К техническим мерам компьютерной безопасности можно отнести идентификацию и аутентификацию

Обновлено: 06.07.2024

Основы идентификации и аутентификации. Одной из важных задач обеспечения защиты от НСД является использование методов и средств, позволяющих одной (проверяющей) стороне убедиться в подлинности другой (проверяемой) стороны.

Идентификация — это процедура распознавания пользователя по его идентификатору (имени). Эта функция выполняется в первую очередь, когда пользователь делает попытку войти в сеть. Пользователь сообщает системе по ее запросу свой идентификатор, и система проверяет в своей базе данных его наличие.

Аутентификация — процедура проверки подлинности заявленного пользователя, процесса или устройства. Эта проверка позволяет достоверно убедиться, что пользователь (процесс или устройство) является именно тем, кем себя объявляет. При проведении аутентификации проверяющая сторона убеждается в подлинности проверяемой стороны, при этом проверяемая сторона тоже активно участвует в процессе обмена информацией. Обычно пользователь подтверждает свою идентификацию, вводя в систему уникальную, неизвестную другим пользователям информацию о себе (например, пароль).

Идентификация и аутентификация являются взаимосвязанными процессами распознавания и проверки подлинности субъектов (пользователей). Именно от них зависит последующее решение системы, можно ли разрешить доступ к ресурсам системы конкретному пользователю или процессу. После идентификации и аутентификации субъекта выполняется его авторизация. Процесс идентификации и аутентификации показан на рис. 5.24.

Процесс идентификации и аутентификации

Рис. 5.24. Процесс идентификации и аутентификации

Авторизация — процедура предоставления субъекту определенных полномочий и ресурсов в данной системе. Иными словами, авторизация устанавливает сферу действия субъекта и доступные ему ресурсы. Если система не может надежно отличить авторизованное лицо от неавторизованного, конфиденциальность и целостность информации в ней могут быть нарушены.

С процедурами идентификации и авторизации тесно связана процедура администрирования действий пользователя.

Администрирование — это регистрация действий пользователя в сети, включая его попытки доступа к ресурсам. Хотя эта учетная информация может быть использована для выписывания счета, с позиций безопасности она особенно важна для обнаружения, анализа инцидентов безопасности в сети и соответствующего реагирования на них. Записи в системном журнале, аудиторские проверки и администрирование ПО — все это может быть использовано для обеспечения подотчетности пользователей, если что-либо случится при входе в сеть с их идентификатором.

Для подтверждения своей подлинности субъект может предъявлять системе разные сущности. В зависимости от предъявляемых субъектом сущностей процессы аутентификации могут быть разделены на следующие категории:

  • 1. На основе знания чего-либо. Примерами могут служить пароль, персональный идентификационный код (PIN), а также секретные и открытые ключи, знание которых демонстрируется в протоколах типа запрос—ответ.
  • 2. На основе обладания чем-либо. Обычно это магнитные карты, смарт-карты, сертификаты и устройства touch memory.
  • 3. На основе каких-либо неотъемлемых характеристик. Эта категория включает методы, базирующиеся на проверке биометрических характеристик пользователя (голос, радужная оболочка и сетчатка глаза, отпечатки пальцев, геометрия ладони и др.) В данной категории не используются криптографические методы и средства. Аутентификация на основе биометрических характеристик применяется для контроля доступа в помещения или к какой-либо технике.

Пароль — это то, что знает пользователь и что также знает другой участник взаимодействия. Для взаимной аутентификации участников взаимодействия может быть организован обмен паролями между ними.

Персональный идентификационный код PIN является испытанным способом аутентификации держателя пластиковой карты и смарт-карты. Секретное значение PIN-кода должно быть известно только держателю карты.

Динамический (одноразовый) пароль — это пароль, который после одноразового применения никогда больше не используется. На практике обычно используется регулярно меняющееся значение, которое базируется на постоянном пароле или ключевой фразе.

При сравнении и выборе протоколов аутентификации необходимо учитывать следующие характеристики:

Классификация протоколов аутентификации. Протоколы (процессы, алгоритмы) аутентификации обычно классифицируют по уровню обеспечиваемой безопасности [51]. В соответствии с данным подходом процессы аутентификации разделяются на следующие типы.

  • а) аутентификация, использующая пароли и РПУ-коды;
  • б) строгая аутентификация на основе использования криптографических методов и средств;
  • в) биометрическая аутентификация пользователей.

С точки зрения безопасности, каждый из перечисленных типов способствует решению своих специфических задач, поэтому процессы и протоколы аутентификации активно используются на практике. В то же время следует отметить, что интерес к протоколам аутентификации, обладающим свойством доказательства с нулевым знанием, носит скорее теоретический, нежели практический характер, но, возможно, в будущем их начнут активно использовать для защиты информационного обмена. Классификация протоколов аутентификации представлена на рис. 5.25.

Методы аутентификации, использующие пароли и РШ-коды. Одной из распространенных схем аутентификации является простая аутентификация, которая основана на применении традиционных многоразовых и динамических (одноразовых) паролей. Аутентификация на основе паролей и Р/№-кодов является простым и наглядным примером использования разделяемой информации. Пока в большинстве

Классификация протоколов аутентификации

Рис. 5.25. Классификация протоколов аутентификации

защищенных компьютерных сетей доступ клиента к серверу разрешается по паролю. Однако все чаще применяются более эффективные средства аутентификации, например, программные и аппаратные системы аутентификации на основе одноразовых паролей, смарт-карт, Р/УУ-кодов и цифровых сертификатов.

Процедуру простой аутентификации пользователей в сети можно представить следующим образом. При попытке входа в сеть пользователь набирает на клавиатуре ПЭВМ свой идентификатор и пароль. Эти данные поступают для обработки на сервер аутентификации. В базе данных сервера по идентификатору пользователя находится соответствующая запись, из нее извлекается пароль и сравнивается с тем паролем, который ввел пользователь. Если они совпали, то аутентификация прошла успешно, пользователь получает легальный статус, а также права и ресурсы сети, которые определены для его статуса системой авторизации.

Передача идентификатора и пароля от пользователя к системе может проводиться в открытом и зашифрованном виде.

Схема простой аутентификации с использованием пароля показана на рис. 5.26.


Рис. 5.26. Схема простой аутентификации с использованием пароля

Очевидно, что вариант аутентификации с передачей пароля пользователя в незашифрованном виде не гарантирует даже минимального уровня безопасности. Чтобы защитить пароль, его нужно зашифровать перед посылкой по незащищенному каналу. Для этого в схему включены средства шифрования Ек и дешифрования DK, управляемые секретным ключом К. Проверка подлинности пользователя основана на сравнении присланного пользователем пароля Ра и исходного значения Ра, хранящегося на сервере аутентификации. Если значения Ра и Ра совпадают, то пароль Ра считается подлинным, а пользователь А — законным.

Наиболее распространенным методом аутентификации держателя пластиковой карты и смарт-карты является ввод секретного числа, которое обычно называют PIN-кодом. Зашита /V/V-кода карты является критичной для безопасности всей системы. Карты могут быть потеряны, украдены или подделаны. В таких случаях единственной контрмерой против несанкционированного доступа остается секретное значение PIN- кода. Вот почему открытая форма PIN должна быть известна только законному держателю карты. Очевидно, значение PIN нужно держать в секрете в течение всего срока действия карты.

Длина PIN- кода должна быть достаточно большой, чтобы минимизировать вероятность определения правильного PIN-кот методом проб и ошибок. С другой стороны, длина PIN-кода должна быть достаточно короткой, чтобы дать возможность держателям карт запомнить его значение. Согласно рекомендациям стандарта /50 9564-1 длина Я/УУ-кода должна содержать от 4 до 12 буквенно-цифровых символов. Однако в большинстве случаев ввод нецифровых символов технически невозможен, поскольку доступна только цифровая клавиатура. Поэтому обычно Я/УУ-код представляет собой 4—6-разрядное число, каждая цифра которого может принимать значение от 0 до 9.

Различают статические и изменяемые Я/УУ-коды. Статический РШ-код не может быть изменен пользователем, поэтому пользователь должен надежно его хранить. Если он станет известен постороннему, пользователь должен уничтожить карту и получить новую карту с другим фиксированным Я/УУ-кодом.

Изменяемый Р1И-код может быть изменен согласно пожеланиям пользователя или заменен на число, которое пользователю легче запомнить. Простейшей атакой на Я/УУ-код, помимо подглядывания через плечо за вводом его с клавиатуры, является угадывание его значения. Вероятность угадывания зависит от длины п угадываемого Я/УУ-кода, от составляющих его символов т (для цифрового кода т = 10, для буквенного — т = 32, для буквенно-цифрового — т = 42 и т.д.), от количества разрешенных попыток ввода /' и выражается формулой:

Я = / / т п . (5.16)

Если Я/УУ-код состоит из 4 десятичных цифр, а число разрешенных попыток ввода равно трем, т.е. п = 4, т = 10, / = 3, то вероятность угадывания правильного значения Я/УУ-кода составит Я = 3/10 4 = = 0,00003, или 0,03%.

В большинстве случаев строгая аутентификация заключается в том, что каждый пользователь аутентифицируется по признаку владения своим секретным ключом. Иначе говоря, пользователь имеет возможность определить, владеет ли его партнер по связи надлежащим секретным ключом и может ли он использовать этот ключ для подтверждения того, что он действительно является подлинным партнером и по информационному обмену.

В соответствии с рекомендациями стандарта Х.509 различают процедуры строгой аутентификации следующих типов:

  • а) односторонняя аутентификация;
  • б) двусторонняя аутентификация;
  • в) трехсторонняя аутентификация.

Односторонняя аутентификация предусматривает обмен информацией только в одном направлении. Данный тип аутентификации позволяет:

  • — подтвердить подлинность только одной стороны информационного обмена;
  • — обнаружить нарушение целостности передаваемой информации;
  • — обнаружить проведение атаки типа «повтор передачи»;
  • — гарантировать, что передаваемыми аутентификационными данными может воспользоваться только проверяющая сторона.

Двусторонняя аутентификация по сравнению с односторонней содержит дополнительный ответ проверяющей стороны доказывающей стороне, который должен убедить ее, что связь устанавливается именно с той стороны, которой были предназначены аутентификационные данные.

Трехсторонняя аутентификация содержит дополнительную передачу данных от доказывающей стороны проверяющей. Этот подход позволяет отказаться от использования меток времени при проведении аутентификации.

В зависимости от используемых криптографических алгоритмов протоколы строгой аутентификации можно разделить на следующие группы (рис. 5.27).

1. Протоколы аутентификации с симметричными алгоритмами шифрования. Для работы данных протоколов необходимо, чтобы проверяющий и доказывающий с самого начала имели один и тот же

Классификация протоколов строгой аутентификации

Рис. 5.27. Классификация протоколов строгой аутентификации

секретный ключ. Для закрытых систем с небольшим количеством пользователей каждая пара пользователей может заранее разделить его между собой. В больших распределенных системах часто используются протоколы аутентификации с участием доверенного сервера, с которым каждая сторона разделяет знание ключа. Такой сервер распределяет сеансовые ключи для каждой пары пользователей всякий раз, когда один из них запрашивает аутентификацию другого. Кажущаяся простота данного метода является обманчивой, на самом деле разработка протоколов аутентификации этого типа является сложной и с точки зрения безопасности неочевидной.

Протоколы аутентификации с симметричными алгоритмами шифрования реализуются в следующих вариантах:

  • а) односторонняя аутентификация с использованием меток времени;
  • б) односторонняя аутентификация с использованием случайных чисел;
  • в) двусторонняя аутентификация.

Введем следующие обозначения:

гА случайное число, сгенерированное участником А;

г В — случайное число, сгенерированное участником В;

/Д — метка времени, сгенерированная участником А;

Ек симметричное шифрование на ключе К (ключ Одолжен быть предварительно распределен между А и В).

Математическая модель односторонней аутентификации с использованием меток времени выглядит следующим образом:

Модель односторонней аутентификации с использованием слу-чаиных чисел можно представить в следующем виде:

А В: Ек (гА, гВ. В). А В: г.

дополненному секретным ключом К

В качестве примера приведем модифицированный протокол Нидхема и Шредера, основанный на несимметричном шифровании. Протокол имеет следующую структуру (PB — алгоритм шифрования открытым ключом участника В):

А^В.РВ (г,А). А В: certA, tA, В, SA(tA, В).

ГОСТ Р 58833-2020

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ИДЕНТИФИКАЦИЯ И АУТЕНТИФИКАЦИЯ

Information protection. Identification and authentication. General

Дата введения 2020-05-01

Предисловие

1 РАЗРАБОТАН Федеральной службой по техническому и экспортному контролю (ФСТЭК России), Закрытым акционерным обществом "Аладдин Р.Д." (ЗАО "Аладдин Р.Д.") и Обществом с ограниченной ответственностью "Научно-производственная фирма "КРИСТАЛЛ" (ООО "НПФ "КРИСТАЛЛ")

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 362 "Защита информации" и Техническим комитетом по стандартизации ТК 26 "Криптографическая защита информации"

4 ВВЕДЕН ВПЕРВЫЕ

Введение

Одной из главных задач защиты информации при ее автоматизированной (автоматической) обработке является управление доступом. Решение о предоставлении доступа для использования информационных и вычислительных ресурсов средств вычислительной техники, а также ресурсов автоматизированных (информационных) систем, основывается на результатах идентификации и аутентификации.

При автоматизированной обработке информации физическому лицу как субъекту доступа соответствуют вычислительные процессы, выполняющие операции с данными. Это создает риски неоднозначного сопоставления вычислительных процессов с конкретным физическим лицом. Аналогичные риски существуют и при автоматической обработке информации. Кроме того, удаленное информационное взаимодействие дополнительно порождает риск ошибочной идентификации удаленного субъекта доступа и, следовательно, риск предоставления доступа злоумышленнику. Наряду с этим существуют риски того, что вычислительный процесс, действующий в интересах злоумышленника, может имитировать объекты (субъекты) доступа, функционирующие как параллельно с легальными, так и существующие независимо от них.

Устанавливая правила управления доступом к информации и сервисам, обеспечивающим ее обработку, для различных категорий субъектов доступа необходимо учитывать не только конфиденциальность защищаемой информации, но и указанные риски. Для снижения рисков должны применяться соответствующие методы идентификации и аутентификации, которые обеспечивают уверенность в подлинности сторон, участвующих в информационном взаимодействии, включая и субъекты доступа, и объекты доступа. Это особенно востребовано в том случае, когда взаимодействующие стороны имеют дефицит взаимного доверия, обусловленный, например, использованием небезопасной среды функционирования.

Для понимания положений настоящего стандарта необходимы знания основ информационных технологий, а также способов защиты информации.

1 Область применения

Настоящий стандарт устанавливает единообразную организацию процессов идентификации и аутентификации в средствах защиты информации, в том числе реализующих криптографическую защиту, средствах вычислительной техники и автоматизированных (информационных) системах, а также определяет общие правила применения методов идентификации и аутентификации, обеспечивающих необходимую уверенность в результатах.

Положения настоящего стандарта не исключают применение криптографических и биометрических методов (алгоритмов) при идентификации и аутентификации, но не устанавливают требования по их реализации.

Настоящий стандарт определяет состав участников и основное содержание процессов идентификации и аутентификации, рекомендуемое к реализации при разработке, внедрении и совершенствовании правил, механизмов и технологий управления доступом. Положения настоящего стандарта могут использоваться при управлении доступом к информационным ресурсам, вычислительным ресурсам средств вычислительной техники, ресурсам автоматизированных (информационных) систем, средствам вычислительной техники и автоматизированным (информационным) системам в целом.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 50922 Защита информации. Основные термины и определения

ГОСТ Р 56939 Защита информации. Разработка безопасного программного обеспечения. Общие требования

ГОСТ Р ИСО 704 Терминологическая работа. Принципы и методы

ГОСТ Р ИСО 10241-1 Терминологические статьи в стандартах. Часть 1. Общие требования и примеры представления

ГОСТ Р ИСО/МЭК 27005 Информационная технология. Методы и средства обеспечения безопасности. Менеджмент риска информационной безопасности

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 50922, а также следующие термины с соответствующими определениями:

3.1 анонимный субъект доступа (аноним): Субъект доступа, первичная идентификация которого выполнена в конкретной среде функционирования, но при этом его идентификационные данные не соответствуют требованиям к первичной идентификации или не подтверждались.

3.2 атрибут субъекта (объекта) доступа [атрибут]: Признак или свойство субъекта доступа или объекта доступа.

3.3 аутентификационная информация: Информация, используемая при аутентификации субъекта доступа или объекта доступа.

аутентификация: Действия по проверке подлинности субъекта доступа и/или объекта доступа, а также по проверке принадлежности субъекту доступа и/или объекту доступа предъявленного идентификатора доступа и аутентификационной информации.

[Адаптировано из [1], статья 3.3.8]

Примечание - Аутентификация рассматривается применительно к конкретному субъекту доступа и/или конкретному объекту доступа.

3.5 аутентификация анонимного субъекта доступа, анонимная аутентификация: Аутентификация, используемая для подтверждения подлинности анонимного субъекта доступа.

биометрические персональные данные: Сведения, которые характеризуют физиологические и биологические особенности человека, на основании которых можно установить его личность.

3.7 верификатор идентификации: Доверенный объект, выполняющий вторичную идентификацию субъекта доступа при доступе.

3.8 верификатор аутентификации: Доверенный объект, выполняющий аутентификацию субъекта доступа при доступе.

3.9 верификация: Процесс проверки информации путем сопоставления предоставленной информации с ранее подтвержденной информацией.

3.10 взаимная аутентификация: Обоюдная аутентификация, обеспечивающая для каждого из участников процесса аутентификации, и субъекту доступа, и объекту доступа, уверенность в том, что другой участник процесса аутентификации является тем, за кого себя выдает.

виртуальный: Определение, характеризующее процесс или устройство в системе обработки информации кажущихся реально существующими, поскольку все их функции реализуются какими-либо другими средствами.

3.12 вторичная идентификация: Действия по проверке существования (наличия) идентификатора, предъявленного субъектом доступа при доступе, в перечне идентификаторов доступа, которые были присвоены субъектам доступа и объектам доступа при первичной идентификации.

Примечание - Вторичная идентификация рассматривается применительно к конкретному субъекту доступа.

вычислительные ресурсы: Технические средства ЭВМ, в том числе процессор, объемы оперативной и внешней памяти, время, в течение которого программа занимает эти средства в ходе выполнения.

3.14 доверенный объект: Объект, который будет действовать в полном соответствии с ожиданиями и субъекта доступа, и объекта доступа или любого из них, при этом выполняя то, что он должен делать, и не выполняя то, что он не должен делать.

Примечание - Адаптировано из [3].

* Поз.[3], [5], [8] см. раздел Библиография. - Примечание изготовителя базы данных.

3.15 доверенная третья сторона: Участник процесса аутентификации, предоставляющий один или более сервисов в области защиты информации, которому доверяют другие участники процесса аутентификации как поставщику данных услуг.

1 При аутентификации доверенной третьей стороне доверяют и субъект доступа и объект доступа.

2 В качестве доверенной третьей стороны могут рассматриваться: организация (например, осуществляющая функции удостоверяющего центра), администратор автоматизированной (информационной) системы, устройство.

3 Доверенная третья сторона является доверенным объектом.

доверие (assurance): Выполнение соответствующих действий или процедур для обеспечения уверенности в том, что оцениваемый объект соответствует своим целям безопасности.

Примечание - Результаты, получаемые в рамках обеспечения доверия, рассматриваются в качестве оснований для уверенности.

3.17 доступ: Получение одной стороной информационного взаимодействия возможности использования ресурсов другой стороны информационного взаимодействия.

1 В качестве ресурсов стороны информационного взаимодействия, которые может использовать другая сторона информационного взаимодействия, рассматриваются информационные ресурсы, вычислительные ресурсы средств вычислительной техники и ресурсы автоматизированных (информационных) систем, а также средства вычислительной техники и автоматизированные (информационные) системы в целом.

2 Доступ к информации - возможность получения информации и ее использования (см. [4]).

3.18 закрытый ключ: Ключ из состава асимметричной пары ключей, сформированных для объекта, который должен быть использован только этим объектом.

1 Адаптировано из [5].

2 Закрытый ключ не является общедоступным (см. [5]).

3 Ключ электронной подписи является примером закрытого ключа (см. [6]).

3.19 закрытый ключ неизвлекаемый: Закрытый ключ, который при его формировании и хранении невозможно извлечь из устройства аутентификации, в котором он был создан.

Примечание - Неизвлекаемость закрытого ключа заключается в отсутствии возможности его извлечения из устройства аутентификации, в котором он был создан, штатными средствами, предоставляемыми данным устройством аутентификации. Неизвлекаемость закрытого ключа в устройствах аутентификации, как правило, обеспечивается применяемыми схемотехническими решениями и гарантируется производителями устройств.

3.20 идентификатор доступа [субъекта (объекта) доступа], [идентификатор]: Признак субъекта доступа или объекта доступа в виде строки знаков (символов), который используется при идентификации и однозначно определяет (указывает) соотнесенную с ними идентификационную информацию.

3.21 идентификационная информация: Совокупность значений идентификационных атрибутов, которая связана с конкретным субъектом доступа или конкретным объектом доступа.

3.22 идентификационные данные: Совокупность идентификационных атрибутов и их значений, которая связана с конкретным субъектом доступа или конкретным объектом доступа.

Примечание - При первичной идентификации идентификационные данные, как правило, предоставляются субъектом доступа, ассоциированным с физическим лицом, или получаются возможным (доступным) способом от субъекта доступа, ассоциированного с ресурсом, и объекта доступа. Указанные идентификационные данные считаются идентификационными данными, заявленными субъектом (объектом) доступа (заявленными идентификационными данными).

В современных информационных системах (ИС) информация обладает двумя противоречивыми свойствами – доступностью и защищенностью от несанкционированного доступа. Во многих случаях разработчики ИС сталкиваются с проблемой выбора приоритета одного из этих свойств.

Под защитой информации обычно понимается именно обеспечение ее защищенности от несанкционированного доступа. При этом под самим несанкционированным доступом принято понимать действия, которые повлекли "…уничтожение, блокирование, модификацию, либо копирование информации…"(УК РФ ст.272). Все методы и средства защиты информации можно условно разбить на две большие группы: формальные и неформальные.

Рис. 1. Классификация методов и средств защиты информации

Формальные методы и средства

Это такие средства, которые выполняют свои защитные функции строго формально, то есть по заранее предусмотренной процедуре и без непосредственного участия человека.

Техническими средствами защиты называются различные электронные и электронно-механические устройства, которые включаются в состав технических средств ИС и выполняют самостоятельно или в комплексе с другими средствами некоторые функции защиты.

Физическими средствами защиты называются физические и электронные устройства, элементы конструкций зданий, средства пожаротушения, и целый ряд других средств. Они обеспечивают выполнение следующих задач:

  • защиту территории и помещений вычислительного центра от проникновения злоумышленников;
  • защиту аппаратуры и носителей информации от повреждения или хищения;
  • предотвращение возможности наблюдения за работой персонала и функционированием оборудования из-за пределов территории или через окна;
  • предотвращение возможности перехвата электромагнитных излучений работающего оборудования и линий передачи данных;
  • контроль за режимом работы персонала;
  • организацию доступа в помещение сотрудников;
  • контроль за перемещением персонала в различных рабочих зонах и т.д.

Криптографические методы и средства

Криптографическими методами и средствами называются специальные преобразования информации, в результате которых изменяется ее представление.

В соответствии с выполняемыми функциями криптографические методы и средства можно разделить на следующие группы:

  • идентификация и аутентификация;
  • разграничение доступа;
  • шифрования защищаемых данных;
  • защита программ от несанкционированного использования;
  • контроль целостности информации и т.д.

Неформальные методы и средства защиты информации

Неформальные средства – такие, которые реализуются в результате целенаправленной деятельности людей, либо регламентируют ( непосредственно или косвенно) эту деятельность.

К неформальным средствам относятся:

Организационные средства

Это организационно-технические и организационно-правовые мероприятия, осуществляемые в процессе создания и эксплуатации ИС с целью обеспечения защиты информации. По своему содержанию все множество организационных мероприятий условно можно разделить на следующие группы:

  • мероприятия, осуществляемые при создании ИС;
  • мероприятия, осуществляемые в процессе эксплуатации ИС: организация пропускного режима, организация технологии автоматизированной обработки информации, организация работы в сменах, распределение реквизитов разграничения доступа(паролей, профилей, полномочий и т.п.) ;
  • мероприятия общего характера: учет требований защиты при подборе и подготовке кадров, организация плановых и превентивных проверок механизма защиты, планирование мероприятий по защите информации и т.п.

Законодательные средства

Это законодательные акты страны, которыми регламентируются правила использования и обработки информации ограниченного использования и устанавливаются меры ответственности за нарушение этих правил. Можно сформулировать пять ”основных принципов”, которые лежат в основе системы законов о защите информации:

Морально – этические нормы

Эти нормы могут быть как не писанными (общепринятые нормы честности, патриотизма и т.п.) так и писанными, т.е. оформленными в некоторый свод правил и предписаний (устав).

С другой стороны, все методы и средства защиты информации можно разделить на две большие группы по типу защищаемого объекта. В первом случае объектом является носитель информации, и здесь используются все неформальные, технические и физические методы и средства защиты информации. Во втором случае речь идет о самой информации, и для ее защиты используются криптографические методы.

1.3.2. Угрозы безопасности информации и их источники

Наиболее опасными (значимыми) угрозами безопасности информации являются:

  • нарушение конфиденциальности (разглашение, утечка) сведений, составляющих банковскую, судебную, врачебную и коммерческую тайну, а также персональных данных;
  • нарушение работоспособности (дезорганизация работы) ИС, блокирование информации, нарушение технологических процессов, срыв своевременного решения задач;
  • нарушение целостности (искажение, подмена, уничтожение) информационных, программных и других ресурсов ИС, а также фальсификация (подделка) документов.

Приведем ниже краткую классификацию возможных каналов утечки информации в ИС – способов организации несанкционированного доступа к информации.

Косвенные каналы, позволяющие осуществлять несанкционированный доступ к информации без физического доступа к компонентам ИС:

  • применение подслушивающих устройств;
  • дистанционное наблюдение, видео и фотосъемка;
  • перехват электромагнитных излучений, регистрация перекрестных наводок и т.п.

Каналы, связанные с доступом к элементам ИС, но не требующие изменения компонентов системы, а именно:

Каналы, связанные с доступом к элементам ИС и с изменением структуры ее компонентов :

  • незаконное подключение специальной регистрирующей аппаратуры к устройствам системы или к линиям связи;
  • злоумышленное изменение программ таким образом, чтобы эти программы наряду с основными функциями обработки информации осуществляли также несанкционированный сбор и регистрацию защищаемой информации;
  • злоумышленный вывод из строя механизма защиты.

1.3.3. Ограничение доступа к информации

В общем случае система защиты информации от несанкционированного доступа состоит из трех основных процессов:

  • идентификация;
  • аутентификация;
  • авторизация.

При этом участниками этих процессов принято считать субъекты – активные компоненты (пользователи или программы) и объекты – пассивные компоненты (файлы, базы данных и т.п.).

Задачей систем идентификации, аутентификации и авторизации является определение, верификация и назначение набора полномочий субъекта при доступе к информационной системе.

Идентификацией субъекта при доступе к ИС называется процесс сопоставления его с некоторой, хранимой системой в некотором объекте, характеристикой субъекта – идентификатором. В дальнейшем идентификатор субъекта используется для предоставления субъекту определенного уровня прав и полномочий при пользовании информационной системой.

Аутентификацией субъекта называется процедура верификации принадлежности идентификатора субъекту. Аутентификация производится на основании того или иного секретного элемента (аутентификатора), которым располагают как субъект, так и информационная система. Обычно в некотором объекте в информационной системе, называемом базой учетных записей, хранится не сам секретный элемент, а некоторая информация о нем, на основании которой принимается решение об адекватности субъекта идентификатору.

Авторизацией субъекта называется процедура наделения его правами соответствующими его полномочиям. Авторизация осуществляется лишь после того, как субъект успешно прошел идентификацию и аутентификацию.

Весь процесс идентификации и аутентификации можно схематично представить следующим образом:

Рис. 2. Схема процесса идентификации и аутентификации

1- запрос на разрешение доступа к ИС;

2- требование пройти идентификацию и аутентификацию;

3- отсылка идентификатора;

4- проверка наличия полученного идентификатора в базе учетных записей;

5- запрос аутентификатора;

6- отсылка аутентификаторов;

7- проверка соответствия полученного аутентификатора указанному ранее идентификатору по базе учетных записей.

Из приведенной схемы (рис.2) видно, что для преодоления системы защиты от несанкционированного доступа можно либо изменить работу субъекта, осуществляющего реализацию процесса идентификации/аутентификации, либо изменить содержимое объекта – базы учетных записей. Кроме того, необходимо различать локальную и удаленную аутентификацию.

При локальной аутентификации можно считать, что процессы 1,2,3,5,6 проходят в защищенной зоне, то есть атакующий не имеет возможности прослушивать или изменять передаваемую информацию. В случае же удаленной аутентификации приходится считаться с тем, что атакующий может принимать как пассивное, так и активное участие в процессе пересылки идентификационной /аутентификационной информации. Соответственно в таких системах используются специальные протоколы, позволяющие субъекту доказать знание конфиденциальной информации не разглашая ее (например, протокол аутентификации без разглашения).

Общую схему защиты информации в ИС можно представить следующим образом (рис.3):

Рис. 3. Съема защиты информации в информационной системе

Таким образом, всю систему защиты информации в ИС можно разбить на три уровня. Даже если злоумышленнику удастся обойти систему защиты от несанкционированного доступа, он столкнется с проблемой поиска необходимой ему информации в ИС.

Семантическая защита предполагает сокрытие места нахождения информации. Для этих целей может быть использован, например, специальный формат записи на носитель или стеганографические методы, то есть сокрытие конфиденциальной информации в файлах-контейнерах не несущих какой-либо значимой информации.

В настоящее время стеганографические методы защиты информации получили широкое распространение в двух наиболее актуальных направлениях:

  • сокрытие информации;
  • защита авторских прав.

Последним препятствием на пути злоумышленника к конфиденциальной информации является ее криптографическое преобразование. Такое преобразование принято называть шифрацией. Краткая классификация систем шифрования приведена ниже (рис.4):

Рис. 4. Классификация систем шифрования

Основными характеристиками любой системы шифрования являются:

  • размер ключа;
  • сложность шифрации/дешифрации информации для легального пользователя;
  • сложность «взлома» зашифрованной информации.

В настоящее время принято считать, что алгоритм шифрации/дешифрации открыт и общеизвестен. Таким образом, неизвестным является только ключ, обладателем которого является легальный пользователь. Во многих случаях именно ключ является самым уязвимым компонентом системы защиты информации от несанкционированного доступа.

Из десяти законов безопасности Microsoft два посвящены паролям:

Закон 5: «Слабый пароль нарушит самую строгую защиту»,

Закон 7: «Шифрованные данные защищены ровно настолько, насколько безопасен ключ дешифрации».

Именно поэтому выбору, хранению и смене ключа в системах защиты информации придают особо важное значение. Ключ может выбираться пользователем самостоятельно или навязываться системой. Кроме того, принято различать три основные формы ключевого материала:

1.3.4. Технические средства защиты информации

В общем случае защита информации техническими средствами обеспечивается в следующих вариантах:
источник и носитель информации локализованы в пределах границ объекта защиты и обеспечена механическая преграда от контакта с ними злоумышленника или дистанционного воздействия на них полей его технических средств

  • соотношение энергии носителя и помех на входе приемника установленного в канале утечки такое, что злоумышленнику не удается снять информацию с носителя с необходимым для ее использования качеством;
  • злоумышленник не может обнаружить источник или носитель информации;
  • вместо истинной информации злоумышленник получает ложную, которую он принимает как истинную.

Эти варианты реализуют следующие методы защиты:

  • воспрепятствование непосредственному проникновению злоумышленника к источнику информации с помощью инженерных конструкций, технических средств охраны;
  • скрытие достоверной информации;
  • "подсовывание" злоумышленнику ложной информации.

Применение инженерных конструкций и охрана - наиболее древний метод защиты людей и материальных ценностей. Основной задачей технических средств защиты является недопущение (предотвращение) непосредственного контакта злоумышленника или сил природы с объектами защиты.

Под объектами защиты понимаются как люди и материальные ценности, так и носители информации, локализованные в пространстве. К таким носителям относятся бумага, машинные носители, фото- и кинопленка, продукция, материалы и т.д., то есть всё, что имеет четкие размеры и вес. Для организации защиты таких объектов обычно используются такие технические средства защиты как охранная и пожарная сигнализация.

Носители информации в виде электромагнитных и акустических полей, электрического тока не имеют четких границ и для защиты такой информации могут быть использованы методы скрытия информации. Эти методы предусматривают такие изменения структуры и энергии носителей, при которых злоумышленник не может непосредственно или с помощью технических средств выделить информацию с качеством, достаточным для использования ее в собственных интересах.

1.3.5. Программные средства защиты информации

Эти средства защиты предназначены специально для защиты компьютерной информации и построены на использовании криптографических методов. Наиболее распространенными программными средствами являются:

1.3.6. Антивирусные средства защиты информации

В общем случае следует говорить о «вредоносных программах», именно так они определяются в руководящих документах ГосТехКомиссии и в имеющихся законодательных актах(например, статья 273 УКРФ «Создание, использование и распространение вредоносных программ для ЭВМ»). Все вредоносные программы можно разделить на пять типов:

  • Вирусы – определяются как куски программного кода, которые обладают возможностью порождать объекты с подобными свойствами. Вирусы в свою очередь классифицируют по среде обитания(например: boot -, macro - и т.п. вирусы) и по деструктивному действию.
  • Логические бомбы – программы, запуск которых происходит лишь при выполнении определенных условий (например: дата, нажатие комбинации клавиш, отсутствие/наличие определенной информации и т.п.).
  • Черви – программы, обладающие возможностью распространяться по сети, передавая в узел назначения не обязательно сразу полностью весь программный код – то есть они могут «собирать» себя из отдельных частей.
  • Трояны – программы, выполняющие не документированные действия.
  • Бактерии – в отличие от вирусов это цельная программы, обладающие свойством воспроизведения себе подобных.

В настоящее время вредоносные программ в «чистом» виде практически не существуют – все они являются некоторым симбиозом перечисленных выше типов. То есть, например: троян может содержать вирус и в свою очередь вирус может обладать свойствами логической бомбы. По статистике ежедневно появляется около 200 новых вредоносных программ, причем «лидерство» принадлежит червям, что вполне естественно, вследствие быстрого роста числа активных пользователей сети Интернет.

В качестве защиты от вредоносных программ рекомендуется использовать пакеты антивирусных программ ( например: DrWeb, AVP – отечественные разработки, или зарубежные, такие как NAV, TrendMicro, Panda и т.д.). Основным методом диагностики всех имеющихся антивирусных систем является «сигнатурный анализ», то есть попытка проверить получаемую новую информацию на наличие в ней «сигнатуры» вредоносной программы – характерного куска программного кода. К сожалению, такой подход имеет два существенных недостатка:

  • Можно диагностировать только уже известные вредоносные программы, а это требует постоянного обновления баз «сигнатур». Именно об этом предупреждает один из законов безопасности Microsoft:

Закон 8: «Не обновляемая антивирусная программа не намного лучше полного отсутствия такой программы»

  • Непрерывное увеличение числа новых вирусов приводит к существенному росту размера базы «сигнатур», что в свою очередь вызывает значительное использование антивирусной программой ресурсов компьютера и соответственно замедление его работы.

Одним из известных путей повышения эффективности диагностирования вредоносных программ является использование так называемого «эвристического метода». В этом случае предпринимается попытка обнаружить наличие вредоносных программ, учитывая известные методы их создания. Однако, к сожалению, в случае если в разработке программы принимал участие высококлассный специалист, обнаружить ее удается лишь после проявления ею своих деструктивных свойств.

Идентификацию и аутентификацию можно считать основой программно-технических средств безопасности, поскольку остальные сервисы рассчитаны на обслуживание именованных субъектов. Идентификация и аутентификация – это первая линия обороны, "проходная" информационного пространства организации.

Идентификация позволяет субъекту ( пользователю, процессу , действующему от имени определенного пользователя, или иному аппаратно-программному компоненту) назвать себя (сообщить свое имя). Посредством аутентификации вторая сторона убеждается, что субъект действительно тот, за кого он себя выдает. В качестве синонима слова " аутентификация " иногда используют словосочетание "проверка подлинности".

Аутентификация бывает односторонней (обычно клиент доказывает свою подлинность серверу) и двусторонней ( взаимной ). Пример односторонней аутентификации – процедура входа пользователя в систему.

В сетевой среде, когда стороны идентификации / аутентификации территориально разнесены, у рассматриваемого сервиса есть два основных аспекта:

  • что служит аутентификатором (то есть используется для подтверждения подлинности субъекта);
  • как организован (и защищен) обмен данными идентификации / аутентификации .

Субъект может подтвердить свою подлинность, предъявив по крайней мере одну из следующих сущностей:

  • нечто, что он знает (пароль, личный идентификационный номер, криптографический ключ и т.п.);
  • нечто, чем он владеет (личную карточку или иное устройство аналогичного назначения);
  • нечто, что есть часть его самого (голос, отпечатки пальцев и т.п., то есть свои биометрические характеристики).

В открытой сетевой среде между сторонами идентификации / аутентификации не существует доверенного маршрута ; это значит, что в общем случае данные, переданные субъектом, могут не совпадать с данными, полученными и использованными для проверки подлинности. Необходимо обеспечить защиту от пассивного и активного прослушивания сети , то есть от перехвата , изменения и/или воспроизведения данных. Передача паролей в открытом виде, очевидно, неудовлетворительна; не спасает положение и шифрование паролей, так как оно не защищает от воспроизведения . Нужны более сложные протоколы аутентификации .

Надежная идентификация затруднена не только из-за сетевых угроз , но и по целому ряду причин. Во-первых, почти все аутентификационные сущности можно узнать, украсть или подделать. Во-вторых, имеется противоречие между надежностью аутентификации , с одной стороны, и удобствами пользователя и системного администратора с другой. Так, из соображений безопасности необходимо с определенной частотой просить пользователя повторно вводить аутентификационную информацию (ведь на его место мог сесть другой человек), а это не только хлопотно, но и повышает вероятность того, что кто-то может подсмотреть за вводом данных. В-третьих, чем надежнее средство защиты, тем оно дороже.

Современные средства идентификации / аутентификации должны поддерживать концепцию единого входа в сеть . Единый вход в сеть – это, в первую очередь, требование удобства для пользователей. Если в корпоративной сети много информационных сервисов , допускающих независимое обращение, то многократная идентификация / аутентификация становится слишком обременительной. К сожалению, пока нельзя сказать, что единый вход в сеть стал нормой, доминирующие решения пока не сформировались.

Таким образом, необходимо искать компромисс между надежностью, доступностью по цене и удобством использования и администрирования средств идентификации и аутентификации .

Любопытно отметить, что сервис идентификации / аутентификации может стать объектом атак на доступность. Если система сконфигурирована так, что после определенного числа неудачных попыток устройство ввода идентификационной информации (такое, например, как терминал) блокируется, то злоумышленник может остановить работу легального пользователя буквально несколькими нажатиями клавиш.

Парольная аутентификация

Главное достоинство парольной аутентификации – простота и привычность. Пароли давно встроены в операционные системы и иные сервисы. При правильном использовании пароли могут обеспечить приемлемый для многих организаций уровень безопасности. Тем не менее, по совокупности характеристик их следует признать самым слабым средством проверки подлинности.

Чтобы пароль был запоминающимся, его зачастую делают простым (имя подруги, название спортивной команды и т.п.). Однако простой пароль нетрудно угадать, особенно если знать пристрастия данного пользователя. Известна классическая история про советского разведчика Рихарда Зорге, объект внимания которого через слово говорил "карамба"; разумеется, этим же словом открывался сверхсекретный сейф.

Иногда пароли с самого начала не хранятся в тайне, так как имеют стандартные значения, указанные в документации, и далеко не всегда после установки системы производится их смена.

Ввод пароля можно подсмотреть. Иногда для подглядывания используются даже оптические приборы.

Пароли нередко сообщают коллегам, чтобы те могли, например, подменить на некоторое время владельца пароля. Теоретически в подобных случаях более правильно задействовать средства управления доступом, но на практике так никто не поступает; а тайна, которую знают двое, это уже не тайна.

Пароль можно угадать "методом грубой силы", используя, скажем, словарь. Если файл паролей зашифрован, но доступен для чтения, его можно скачать к себе на компьютер и попытаться подобрать пароль, запрограммировав полный перебор (предполагается, что алгоритм шифрования известен).

Тем не менее, следующие меры позволяют значительно повысить надежность парольной защиты:

Читайте также: