Как применяется компьютерная графика в архитектуре

Обновлено: 06.07.2024

Область применения компьютерной графики не ограничивается одними художественными эффектами. Во всех отраслях науки, техники, медицины, в коммерческой и управленческой деятельности используются построенные с помощью компьютера схемы, графики, диаграммы, предназначенные для наглядного отображения разнообразной информации. Конструкторы, разрабатывая новые модели автомобилей и самолетов, используют трехмерные графические объекты, чтобы представить окончательный вид изделия. Архитекторы создают на экране монитора объемное изображение здания, и это позволяет им увидеть, как оно впишется в ландшафт.

Научная графика Первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства - графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчетная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трехмерные изображения.

Иллюстративная графика - это произвольное рисование и черчение на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

Художественная и рекламная графика - ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и "движущихся картинок". Получение рисунков трехмерных объектов, их повороты, приближения, удаления, деформации связано с большим объемом вычислений. Передача освещенности объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчетов, учитывающих законы оптики.

Компьютерная анимация - это получение движущихся изображений на экране дисплее. Художник создает на экране рисунке начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчеты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определенной частотой, создают иллюзию движения.

Не обошла своим вниманием компьютерная графика и такую область деятельности, как архитектура.

Компьютерная графика в строительстве и архитектуре - эффективное средство визуализации проектов. Она позволяет смоделировать архитектурный объект и оценить его преимущества более объективно, чем на основе чертежей или макетов, заранее внести все коррективы в организацию пространства. Трёхмерная визуализация и моделирование помогают наглядно и доступно показать все особенности принятых проектных решений. Благодаря трехмерному дизайну, заказчик сможет представить итог всей работы заранее.

Достоинства компьютерного моделирования заключаются в высокой скорости, низкой стоимости, доступности программного обеспечения, универсальности и конвертируемой форматности результатов, в возможности использования сетевых ресурсов коллективного единовременного проектирования.

Например: до недавнего времени такие серьёзные проекты как строительство мостов, дамб, плотин не проходило без каких-либо неожиданностей даже в странах с очень развитыми строительными технологиями. В наше время строительные компании многих государств стали пользоваться системами инженерного проектирования с визуальным отображением. Современные программы инженерной графики не только совершают различные строительные расчёты, но и визуализировать происходящие строительные процессы. Программы показывают не только возможную нагрузку на отдельные части конструкций, но и рассчитывают различные непредвиденные явления, связанные например с явлениями резонанса в процессе строительства.

Пример из совершенно бытовой сферы: компании по продаже квартир, а так же дизайну и связанным с ним ремонтом стали использовать компьютерные программы трёхмерного моделирования для представления клиенту наиболее точной информации о будущем проекте. Тем самым доход этих компаний стал увеличиваться за счёт экономия времени, затрачиваемого на бесполезные в данном случае чертежи.

Одна из лучших программ для архитектурного проектирования, известная своей простотой, удобством и функциональностью является ArchiCAD -- графический программный пакет САПР для архитекторов, созданный фирмой Graphisoft (Будапешт, Венгрия). Предназначен для проектирования архитектурно-строительных конструкций и решений, а также элементов ландшафта, мебели и т. п.

Практически все элементы ArchiCAD содержат трехмерную информацию. Благодаря этому можно «жить» в пространстве виртуальной архитектуры: изменять и дополнять модель здания, перемещаться по ней в реальном времени. Инструменты визуализации ArchiCAD позволяют заказчику увидеть проект вашими глазами.

При работе в пакете используется концепция виртуального здания. Суть её состоит в том, что проект ArchiCAD представляет собой выполненную в натуральную величину объёмную модель реального здания, существующую в памяти компьютера. Для её выполнения проектировщик на начальных этапах работы с проектом фактически «строит» здание, используя при этом инструменты, имеющие свои полные аналоги в реальности: стены, перекрытия, окна, лестницы, разнообразные объекты и т. д. После завершения работ над «виртуальным зданием», проектировщик получает возможность извлекать разнообразную информацию о спроектированном объекте: поэтажные планы, фасады, разрезы, экспликации, спецификации, презентационные материалы и пр. Для повышения реалистичности можно встроить модель в фотографию места, где предполагается воплотить замысел, с учетом освещенности модели в течение дня, года и в зависимости от географического положения.

Такие фирмы, как McDonalds, уже с 1987 года используют компьютерную графику для архитектурного дизайна, размещения посадочных мест, планирования помещений и проектирования кухонного оборудования.


Что такое компьютерная графика и с чем её едят? Если говорить научным языком, то в первую очередь, это один из разделов информатики, занимающийся созданием и обработкой различных изображений на компьютере. С развитием компьютерных технологий этот вид деятельности приобретал особую значимость и становился всё более популярным среди широких слоёв населения. И теперь уже не только профессиональные дизайнеры и художники могут работать в этой области, но и любители.

На данный момент существует множество сфер применения компьютерной графики. К примеру, назначением научной графики является получение наглядных изображений, а именно построение графиков, чертежей и диаграмм, помогающих при решении сложных производственных задач, проведении экспериментов. Говоря о работе инженеров, изобретателей и архитекторов, нельзя не упомянуть про такой раздел, как конструкторская графика. Построение чертежей вручную отнимает много времени, другое дело компьютерная программа, позволяющая оптимизировать процесс в поиске наиболее удачного решения. В любом учреждении время от времени возникает необходимость классификации данных, создании статистических сводок и упорядочиванию отчетной документации. И здесь уж никак нельзя обойтись без помощи специальных графических приложений, предназначенных для наглядного представления показателей работы предприятия.

Без компьютерной графики не обходится ни одна современная программа. Это помогает не только упростить восприятие информации, но и сэкономить время, ведь изображение воспринимается гораздо легче, нежели нудный и скучный текст. Включая компьютер или выходя в Интернет, пользователь встречается с графически интерфейсом: рабочий стол, значок любимого браузера или даже фоновая заставка, всё это, несомненно, радует глаз и в тоже время упрощает работу за компьютером.

С разработкой всё более совершенных программ и приложений, появилось множество способов создания компьютерных иллюстраций и анимации, что послужило своеобразным прорывом в области изобразительного искусства. Рисование на бумаге или холсте с помощью красок, кисточек, карандашей и других инструментов постепенно заменяется на использование программных средств, таких как не безызвестный Photoshop, Painter, GIMP и др. Конечно, они не способны в полной мере передать все аспекты создания традиционной картины, эти программы лишь имитируют живопись. Для художников профессионалов, естественно, нет ничего не возможного. Отличить работу, созданную на компьютере от той, что нарисована при помощи классических материалов, бывает порой не просто.

Более того рисование на компьютере является более выгодным с финансовой точки зрения. Нет необходимости тратиться на закупку специальных принадлежностей. Всё что требуется, это скачать подходящую программу. Единственное неудобство, с коим многие сталкиваются, это компьютерная мышка, совершенно не приспособленная к подобному роду деятельности. Однако именно для этих целей был изобретён графический планшет, значительно облегчающий процесс. Такой способ позволяет не только быстро и качественно создать изображение, но и подвергнуть его компьютерной обработке.

В зависимости от того как создаётся изображение на компьютере, графику подразделяют на векторную, растровую и фрактальную. Эти направления относятся к двухмерной графике. В последнее время набирает обороты и 3D-моделирование, используемое в науке и технике, сейчас оно вовсю применяется в рекламе, видеоиграх, кинофильмах и анимации.

Существует множество приложений компьютерной графики, для каждой области своё. С каждым годом создатели графических программ радуют пользователей всё новыми и новыми дополнениями и усовершенствованиями, упрощающими работу в различных сферах деятельности. Таким образом, компьютерная графика стала неотъемлемой частью жизни современного человека.

image


Все мы слышали о 3D графике (далее просто 3D, не путать со способом отображения — голограммами, 3D-мониторами и т.п.), многие прекрасно знают, что такое 3D и с чем его едят. Но, все же, есть и те, кто смутно себе представляет, что кроется под этой короткой аббревиатурой. Статья рассчитана на тех, кто не имеет представления о компьютерной графике. Также будет немного экскурса в историю компьютерной графики (в следующих планируемых частях).
Почему именно 3D? Как нетрудно догадаться, речь идет о 3 Dimension, или о трех измерениях. И не обязательно при этом, чтобы и отображение было в 3D. Речь идет о способе построения картинки.

Часть 1. Собственно, моделирование
Традиционно рисуют в 2D (по осям X и Y) — на бумаге, холсте, дереве и т.п. При этом отображают какую-то одну из сторон предмета. Картинка сама по себе плоская. Но если мы хотим получить представление обо всех сторонах предмета, то необходимо нарисовать несколько рисунков. Так поступают в традиционной рисованной анимации. Но, вместе с тем, существует, (кстати, в СССР была довольно хорошо развита) т.н. кукольная анимация. Один раз изготовленную куклу снимают в необходимых позах и ракурсах, получая серию «плоских картинок». 3D (к X и Y добавляется координата глубины Z) визуализация — это те же «куклы», только существующие в цифровом виде. Другими словами, в специальных программах (Blender, 3ds Max, Maya, Cinema 4D и т.п.) создается объемное изображение, например авто.



Преимущество данного метода в том, что в распоряжении, скажем, аниматора есть объемная модель, необходимо лишь поместить ее должным образом в кадр, анимировать (задать траекторию передвижения или рассчитать с помощью симулятора) при необходимости, а уж отображение авто в финальной картинке ложится на специальную программу называемую визуализатором (render). Еще одно преимущество в том, что модель достаточно нарисовать один раз, а потом использовать в других проектах (скопировав), изменять, деформировать и т.п. по своему усмотрению. Для обычного 2D рисунка, в общем случае, такое невозможно. Третье преимущество — можно создавать практически бесконечно детализированные модели, например смоделировать даже винтики на часах и т.п. На общем плане этот винтик может быть и неразличим, но стоит нам приблизить камеру, программа-визуализатор сама рассчитает, что видно в кадре, а что — нет.


Существует несколько способов моделирования, но самым популярным является полигональное моделирование. Нередко можно увидеть в роликах о 3D или фантастических фильмах как тот или иной объект представляется в виде т.н. сетки. (см. рисунок выше) Это и есть пример полигонального моделирования. Суть его в том, что поверхности представляются в виде простых геометрических двумерных примитивов. В компьютерных играх это треугольники, для других целей обычно используют четырехугольники и фигуры с большим кол-вом углов. Эти примитивы, из которых состоит модель, называют полигонами. Но при создании 3D объекта стараются обойтись, как правило, четырехугольниками. При необходимости четырехугольники (полигоны) без проблем превращаются в треугольники при экспорте в игровой движок, а при необходимости сглаживания или тесселяции модель из четырехугольников получается, как правило, без артефактов.
Что такое тесселяция? Если какой-то объект представляется в виде полигонов (особенно органические объекты, например человек), то понятно, что чем меньше размер полигонов, чем их больше, тем более близкой может быть модель к оригиналу. На этом основан метод тесселяции: сначала изготавливают грубую болванку из небольшого кол-ва полигонов, затем применяют операцию тесселяции, при этом каждый полигон делится на 4 части. Так вот, если полигон четырехугольный (а еще лучше, близок к квадрату) то алгоритмы тесселяции дают более качественный и предсказуемый результат. Также операция сглаживания, а это та же тесселяция, только с изменением углов на более тупые, при близких к квадрату полигонах, позволяет получить хороший результат.


Вот, на сегодня пока и все. Комментарии, а особенно вопросы и замечания по существу приветствуются.

Читайте также: