигалась в такт музыке.

В этом обзоре будет проанализирован предназначенный для встраивания в радиолюбительскую аппаратуру готовый светодиодный индикатор стереосигнала.

Цена на Алиэкспресс на дату обзора с доставкой в РФ — около 700 российских рублей ($8.90), проверить актуальную цену.


(изображение со страницы продавца на Алиэкспресс)

Тактико-технические характеристики, внешний вид, комплектация и конструкция светодиодного индикатора уровня звука

Небольшой набор тактико-технических характеристик от производителя представлен в следующей таблице:

Количество светодиодов на канал12 шт. (7 зелёных + 2 оранжевых + 3 красных)
Количество режимов шкалы сигнала2 (Логарифмический + АРУ)
Количество режимов отображения сигнала6
Напряжение питания7. 12 В
Ток потребления100 мА
Размер платы индикатора80*14 мм
Размер блока индикаторов58*14 мм

Реальное потребление сильно зависит от яркости и количества работающих светодиодов.

При всех включенных светодиодах на максимальной яркости потребление составило 54 мА, при включенных только двух светодиодах потребление составило 17 мА.

Комплектация индикатора предельно проста, она состоит из платы индикатора и кабеля для внешних соединений:


(фотографии в обзоре кликабельны)

Инструкцию по настройке индикатора можно найти на страницах некоторых продавцов; она, в принципе, верная, но бестолковая:


Пришлось составить свою инструкцию, она будет представлена далее в обзоре.

Так выглядит VU-meter в боковом ракурсе, в котором хорошо видно соотношение в размерах между его разными частями:


Так выглядит индикатор со стороны линеек светодиодов:


Назначение контактов разъёма подписано на плате вполне понятным образом, дополнительных разъяснений не требуется.

Теперь смотрим на плату со стороны элементов:


Электронная «начинка» индикатора кажется несложной. Но это — только кажимость; на самом деле здесь имеется даже настоящий процессор со своей микропрограммой (прошивкой)!

Но с этим ещё разберёмся, а пока обратим внимание на небольшую круглую кнопку внизу чуть правее середины платы.

С помощью этой единственной кнопки делаются все настройки. Желаемый режим работы лучше установить до встраивания индикатора в аппаратуру, так как после установки кнопка может оказаться труднодоступной.

Вид на часть платы вблизи разъёма:


Здесь расположен крайне популярный сдвоенный операционник LM358 и маленькая трёхногая микросхема линейного стабилизатора на 5 В.

Операционник принимает аналоговый сигнал с входных линий и далее отправляет его на другую часть платы, где его поджидает процессор:


Здесь есть пара транзисторов, ещё один стабилизатор на 5 В, кнопка управления режимами и «сердце» индикатора — аналого-цифровой процессор STM8S003F3P6.

Этот процессор поддерживает до 5-ти каналов 10-битного аналого-цифрового преобразования.

Его вычислительная часть работает на частоте 16 МГц, имеет 8K байт памяти прошивки и 1K байт ОЗУ. Это всё — небольшие величины, но достаточные для выполнения поставленной задачи.

Теперь переходим к аналитической части обзора.

Технические испытания светодиодного индикатора уровня звука

Сначала немного разберёмся с теорией анализа сигнала и его отображения (применительно к тестируемому индикатору).

Индикаторы могут реагировать на разные величины: на пиковое значение сигнала, его среднее значение или среднеквадратичное (действующее).

Шкала индикации может быть линейной, логарифмической («децибельной») или с автоматической регулировкой усиления (АРУ, AGC). Бывают и более экзотические методы, их не рассматриваем.

Первые два типа шкалы предъявляют пользователю реальное значение сигнала, а последний (с АРУ) служит только для красивой динамической индикации.

Способы визуального представления замеренной величины сигнала на светодиодных индикаторах тоже могут быть разными.

Уровень сигнала может быть представлен в виде «классического» столбика (иногда — в виде двухстороннего столбика, растущего от середины индикатора), или же в виде одного или нескольких сегментов, двигающихся вверх или вниз в зависимости от уровня сигнала. Эти методы могут быть иметь дополнительные опции, например, в виде фиксации на какое-то время одиночным сегментом максимального уровня сигнала.

Герой обзора имеет два режима шкалы сигнала: логарифмический и с автоматической регулировкой усиления (AGC).

Режим автоматической регулировки усиления (Automatic Gain Control) назван так, естественно, условно. Никаких схем регулировки усиления в индикаторе нет; автоматическая подстройка отображения сигнала производится чисто вычислительным путём.

Для выяснения вопроса, на что именно реагирует тестируемый VU-meter (пик или среднее значение), на индикатор был подан прямоугольный сигнал с переменным заполнением от 10% до 30% (частота 1 кГц).

В случае реакции индикатора на пик сигнала при изменении заполнения прямоугольника «столбик» на индикаторе в децибельном режиме не должен меняться; а при реакции на среднее значение должен увеличиваться по мере увеличения заполнения.

Испытания показали, что столбик увеличивается, т.е. для индикации используется средний уровень. Возможности использования в индикаторе среднеквадратичного уровня и прочей «экзотики» отметаем, как создающие чрезмерную вычислительную нагрузку.

Теперь — таблица с результатами замера входного напряжения, необходимого для устойчивого включения сегментов индикатора в децибельном режиме на частоте 1 кГц (синус); отображение классическим столбиком. Сигнал подавался от генератора сигналов FY6800; под напряжением в таблице понимается размах сигнала, т.е. двойная амплитуда (т.к. именно её показывает индикатор генератора FY6800).

В скобках указан прирост к предыдущему значению в дБ.

СегментНапряжение
1светится всегда
265 мВ
3195 мВ (+9.5 дБ)
4350 мВ (+5.1 дБ)
5530 мВ (+3.6 дБ)
6750 мВ (+3.0 дБ)
71.04 В (+2.84 дБ)
81.47 В (+3.0 дБ)
92.07 В (+2.9 дБ)
103.00 В (+3.2 дБ)
114.2 В (+2.9 дБ)
126.1 В (+3.2 дБ)

Таким образом, с учетом погрешности метода измерения, можно утверждать, что за основу производитель взял логарифмическую шкалу с ценой деления 3 дБ на основной части; но с загрублением цены деления при малых сигналах.

С одной стороны, это позволяет несколько расширить динамический диапазон работы индикатора (он составил 39.5 дБ); но, с другой стороны, это сделает менее точными и динамичными показания при малом сигнале.

Иными словами, в децибельном режиме при малом сигнале нижние сегменты будут двигаться медленно и лениво (что и подтвердилось при испытании реальным музыкальным сигналом).

Но в режиме АРУ (AGC) всё работает совсем по-другому. В этом режиме процессор автоматически придвигает средний уровень сигнала к середине шкалы, и картинка получается весьма динамичной при любом сигнале (за исключением выхода сигнала за пределы динамического диапазона).

Несколько слов о частотной полосе индикатора уровня звука.

В области нижних частот есть заметный завал, полоса пропускания по уровню минус 3 дБ начинается от 170 Гц.

В области средних и высоких частот характеристика довольно плоская, с пологим повышением на 20% к частоте 20 кГц.

В целом же характеристика — далеко не идеальная, и реальный уровень сигнала индикатор отобразит не очень точно.

Теперь посмотрим, как индикатор работает с реальным музыкальным сигналом.

Примеры отображения сигнала в режиме АРУ и в трёх разных режимах визуализации (из 6-ти возможных) представлены на следующих видео.

1. Классическое отображение уровня столбиком:

2. Отображение столбиком с фиксацией уровня максимума и последующим его падением вниз:

3. Отображение уровня звука движением двух сегментов:

Краткая инструкция (User Manual) по настройке индикатора уровня звука с описанием режимов

Теперь — обещанная инструкция по настройке, составленная на основе личного опыта.

Для настройки используется единственная кнопка.

Одиночное короткое нажатие ничего не меняет (как мне показалось). Другие, перечисленные далее, варианты меняют настройки циклически, т.е. их нумерация условна (первой можно считать любую из них).

Двойное короткое нажатие меняет яркость. Возможные варианты: слабая, средняя, высокая.

Удержание кнопки нажатой в течение 1-ой секунды меняет режимы отображения. При этом самому считать длительность нажатия не надо: при удержании кнопки нажатой на индикаторе справа вверху добавляется по одному зажженному сегменту каждую секунду. Сегменты нарастают сверху вниз.

1. Классическое отображение столбиком (чем выше сигнал, тем больше зажигается сегментов, как на первом видео).

2. Отображение столбиком с фиксацией уровня максимума и последующим его подъёмом вверх.

3. Отображение двумя сцепленными зажженными сегментами, которые поднимаются вверх или падают вниз в зависимости от уровня сигнала (как на последнем из 3-х видео).

4. То же, что и в предыдущем пункте, но уровень отображается движением только одного сегмента.

5. Отображение столбиком, при этом фиксируется максимум, который затем «стреляет» вверх и «рикошетит» обратно вниз.

6. Отображение столбиком, при этом фиксируется максимум, который затем падает вниз (как на втором видео).

Удержание кнопки нажатой в течение 3-х секунд переключает режим шкалы: логарифмическая (децибельная) или АРУ (AGC).

В режиме АРУ картинка получается более динамичной, размах движения сегментов — высокий, практически во всю шкалу (за исключением случаев выхода сигнала за границы динамического диапазона).

В децибельном режиме движения сегментов — более медленные, а при малом сигнале — откровенно вялые.

В режиме АРУ есть особенность: если индикатор «спугнуть» сильным сигналом, то потом он медленно возвращается к норме, примерно за 20-30 секунд.

Удержание кнопки нажатой в течение 5-ти секунд переключает VU-meter в режим настройки скорости движения сегментов. При этом слева будет столбик высотой от 1 до 7 сегментов, показывающих скорость движения сегментов в рабочем режиме. При этом максимуму скорости соответствует высота в 1 сегмент, а минимуму — в 7 сегментов. Настройка производится короткими нажатиями.

Слева вверху индикатор показывает числом светящихся сегментов номер настраиваемого параметра из списка ниже.

Правый столбик будет «тестовым», т.е. он будет показывать, как работает установленное значение скорости.

Переход (циклический) между настраиваемыми параметрами осуществляется удержанием кнопки нажатой в течение 1 секунды.

Для возврата обратно в рабочий режим нужно снова удерживать кнопку нажатой в течение 5 секунд.

Список настраиваемых параметров скорости движения сегментов:

1. Скорость роста светового столбика.

2. Скорость падения светового столбика.

3. Время удержания пика (одиночного сегмента).

4. Скорость падения пика.

5. Не понял, что это за параметр.

И, наконец, нажатие кнопки в течение 10 секунд — возврат к заводским настройкам.

Итоги, выводы, рекомендации

Главная рекомендация: при мощном источнике сигнала (например, выход усилителя мощности) необходимо VU-meter подключать к источнику сигнала строго через делитель напряжения. Коэффициент деления подбирается «по вкусу» пользователя.

Если пользователь любит тихую и среднюю громкость музыки, то уменьшать напряжение с помощью делителя надо не сильно; а если любит высокую громкость — то уменьшать напряжение надо существенно. В последнем случае не забываем о гуманном отношении к соседям! :)

Теперь — общий итог и область применения

Для каких-то серьёзных целей этот индикатор уровня звука не подходит. Препятствием к этому будут две причины.

Первая — неравномерность АЧХ с сильным спадом на низких частотах.

Вторая — грубый шаг шкалы в децибельном режиме, особенно в области слабых сигналов.

В «плюсы» индикатора запишем широкие возможности настройки внешнего вида и динамики индикации.

Использование светодиодов трёх цветов тоже добавляет позитива этому устройству.

Индикатор вполне подходит для «оживления» внешнего вида радиолюбительских конструкций, что позволит преобразовать их дизайн из «чёрных ящиков» в яркую привлекательную технику.

Тонкости покупки

Купить индикатор можно, например, по этой ссылке. Цена — $8.2 в виде комплекта для сборки или $8.9 полностью собранный. Если у другого продавца этот индикатор найдётся дешевле, то тоже можно брать, но есть «тонкости».

Во-первых, надо обращать внимание, продаётся индикатор полностью собранным или как комплект для сборки (потребуется напаять только светодиодные линейки и разъём). Выбирать надо то, что Вам больше по душе.

Вторая «тонкость» состоит в том, что существует ещё один индикатор с точно такой же конструкцией, но собранный на плате чёрного цвета. У него — другая прошивка и другая реализация режимов. Может, он и не хуже, но данный обзор на него точно не распространяется.

Ситуация осложняется тем, что у некоторых продавцов на разных фото одного и того же индикатора плата может быть и зелёной, и чёрной. Надо внимательно смотреть не только фото, но и описание.

В этом устройстве использована микросхема драйвера шкального индикатора LM3915, на выходы которой подключены две линейки по 10 светодиодов для индикации уровня звука в диапазоне 30 дБ. Этот прибор интересен тем, что у него есть два диапазона измерения. Дополнительный диапазон автоматически включается при уровне звука выше 20 децибел. Поэтому он сочетает высокую чувствительность на низких уровнях звука с возможностью измерять звук с высоким уровнем громкости.

LED-драйверы MEAN WELL для промышленных и уличных светодиодных светильников: особенности, преимущества, выбор


Светодиоды при свечении потребляют около 26 мА каждый, что достаточно много (прибор может питаться автономно от батарейки). Для снижения потребления энергии прибор имеет два режима индикации – светящийся столбик или движущаяся точка (горит только один светодиод в линейке). Режимы выбираются переключателем SW1.
Питается моя схема от 9 В NiCd аккумулятора, который подзаряжается в капельном режиме при подключении к устройству сетевого адаптера.

Описание принципиальной схемы

  1. Электретный микрофон питается через сопротивление R1 от источника напряжения 5 вольт микросхемы LDO стабилизатора LM2931.
  2. Первый усилитель IC1a (половина микросхемы – двойного операционного усилителя MC33172) предназначен для предварительного усиления звукового сигнала с коэффициентом 101.
  3. Вторая половина ОУ IC1b питается однополярно, выполняя роль выпрямителя с коэффициентом передачи 1.8. «Привязанный» минусом питания к земле, этот усилитель без искажений усиливает сигналы с уровнями, сколь угодно близкими к уровню земли. Поскольку усилитель инвертирующий, при отрицательном напряжении на входе на его выходе будет положительное.
  4. Три транзистора 2N3904 включены по схеме эмиттерного повторителя.
    1. Транзистор Q1 в цепи отрицательной обратной связи второго ОУ служит источником опорного напряжения для остальных двух транзисторов. Желательно использовать подобранную пару транзисторов.
    2. Эмиттерный повторитель Q2 нагружен на интегрирующую цепочку R12, R13, C8 и выполняет роль пикового детектора.
    3. Q3 выполняет функцию АРУ. Это так же пиковый детектор, но с большей постоянной времени. Он питает цепочку резисторов на входах компараторов в микросхеме LM3915, управляя ее чувствительностью. Подключенный к шине +5В резистор R15, вместе с цепочкой внутренних резисторов микросхемы LM3915, образует делитель напряжения с общим сопротивлением порядка 25 кОм, задавая на входе цепочки напряжение +0.51 В при очень слабых входных сигналах, и 5.1 В для громких звуков, снижая тем самым чувствительность схемы.

    Микросхема сконструирована таким образом, что токоограничивающие резисторы для светодиодов не нужны. Но в режиме светящейся линейки, когда светятся все светодиоды, микросхема LM3915 начинает греться. Из-за этого в схему был добавлен резистор 10 Ом мощностью 1 Вт, который принимает на себя часть рассеиваемой мощности.

    Читайте также: