Как правильно подключить rs485 usb

Обновлено: 07.07.2024

Описание UPort и его предварительная настройка.

UPort – это преобразователь USB в RS-232/422/485 производства MOXA , который добавляет СОМ порты на ПК.

Структурная схема подключения UPort 1150 выглядит так:

С одной стороны UPort имеется порт USB для подключения к компьютеру, с другой — COM-порт для подключения к конечному устройству. С одной стороны UPort имеется порт USB для подключения к компьютеру, с другой — COM-порт для подключения к конечному устройству.

Для работы с UPort 1150 необходимо установить драйвер ( Driver for UPort 1000 Series ).

После установки драйвера в диспетчере устройств мы увидим новый СОМ порт. После установки драйвера в диспетчере устройств мы увидим новый СОМ порт.

В разделе диспетчера устройств Windows « Многопортовые последовательные адаптеры» мы можем настроить СОМ порт, а именно выбрать номер СОМ порта и тип интерфейса:

Как проверить RS-232 интерфейс?

Для проверки RS-232 можно воспользоваться простым способом: достаточно замкнуть контакты RX и TX между собой. Тогда все переданные данные будут приняты обратно.

Схема замыкания контактов для проверки работы RS-232. Схема замыкания контактов для проверки работы RS-232.

Если у вас полный RS-232 или нужно использовать аппаратный контроль за передачей данных, тогда вам нужно распаять специальную заглушку. В ней должны быть соединены между собой следующие контакты.

Схема замыкания контактов для проверки работы полного RS-232 или RS-232 с аппаратным контролем. Схема замыкания контактов для проверки работы полного RS-232 или RS-232 с аппаратным контролем.

На примере PComm Lite это будет выглядеть так:

Откройте программу PComm Terminal Emulator , во вкладке Port Manager откройте СОМ-порт, соответствующий UPort. Скорость и другие параметры можно оставить по умолчанию.

Однако, если вы подключаете внешнее устройство к СОМ-порту, эти параметры должны совпадать с параметрами внешнего устройства.

Мы отправили несколько единиц в СОМ порт и получили их обратно, также мы видим одинаковые значения счетчиков TX и RX, что подтверждает получение всех отправленных данных:

Если вы хотите отображать текст, который печатаете, то вам нужно включить функцию Local echo на вкладке Terminal при открытии порта. Важно: после включения функции Local echo, если вы замкнули TX и RX , то текст в терминале удвоится , потому что будет отображен вводимый символ и тот, который получен обратно .

Функция Local echo включена: печатаемый текст отображается. Функция Local echo включена: печатаемый текст отображается.

Схемы подключения внешнего устройства с RS-232:

Ниже перечислено несколько способов подключения разъёма RS-232 в зависимости от соединяемых устройств:

Как проверить RS-422 интерфейс?

Для проверки RS-422 можно также воспользоваться простым способом: достаточно замкнуть контакты TD+ на RD+ и TD- на RD- . Тогда все переданные данные будут приняты обратно.

Схема замыкания контактов для проверки работы RS-422. Схема замыкания контактов для проверки работы RS-422.

Убедитесь, что UPort настроен на RS-422:

В терминале видны данные, которые мы отправили в СОМ-порт:

Схема подключения внешнего устройства с RS-422:

Как проверить RS-485 интерфейс?

Интерфейс RS-485 может быть реализован на 2 или 4 контактах.

Для варианта RS-485 с 4 контактами проверка сводится к тем же действиям, что и в RS-422, с таким же подключением контактов TD+ на RD+ и TD- на RD .

Для варианта RS-485 с 2 контактами нужно использовать внешнее устройство для проверки работы. Это может быть второй порт UPort или заведомо исправное устройство с RS-485.

Схема соединения тестируемого устройства с 2-контактным RS-485 с заведомо исправным прибором. Схема соединения тестируемого устройства с 2-контактным RS-485 с заведомо исправным прибором.

Убедитесь, что UPort настроен на RS-485 и правильно указано количество контактов:

Схема подключения внешнего устройства с RS-485:

Подтягивающие и согласующие резисторы:

В некоторых моделях UPort есть встроенные резисторы, которые обеспечивают правильную работу линий RS-422/485.

Согласующий резистор или терминатор 120 Ом – ставится в начале и конце линии для предотвращения отражения сигнала от конца линии и искажения полезного сигнала в RS-422/485.

При большой длине линии связи (более 100 метров) возникают эффекты длинных линий, которые связаны с индуктивностью и ёмкостью кабеля. Получается, что сигнал, переданный в линию с одной стороны, начинает искажаться по мере распространения в другую сторону. Поскольку на практике кабель на всей длине имеет одинаковые параметры погонной ёмкости и индуктивности, это свойство кабеля характеризуют волновым сопротивлением . Поэтому, если на приёмном конце кабеля использовать резистор с сопротивлением, равным волновому сопротивлению кабеля, то негативные резонансные явления значительно ослабляются.

Подтягивающие резисторы (pull high/low resistors) – предназначены для ограничения тока, протекающего по сигнальным цепям, и чтобы сделать состояние цифрового входа по умолчанию высоким или низким.

Цифровой вход нельзя напрямую подключить к питанию без ограничения тока, а также нельзя оставлять вход без подключения к чему либо, т.к. возможны ложные изменения состояния входа из-за внешних наводок.

Цепь с подтягивающим резистором можно представить в виде делителя напряжения из двух резисторов — одного подтягивающего и другого на месте кнопки.

Логический вход имеет ёмкость относительно земли, что влияет на время нарастания или спада сигнала при размыкании кнопки. Время спада или нарастания — это время между размыканием кнопки и достижением сигнала порогового напряжения, при достижении которого логическим входом фиксируется изменение логического состояния с высокого «1» на низкий «0» или наоборот.

Время спада и нарастания — зависит от произведения сопротивления, ёмкости и коэффициента, который учитывает пороговое напряжение. При подключении различных устройств значение ёмкости изменяется, это ведет к изменению формы сигнала, что может негативно сказаться на правильном определении уровня сигнала.

Поэтому иногда требуется подстройка значений подтягивающих резисторов для восстановления формы сигнала.

В рамках данной заметки речь пойдет о вот таком преобразователе интерфейсов USB-RS485:


Третьего дня возникла острая производственная необходимость в подобном преобразователе. Возникла, как всегда, внезапно и (обратно – как всегда) архисрочно. Причем, мои попытки впарить уже разработанный ранее преобразователь успехом не увенчались. Надо, говорят, чтобы был гальваноразвязанный. На мой вопрос «зачем именно такой?» ответа не последовало – надо, и всё тут. С одной стороны – послать бы умников на хер, да и дело с концом, но с другой – задание есть задание (= «деньги есть деньги»). С третьей же – давно чесались руки сделать подобную поделку, да всё как-то не было повода. А тут – как специально заказ подогнали. Так что решать поставленную задачу принялся с чистой душой и поющим сердцем.

Схема подобных преобразователей настолько стандартна, что насчет стандартности может поспорить с любым ГОСТом. Берем сигнал USB, преобразовываем его в UART (грубо говоря), а затем из UART'а делаем RS485:



В моем случае в качестве преобразователя UART-RS485 применена широко распространенная микросхема ADM485 (ну, или любой ее аналог, имя которым – легион). Способ подключения таких чипов прост, как барабан: к линии «Data In» подключается сигнал TXD (см. UART), к линии «Data Out» — сигнал RXD. Ну а по управляющим входам (которые обычно объединяются) говорим чипу о том, как надо в данный момент работать: на прием данных с шины RS485 или на передачу.

В роли конвертера USB-UART выступает чип FT232RL. Это аппаратный преобразователь, поэтому никаких прошивок для него не надо – впаял и радуйся. Правда, говорят, цена на него огромна (на 04.12.14 в «Чип-НН» — 190р.), но это уж кому как. Зато корпус хороший и с лапами (в отличие от той же CP2102-GM), называется SSOP-28 и довольно легко паяется.

Пользоваться FT232 так же просто, как и ADM485. На вход микросхемы подаем USB-сигнал, а на выходе получаем TTL-сигналы TXD и RXD. Плюс еще есть выводы, специально заточенные под индикацию процессов приема и передачи информации (рассчитаны на подключение светодиодов). Ну и вообще – категорически рекомендую покопаться в документации на FT232RL, найдете много всего интересного. В частности, там есть страница, где подробно расписано, как FT232 правильно подключать к приемопередатчику RS485 (и я ее даже пересказал).

Ну и последний штрих – секция гальваноразвязки. В качестве изолятора цифровых сигналов я использовал микросхему ISO7231, специально заточенную под рассматриваемый тип преобразователей. Данный чип имеет два входа и один выход на «первичной» стороне (соответственно, два выхода и один вход на «вторичной») – как раз то, что надо для приемопередатчика RS485 (в нашем случае – ADM485). Как вариант – можно использовать шустрые оптроны, но они относительно большие и у меня их нет. Ну а в качестве изолированного DC-DC преобразователя решил использовать модуль P6AU-0505ELF от конторы «PEAK». Купил их когда-то штук двадцать как раз для таких целей, и вот – пригодились. Данный модуль дает +5,0В на выход из +5,0В на входе – как раз наш случай. Правда, изоляция у него не блещет – всего 1кВ между входом и выходом, но это всё же лучше, чем ничего (о чем я и сообщил заказчикам). Так что можно считать рассматриваемый преобразователь интерфейса хоть и не «тру», но всё-таки гальваноразвязанным.

В итоге схема поделки приобрела такой вид:


(«резисторы» R4-R8 – это обычные проволочные перемычки, используются для варианта преобразователя без гальваноразвязки, см. далее).

USB-сигнал подается на разъем XS1 («USB»). Шина RS485 подключается к точкам 1-3 (на плате оформлены в виде клеммников). Присутствуют три перемычки-джампера – одна для подключения/отключения резистора-терминатора (JP2 «TERM.»), и две – для подключения подтягивающих резисторов к плюсу питания и к земле. Для чего нужны терминатор и эти подтяжки здесь объяснять не буду – и так заметка, как обычно, нескромно распухла. Можно посмотреть тут — там всё доступно расписано (и даже с расчетами). Светодиод HL1 («USB PWR») сигнализирует о подаче питания с порта USB на преобразователь интерфейсов. Светодиод HL2 («USB<=485»), как следует из названия, загорается в момент приема данных с шины RS485, светодиод HL3 («USB=>485») – в момент передачи данных на шину. На точку подключения модуля №4 выведено питание «вторичной» части преобразователя, причем в зависимости от выбранной модели устройства эта линия может быть как выходом, так и входом (см. далее). На точки подключения №№5, 6 подается внешнее питание для «вторичной» стороны (опять же – в зависимости от выбранной модели преобразователя). Ну а всё остальное – в соответствии с даташытами (жы/шы пиши с буквой «и» — прим. автора) на используемые микросхемы/модули.

Под приведенную схему была незамедлительно разведена



печатная плата. Обратите внимание на щель: без нее для реальной гальваноразвязки не обойдешься (спасибо проектировщикам DC-DC преобразователя P6AU-0505ELF). Без спецоборудования такую щель проще всего сделать так – насверлить отверстий вплотную друг к другу (в данном случае диаметр дырок/ширина щели – 1,0мм), а затем этим же сверлом «профрезеровать» щель по насверленным дыркам. На чертеже печатной платы отверстия для изготовления щели в наличии.

Габаритные и присоединительные размеры платы:


слева – сторона TOP, справа – сторона BOTTOM. Высота преобразователя определяется высотой USB разъема (USBB-1J) и составляет около 11мм. Кстати, дырки под контакты этого разъема сделаны так, что в них может залезть гребенка PLD-4 (ну, или гнездо PBD-4) – на всякий случай.

Из особенностей платы отмечу следующее. Во-первых, плата односторонняя. Перед написанием заметки глянул несколько вариантов подобных преобразователей в поисковике. Почему-то большинство плат для них – двухсторонние. И при этом – никаких ограничений по габаритам переходника. Почему именно так – понять не смог, ибо там замечательно всё на одной стороне разводится (причем, даже без перемычек).


Фича тут вот в чем. Берем стойку HTP-320 или аналогичную. Отмеряем от одного из ее краев 15мм и сверлим дырку прямо «посередине ширины» стойки, а затем режем в ней резьбу М3 или М2,5:



На самом деле он будет чуть утоплен внутрь (примерно на 0,2-0,3мм), но это сделано для запаса – мало ли каких разъемов наштампуют наши братья-китайцы.

G1020B, G1032B, G1068B, G431, G434, G436, G738,

и это только из не особо богатого ассортимента магазина «Чип-НН» (да и то – по-минимуму).


Также отмечу, что цепь питания FT232RL содержит не то, чтобы сильно распространенные элементы – дроссель MI0805K400R-10 и самовосстанавливающийся предохранитель MF-NSMF050. В принципе, если поделка располагается недалеко от компа, дроссель можно выкинуть, а уж предохранитель – на ваше усмотрение. В любом случае – плата построена так, что вместо этих двух элементов можно впаять один любой элемент типоразмера 0805 или 1206 (хоть тот же резистор-перемычку):


Ну и последнее – схема и плата предусматривают возможность создания нескольких типов преобразователей интерфейса:

— ПИ-5б-Н: преобразователь без гальваноразвязки, дополнительного источника питания не требует:


— ПИ-5б-И1: преобразователь с гальваноразвязкой, дополнительного источника питания не требует, но используется дорогой DC-DC преобразователь:


— ПИ-5б-И2: преобразователь с гальваноразвязкой, требуется дополнительный источник питания +(7,5…12,0)В на «вторичной» стороне (при использовании стабилизатора DA1 в корпусе TO-220 максимальное входное напряжение может быть увеличено соответственно максимальной рассеиваемой мощности):


— ПИ-5б-И3: преобразователь с гальваноразвязкой, частный случай предыдущего варианта – требуется дополнительный источник питания +5,0В на «вторичной» стороне:


Думаю, какие детали надо устанавливать для каждого из вариантов, понятно из схемы (но если есть какие вопросы – задавайте, дополню заметку). Отмечу лишь, что на фото в начале заметки показан «универсальный» вариант преобразователя – в цанговые линейки можно втыкать и выковыривать различные элементы.

В завершение заметки хочу отметить, что правильно собранный преобразователь интерфейса не нуждается в отладке – достаточно лишь установить дрова для FT232RL и выставить нужное положение джамперов JP1-JP3.

А на сегодня всё. Желаю удачи при работе с шиной RS485!

ПИ-5б_SCH.pdf – схема преобразователя;
ПИ-5б_ФР.lay – печатная плата, вариант для шаблонщиков;
ПИ-5б_ЛУТ.lay – печатная плата, вариант для утюжников.

«Оригинальный» файл – для шаблонщиков, он точно без косяков, а вот файл «ПИ-5б_ЛУТ.lay» проверяйте – может я там чего лишнего настирал вместе с полигонами.

Современные периферийные устройства в своём большинстве рассчитаны на подключение к компьютеру по интерфейсу USB, который сейчас вытеснил все другие виды компьютерных интерфейсов. Если возникнет задача ввести в компьютер информацию по интерфейсу RS-485, в этом поможет предлагаемый преобразователь.

Асинхронный интерфейс передачи данных RS-485 - один из самых распространённых промышленных интерфейсов и, несмотря на постепенное вытеснение более современными технологиями, такими как, например, Ethernet, продолжает по сей день активно применяться в системах промышленной автоматизации, пожарной и охранной сигнализации, контроля доступа и пр. Он, конечно же, не может соревноваться с вездесущими Ethernet и Wi-Fi по скорости передачи данных, но зато обладает одним неоспоримым преимуществом - простотой реализации. Для связи по RS-485 требуются всего два провода и очень простое программное обеспечение, к тому же существует огромное количество готовых аппаратных и программных решений. Также следует отметить и весьма хорошую дальность связи - более километра при скорости до 62,5 кбит/с, согласно спецификации на стандарт. На практике же удавалось организовать стабильный обмен данными на расстояние более трёх километров на скорости 10 кбит/с при использовании экранированной витой пары.

Для возможности подключения какого-либо прибора, оборудованного интерфейсом RS-485, к домашнему компьютеру или ноутбуку необходим, естественно, соответствующий преобразователь интерфейсов, например USB/RS-485. Подобные устройства широко распространены и подробно описаны в технической литературе. О варианте подобного преобразователя и пойдёт речь. Схема устройства приведена на рис. 1. В основе лежит "классическая" в подобных преобразователях популярная микросхема FT232RL (DD1). Она представляет собой специализированный, полностью аппаратно реализованный двухнаправленный преобразователь-конвертер USB/UART (UART -Universal Asynchronous Receiver-Transmitter - универсальный асинхронный приёмопередатчик) с полной поддержкой протокола USB. Микросхема требует минимальной внешней обвязки. Помимо этого, FT232RL имеет встроенную EEPROM объёмом 1024 байт и предоставляет весьма широкие возможности для пользовательского конфигурирования некоторых своих параметров и режимов работы. Например, можно выбрать режим работы от встроенного или от внешнего тактового генератора, переназна-чить функции выводов CBUS0-CBUS4 (на схеме показаны только задействованные CBUS0-CBUS2), включить инверсию сигналов UART и пр. Полную информацию о микросхеме можно получить из технической документации производителя [1]. Для конфигурирования можно использовать бесплатные утилиты MProg 3.5 и FT_Prog 3.0 c сайта производителя. С завода микросхема поставляется со штатной конфигурацией (прошивкой), в которой выбран режим работы от внутреннего тактового генератора, вывод СBUS0 (выв. 23) настроен на подключение светодиода, индицирующего передачу данных, CBUS1 (выв. 22) - для светодиода приёма данных, CBUS2 (выв. 13) - сигнал коммутации приём/ передача (DE - Driver Enable). В схеме на рис. 1 используется штатное включение микросхемы.

Рис. 1. Схема устройства

Микросхема ADuM5401 (DD2) представляет собой цифровой изолятор сигналов, специально разработанный для применения в промышленных интерфейсах передачи данных. Согласно технической документации производителя, изолятор способен кратковременно выдерживать между входом и выходом разность потенциалов 2,5 кВ. Подробно эта микросхема описана в [2]. Она имеет четыре одинаковых, работающих только в одном направлении (вход- выход), изолированных канала:

- первый: выв. 3 - вход, выв. 14 - выход;

- второй: выв. 4 - вход, выв. 13 - выход;

- третий (на схеме не показан): выв. 5 - вход, выв. 12 - выход;

- четвёртый: выв. 11 - вход, выв. 6 - выход.

Помимо этого, ADuM5401 имеет также встроенный изолированный источник питания, по сути - интегральный трансформатор мощностью 0,5 Вт (при напряжении 5 В) для питания вторичной, изолированной стороны: выв. 16 - плюсовой вывод и выв. 15 - минусовый.

Микросхема ADM1485ARZ (DD3) - обычный приёмопередатчик дифференциального сигнала для стандарта RS-485/RS-422. Приёмник и передатчик могут коммутироваться независимо друг от друга. Для того чтобы включить передатчик, необходимо подать высокий уровень на выв. 3 (DE - Driver Enable - передатчик разрешён). Включение приёмника - инверсное, осуществляется подачей низкого уровня на выв. 2 (RE - Receiver Enable - приёмник разрешён). На схеме (см. рис. 1), как и в большинстве подобных схемных решений, выв. 3 и выв. 2 соединены для удобства вместе. Когда на линии R/T установлен высокий уровень, DD3 работает на передачу, а когда низкий - на приём информации. Выв. 1 (RO - Receiver Output) - выход приёмника. Выв. 4 (DI - Driver Input) - вход передатчика. Подробное описание этой микросхемы приведено в [3].

Устройство можно значительно упростить, отказавшись от гальванической развязки и входного фильтра питания. Схема упрощённого варианта показана на рис. 2.

Рис. 2. Схема упрощённого варианта устройства

Рис. 3. Чертёж печатной платы преобразователя

Чертёж печатной платы преобразователя приведён на рис. 3. Печатная плата максимально минимизирована под размер обычной "флешки" и выполнена на фольгированном с двух сторон стеклотекстолите FR-4 размерами 14x41 мм. Детали расположены с обеих сторон. На условно верхней стороне - разъёмы X1 и X2, микросхемы DD1 и DD3, цепи индикации R1HL1, R2HL2 и HL3, а также защитные диоды VD1 и VD2. Остальные - на условно нижней стороне платы. Расположение элементов показано на рис. 4. Все резисторы и конденсаторы, кроме С5, а также светодиоды применены типоразмера 0603. Конденсатор С5 - танталовый типоразмера Case A (размеры 3,2x1,6x1,6 мм) на номинальное напряжение 10 В. Разъём USB (X1) - USB-AR (DS1097-B) или аналогичный. Разъём X2 - ECH381R-04P со съёмной ответной частью EC381V-04P Самовос-станавливающиеся предохранители F1 и F2 - MF-USMF010 или аналогичные на ток срабатывания от 100 мА (размеры 3,2x2,5 мм). Дроссель помехопо-давления L1 - BLM21PG331SN1D. Однонаправленные защитные диоды-супрессоры VD1 и VD2 желательно заменить на двухнаправленные SMAJ10CA-TR в корпусе SMA/DO-214AC. Фото собранного устройства приведены на рис. 5 - рис. 10.

Рис. 4. Расположение элементов на плате

Рис. 5. Устройство в сборе

Рис. 6. Устройство в сборе

Рис. 7. Устройство в сборе

Рис. 8. Устройство в сборе

Рис. 9. Устройство в сборе

Рис. 10. Устройство в сборе

Рис. 11. Диспетчер задач

Рис. 12. Подключение преобразователей интерфейсов к USB-портам компьютера

Рис. 13. Окна программы Terminal1_9_b

Программа Terminal1_9_b находится здесь.

Автор: В. Лазарев, г. Вязьма Смоленской обл.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда активна

Рекомендации по разводке сети интерфейса RS-485

RS-485 (EIA/TIA-485) — это стандарт, определяющий электрические характеристики приемников и передатчиков информации для использования в балансных цифровых многоточечных системах. Интерфейс RS-485 является одним из наиболее распространённых стандартов физического уровня в современных средствах промышленной автоматизации.

Как было сказано выше стандарт содержит электрические характеристики приемников и передатчиков, которые могут быть использованы для передачи двоичных сигналов в многоточечных сетях, при этом стандарт не оговаривает другие характеристики: такие как качество сигнала, протоколы обмена, типы соединителей для подключения, линии связи. В результате неопределенности потребители часто испытывают трудности при подключении того или иного оборудования к сети RS-485. Порой неправильно разведенная сеть RS-485 способна свести к нулю затраченные на повышение автоматизации усилия, и может стать причиной постоянных отказов, сбоев и ошибок в работе оборудования. Цель данной статьи - предоставить пользователям рекомендации по подключению и практической реализации систем передачи данных на основе интерфейса RS-485.

1 Краткое описание стандарта

В основе интерфейса RS-485 лежит способ дифференциальной (балансной) передачи данных. Суть данного метода заключается в следующем: по одному проводу (условно линия А) передается нормальный сигнал, а по второму проводу (условно линия В) передается инвертированный сигнал, таким образом, между двумя проводами витой пары всегда существует разность потенциалов (рисунок 1). Для случая логической «единицы» разность потенциалов положительна, для логического «нуля» — отрицательна.

Диаграмма дифференциальной (балансной) передачи данных

Рисунок 1 — Диаграмма дифференциальной (балансной) передачи данных

Преимуществом дифференциальной (балансной) передачи данных является высокая устойчивость к синфазным помехам. Синфазная помеха — помеха, действующая на обе линии связи одинаково. Зачастую линии связи прокладываются в местах подверженных неоднородным электромагнитным полям, электромагнитная волна, проходя через участок линии связи, будет наводить в обоих проводах потенциал. В случае RS-232 интерфейса полезный сигнал, который передается потенциалом относительно общего «земляного» провода был бы утерян. При дифференциальной передаче не происходит искажения сигнала в виду того, что помеха одинаково действует на оба проводника и наводит в них одинаковый потенциал, в результате чего разность потенциалов (полезный сигнал) остается неизменной. По этой причине линии связи интерфейса RS-485 представляют собой два скрученных между собой проводника и называются витой парой. Прямые выходы «А» подключаются к одному проводу, а инверсные «В» ко второму проводу (рисунок 2). В случае неправильного подключения выходов к линиям приемопередатчики не выйдут из строя, но при этом правильно функционировать они не будут.

Конфигурация сети RS-485

Рисунок 2 — Конфигурация сети RS-485

2 Рекомендации по подключению

Конфигурация сети представляет собой последовательное присоединение приемопередатчиков к витой паре (топология «шина»), при этом сеть не должна содержать длинных ответвлений при подключении устройств, так как длинные ответвления вызывают рассогласования и отражения сигнала (рисунок 3).

Стандарт предполагает, что устройства подключаются непосредственно к шине. При этом скрутки и сращивания кабеля не допускаются. При увеличении длины линий связи при высокой скорости передачи данных имеет место так называемый эффект длинных линий. Он заключается в том, что скорость распространения электромагнитных волн в проводниках ограничена, для примера у проводника с полиэтиленовой изоляцией она ограничена на уровне около 206 мм/нс. Помимо этого электрический сигнал имеет свойство отражаться от концов проводника и его ответвлений. Для коротких линий подобные процессы протекают быстро и не оказывают влияния на работу сети, однако при значительных расстояниях в сотни метров отраженная от концов проводников волна может исказить полезный сигнал, что приведет к ошибкам и сбоям.

Проблему отражений сигнала в интерфейсе RS-485 решают при помощи согласующих резисторов — «терминаторов», которые устанавливаются непосредственно у выходов двух приемопередатчиков максимально отдаленных друг от друга. Следует отметить, что в большинстве случаев «терминаторы» уже смонтированы в потребительских устройствах и подключаются к сети при помощи соответствующих перемычек на корпусе устройства. Номинал «терминатора» соответствует волновому сопротивлению кабеля, при этом нужно помнить, что волновое сопротивление кабеля зависит от его характеристик и не зависит от его длины. К примеру, для витой пары UTP-5, используемой для прокладки Ethernet волновое сопротивление составляет 100 ±15 Ом. Специализированный кабель Belden 9841…9844 для прокладки сетей RS-485 имеет волновое сопротивление 120 Ом, поэтому расчетами резистора — «терминатора» можно пренебречь и использовать 120 Ом.

Примеры топологий сетей RS-485

Рисунок 3 — Примеры топологий сетей RS-485

Экранированные витые пары (например, кабели Belden 9841, 3106A) рекомендуется применять в особо ответственных системах, а также при скоростях обмена свыше 500 Кбит/сек.

Нужно отметить, что для обеспечения отказоустойчивости и помехозащищенности с увеличением длины линий связи скорость передачи желательно уменьшить. Зависимость скорости обмена от длины линий представлена на рисунке 4. Данная зависимость может отличаться при прочих условиях и носит скорее рекомендательный характер.

Зависимость скорости обмена от длины линии связи

Рисунок 4 — Зависимость скорости обмена от длины линии связи

Согласно стандарту RS-485 (EIA/TIA-485) передатчик должен обеспечивать передачу данных для 32 единичных нагрузок (под единичной нагрузкой подразумевается приемник с входным сопротивлением 12 кОм). В настоящее время производятся приемопередатчики с входным сопротивлением равным 1/4 (48 кОм) и 1/8 (96 кОм) от единичной нагрузки. В этом случае количество подключенных к сети устройств может быть увеличено до: 128 и 256 соответственно. Допускается использовать устройства с различным входным сопротивлением в одной сети, важно чтобы суммарное сопротивление было не менее 375 Ом.

Электрические характеристики интерфейса приведены в таблице 1.

Стандарт RS-485 (EIA/TIA-485) не регламентирует, по какому протоколу устройства сети должны связываться друг с другом. Наиболее распространенными протоколами связи на данный момент являются: Modbus, ProfiBus, LanDrive, DMX512 и другие. Передача информации осуществляется полудуплексно в большинстве случаев по принципу «ведущий» — «ведомый».

Порог чувствительности приемника составляет ± 200 мВ, то есть при разнице потенциалов на входе приемника в диапазоне от минус 200 мВ до плюс 200 мВ его выходное состояние будет находиться в состоянии неопределенности. Разность потенциалов более 200 мВ приемник принимает как логическую «1», а разность потенциалов менее минус 200 мВ приемник принимает как логический «0». Состояние неопределенности может произойти, когда ни один из передатчиков не активен, отключен от сети, либо находится в «третьем состоянии», либо все устройства сети находятся в режиме приема информации. Состояние неопределенности крайне нежелательно, так как оно вызывает ложные срабатывания приемника из-за несинфазных помех.

Использование защитного смещения позволяет исключить возможность возникновения неопределенного состояния в сети. Для этого линию А необходимо подтянуть резистором к питанию (pullup), а линию В резистором — к «земле» (pulldown). В результате, с учетом «терминаторов», получится резистивный делитель напряжения. Для надежной работы сети необходимо обеспечить смещение порядка 250…300 мВ (рисунок 5).

Защитное смещение

Рисунок 5 — Защитное смещение

Рассмотрим ситуацию, когда в сети находятся два устройства. Нам необходимо получить смещение 250мВ, при этом в сети подключены два терминальных резистора по 120Ом, и имеется источник напряжения +5В, оба приемника обладают единичной нагрузкой— их сопротивление составляет 12кОм.

Учитывая, что терминальные резисторы по 120Ом и оба приемника по 12кОм включены параллельно, то их общее сопротивление равняется:

Рассчитаем ток в цепи смещения:

При этом последовательное сопротивление цепи смещения составит:

Получаем сопротивление резисторов смещения:

Rсм = 1140 / 2 = 570Ом.

Выбираем ближайший номинал 560Ом.

Диаграмма передачи данных при использовании защитного смещения

Рисунок 6— Диаграмма передачи данных при использовании защитного смещения

Исходя из расчета защитного смещения можно заметить, что через делитель напряжения постоянно протекает ток (для случая выше это 4,2мА), что может быть недопустимым в системах с малым энергопотреблением. Это является серьезным недостатком защитного смещения.

Снизить потери можно увеличением номинала резисторов согласования до 1,1кОм и выше, но в данном случае придется искать компромисс между энергопотреблением и надежностью сети.

Для гальванически развязанной линии резисторы смещения следует подтягивать к «земле» и питанию со стороны изолированной линии.

Для защиты от помех экран витой пары следует заземлять в одной точке, при этом стандарт не оговаривает в какой, поэтому часто экран кабеля заземляется на одном из его концов. Иногда причиной возникновения ошибок при передаче сигнала является работающий поблизости радиопередатчик. Чтобы устранить влияние радиосигнала на передающий кабель достаточно установить высокочастотный конденсатор малой емкости между экраном кабеля и заземлением электрической сети порядка 1…10нФ.

Если приборы, объединенные в одну сеть, питаются от различных источников или находятся на значительном удалении друг от друга, то необходимо дополнительным дренажным проводом объединить «земли» всех устройств. Это правило исходит из того, что разность потенциалов между линией и «землей» по стандарту не должна превышать от минус 7 до плюс 12 В. В случае, когда устройства находятся на значительном расстоянии друг от друга, либо питаются от разных источников разность потенциалов на входе приемопередатчика может превысить в несколько раз допустимый диапазон, что приведет к выходу из строя приемопередатчика. При этом следует учитывать, что подключение устройства к сети RS-485 нужно начинать именно с дренажного провода, а производя отключение устройства в последнюю очередь отсоединять дренажный провод. Для ограничения «блуждающих» токов в дренажном проводе его следует подключать к каждой сигнальной земле через резистор номиналом 100 Ом мощностью 0,5 Вт, помимо этого необходимо через такой же резистор 100 Ом 0,5 Вт подключить дренажный провод к защитному заземлению. Рекомендуем осуществлять защитное заземление дренажного провода в одной точке, чтобы исключить постоянное протекание «блуждающего» тока через него по сравнению со случаем, когда дренажный провод заземляется у каждого устройства. Не следует использовать экран кабеля в качестве дренажного провода.

Использование дренажного провода для уравнивания потенциала «земель»

Рисунок 7 — Использование дренажного провода для уравнивания
потенциала «земель»

Для защиты сетей от синфазных перенапряжений и импульсных помех менее 2 кВ достаточно использовать приемопередатчики с гальванической развязкой. Если же высокий потенциал будет приложен дифференциально, т.е. к одному проводнику линии, то приемопередатчик будет поврежден, так как разность потенциалов между проводниками должна находиться в диапазоне от минус 7 до плюс 12 В.

Защита устройств сети RS-485 от дифференциальных перенапряжений составляющих десятки киловольт, например, попадание разряда молнии в линию, осуществляется за счет использования специальных защитных устройств. В простейшем случае все проводники линии шунтируются ограничителями напряжения на «землю» (рисунок 8а). Если заземление линии невозможно, то проводники линии шунтируются ограничителями между собой (рисунок 8б). Защита, организованная на варисторах, супрессорах, газоразрядных трубках, способна выдерживать лишь кратковременные всплески напряжения. Дополнительную защиту от токов короткого замыкания в линиях можно обеспечить при помощи установки в линию плавких предохранителей.

Варианты защиты сети RS-485 от перенапряжений и импульсных помех

Рисунок 8 — Варианты защиты сети RS-485 от перенапряжений и импульсных помех

Как правило, устройства, работающие в сетях RS-485 помимо «терминаторов» имеют встроенную защиту от перенапряжений и импульсных помех. Подробнее об этом можно прочитать в руководстве по эксплуатации на конкретное устройство. Помимо этого на рынке существует множество готовых устройств подавления импульсных помех, принцип действия которых также основан на применении варисторов и газоразрядных трубок. Стоит лишь помнить, что каждое дополнительное устройство защиты, установленное в сети, вносит дополнительную емкость, эквивалентную емкости кабеля длинной 120…130 м.

1. Следует избегать прокладки витой пары совместно с силовыми цепями, особенно в общей оплетке. Линии связи должны находиться не ближе чем 0,5 м от силовых цепей. Пересечение линий связи с силовыми цепями (если этого не избежать) желательно делать под прямым углом. Не рекомендуется использовать в качестве витой пары кабели менее 0,326 мм 2 (22 AWG). Не допускается наличие «скруток» для сращивания кабеля.

2. При использовании витой пары типа UTP-5 свободные пары рекомендуется использовать в качестве дренажного провода, либо держать их в резерве, в случае повреждения главной витой пары.

3. Сеть должна иметь топологию «шина», не допускаются длинные ответвления от основной «шины».

4. Если для конечной системы не требуется высокого быстродействия, то не рекомендуется устанавливать скорость передачи данных «как можно выше». Наоборот максимальная надежность сети достигается на низких скоростях передачи.

5. Согласующие резисторы «терминаторы» устанавливаются в наиболее удаленных точках сети RS-485, обычно они уже смонтированы в устройствах пользователя, поэтому достаточно их только подключить перемычками или переключателями согласно руководству по эксплуатации на конкретное устройство. Сопротивление согласующих резисторов должно равняться волновому сопротивлению используемого кабеля, в противном случае их установка может только навредить.

6. В сетях, где возможно возникновение состояния неопределенности необходимо с целью минимизации ошибок и сбоев устанавливать защитное смещение порядка 250…300 мВ. Необходимо учитывать при этом, что ток потребления системы увеличится.

7. Для защиты от помех экран витой пары заземляется в любой точке, но один раз.

8. При питании удаленного оборудования от различных источников рекомендуется использовать дренажный провод для уравнивания потенциала «земель», при этом следует помнить, что подключение устройства к сети следует начинать именно с дренажного провода, а при отключении устройства в последнюю очередь отключать дренажный провод.

9. Для защиты оборудования, а так же обслуживающего его персонала рекомендуется использовать устройства, имеющие гальваническую развязку.

10. Не стоит пренебрегать дополнительными устройствами защиты от перенапряжений и импульсных помех.

Компания ООО «Энергия-Источник» предлагает следующие приборы для передачи и преобразования сигналов интерфейса RS-485:

Разработка электроники - от идеи до готового продукта.

Согласование физических уровней сигналов интерфейсов

Конвертер USB-485

Конвертер USB-485 предназначен для подключения устройств, имеющих интерфейс RS485, к персональному компьютеру. Преобразователь интерфейсов USB -485 предназначен для согласования физический уровней сигналов интерфейса, а также для управления направлением передачи данных по линии RS-485, в зависимости от приёма или передачи данных по USB.

  • Подключение и питание конвертера осуществляется по USB
  • Гальваническая развязка между линией RS485 и внутренней схемой конвертера до 2000 вольт
  • Нагрузочная способность преобразователя USB-485 позволяет подключить в линию до 255 устройств.
  • Виртуальный COM порт
  • Автоматическое определение скорости приёма/передачи
  • Автоматическое определение направления передачи




Правила и особенности монтажа, про которую не всегда помнят и не все соблюдают




Особенности монтажа

Сетевая коммуникация разводится кабелем «витая пара пятой категории». Контроллеры соединяются между собой по топологии «шина», т.е. последовательно друг за другом.

Корректная работа сети (особенно при использовании длинных кабелей) возможна только в том случае, когда между всеми приемопередающими устройствами идет одна единственная линия (“шинная топология”).

В линию может быть включено до 32 устройств (для стандартной единицы нагрузки или больше для – ¼ нагрузки), расположенных как угодно по всей ее длине. Устройства должны подключаться к линии очень короткими кабелями (длиной не более 30 см) для того, чтобы избежать возникновения Y - расщепления.

На практике, однако, эта длина может быть увеличена до нескольких метров. В большинстве случаев проблему сложной конфигурации можно решить с помощью повторителей-ретрансляторов интерфейса.

Линии передачи сигнала должны находиться не ближе 50 см от кабелей электрического питания, в особенности от нагрузочных кабелей. Тем более они не должны прокладываться в одной оплетке с этими кабелями или кабелями, по которым протекают токи большой величины, т.к. это может привести к проникновению помех и ошибкам.

Пересечение силовых линий должно быть под углом 90 градусов. Запрещается сращивание витых пар и использование «скруток». Для кабельной разводки рекомендуется применять кабели с двумя - четырьмя витыми парами для того, чтобы:

  • использовать дополнительные провода в качестве дренажных;
  • иметь возможность использовать эти линии с другим оборудованием;
  • работающим, например, по протоколу RS-422;
  • иметь резерв, если произошёл обрыв или замыкание на главной паре.

Стандарт RS485 обеспечивает работу устройств на линии длиной до 1.2 км. Эта величина является максимумом. На практике же рекомендуется использовать линии длиной не более 500 м. При построении систем с длинными линиями следует соблюдать особую осторожность при выборе кабеля, который должен иметь подходящее поперечное сечение.

Используемый кабель должен обеспечивать на терминаторе номиналом 120 Ом на дальнем конце линии напряжение не менее 0.2 В в том случае, если на выходе передающего устройства напряжение составляет 2 В. Не рекомендуется использовать кабели менее 22 AWG.

WorkProf Systems Разработка & дизайн электроники

Счётчики посетителей для магазинов. Разработка электроники и программного обеспечения.

Читайте также: