Как сделать шину в 3д макс

Обновлено: 04.07.2024

Использование технологии создания тел вращения на основе сплайнов.

Цель работы: Изучение основных приемов вращения сплайнов для создания объемных тел.

Типы вершин сплайнов

Сплайны состоят из сегментов и вершин, представляющих собой подобъекты кривых этого типа. Сегмент (segment) - это участок линии сплайна между двумя соседними вершинами. Криволинейные сегменты представляются набором прямолинейных отрезков (часто незаметных для глаза), число которых задается при создании сплайна. Вершины (vertex) сплайна различаются по типу и определяют степень кривизны сегментов сплайна, прилегающих к этим вершинам.
  • Corner (С изломом) – вершина, в которой сплайн претерпевает излом. Участки сегментов вблизи такой вершины не имеют кривизны.
  • Smooth (Сглаженная) – вершина, через которую кривая сплайна проводится с плавным изгибом, без излома, имея одинаковую кривизну сегментов при входе в вершину и выходе из нее.
  • Bezier (Безье) – вершина, подобная сглаженной, но позволяющая управлять кривизной сегментов сплайна при входе в вершину и при выходе из нее. Для этого вершина снабжается касательными векторами с маркерами в виде квадратиков зеленого цвета на концах. У вершин типа Bezier (Безье) касательные векторы всегда лежат на одной прямой, а удаление маркеров от вершины, которой принадлежат векторы, можно изменять. Перемещение одного из маркеров вершины Безье всегда вызывает центрально-симметричное перемещение второго. Перемещая маркеры касательных векторов вокруг вершины, можно изменять направление, под которым сегменты сплайна входят в вершину и выходят из нее.
  • Bezier Corner (Безье с изломом) – вершина, которая, как и вершина типа Bezier (Безье), снабжена касательными векторами. Однако у вершин Bezier Corner (Безье с изломом) касательные векторы не связаны друг с другом, и маркеры можно перемещать независимо.

Вычерчивание сплайнов типа Line

Команда Line вызывается кнопкой Line командной панели Create и позволяет создавать линии практически любой требуемой формы. При выполнении команды мышью фиксируются места расположения вершин и настраивается их кривизна. Полученный сплайн можно замкнуть. В разделе Interpolation свитка General устанавливается режим оптимизации числа шагов, на которые разбиваются сегменты между вершинами.

Чтобы нарисовать линию с помощью мыши, выполните следующие действия:
Шаг 1. Щелкните в свитке Object Type (Тип объекта) на кнопке Line (Линия).

Шаг 2. Переместите курсор в любое из окон проекций и щелкните в той точке окна, где должна располагаться первая вершина линии. Линия всегда создается в координатной плоскости текущего окна проекции. Переместите курсор в точку расположения второй вершины.

Шаг 3. Создать очередную вершину можно простым щелчком кнопкой мыши. В этом случае вершина приобретет тип, определяемый положением переключателя Initial Type (Начальный тип) в свитке Creation Method (Метод создания).

По умолчанию это вершина типа Corner (С изломом). Если при создании очередной вершины щелкнуть кнопкой мыши и, удерживая ее, перетащить курсор, будет создана вершина, тип которой определяется положением переключателя Drag Туре (Вершина при перетаскивании). По умолчанию это вершина Bezier (Безье).

Шаг 4. Продолжайте создавать вершины и перемещать курсор. Чтобы удалять неверно установленные вершины, нажимайте на клавишу Backspace. Повторные нажатия этой клавиши будут приводить к удалению вершин в порядке, обратном порядку их создания, – от конца к началу линии.

Шаг 5. Для завершения процесса создания разомкнутой линии щелкните правой кнопкой мыши. Чтобы создать замкнутый сплайн, щелкните вблизи от первой вершины. Когда появится запрос Close spline? (Замкнуть сплайн?), щелкните на кнопке Yes (Да) или No (Нет).

Шаг 6. Чтобы изменить принятые по умолчанию типы вершин, создаваемых простым щелчком кнопкой мыши и щелчком с перетаскиванием курсора, измените установку переключателей в свитке Creation Method (Метод создания), показанном на рисунке 2.
Рисунок 2. Свиток Creation Method (Метод создания) сплайна-линии позволяет настраивать типы вершин сплайна.
Переключатель Initial Type (Начальный тип), определяющий вершина какого типа будет создаваться при щелчке кнопкой мыши, можно устанавливать в одно из двух положений: Corner (С изломом) или Smooth (Сглаженная). Чтобы задать, какой тип вершины будет создаваться при перетаскивании курсора после щелчка, установите переключатель Drag Type (Вершина при перетаскивании) в одно из трех положений: Corner (С изломом). Smooth (Сглаженная) или Bezier (Безье).

Редактирование формы сплайнов

Для редактирования формы сплайнов выполняйте следующие действия:

Шаг 1. Выделите сплайн и перейдите на командную панель Modify (Изменить). Если сплайн представляет собой линию, то кнопка Sub-Object (Подобъект) в свитке Modifier Stack (Стек модификаторов) будет доступна сразу.

Если же сплайн представляет собой один из стандартных геометрических объектов, таких как Circle (Круг), Rectangle (Прямоугольник) или Ellips (Эллипс), либо является объектом Text (Текст), то для обеспечения возможности выбрать для редактирования уровень подобъектов-вершин необходимо щелкнуть на кнопке Edit Spline (Правка сплайна) в свитке Modifiers (Модификаторы).

Шаг 2. Щелкните на кнопке Sub-Object (Подобъект) и выберите в раскрывающемся списке Selection Level (Уровень выделения) вариант Vertex (Вершина). В выделенном сплайне все вершины обозначатся крестиками, а первая вершина – квадратиком. В ряде случаев вершину или группу вершин для редактирования следует сначала выделить, используя для этого любые известные методы выделения объектов. Метки выделенных вершин окрашиваются в красный цвет.

Шаг 3. Для перемещения одной или нескольких вершин выделите их и перемещайте как любой другой объект сцены – с помощью инструмента Select and Move (Выделить и переместить). Форма примыкающих к вершинам сегментов сплайна будет при этом меняться автоматически.

Шаг 4. Для изменения типов вершин выделите одну или несколько вершин, укажите курсором на любую из них и щелкните правой кнопкой мыши. Появится контекстное меню вершины. В нижней части меню имеется перечень четырех типов вершин. Выберите команду нужного типа и щелкните кнопкой мыши.

Шаг 5. Для настройки формы сегментов, примыкающих к вершинам типа Bezier (Безье) или Bezier Corner (Безье с изломом), выделите одну из таких вершин. В окнах проекций появятся изображения касательных векторов, снабженных на концах маркерами в виде квадратиков зеленого цвета, как показано на рисунке 3.

Шаг 6. Для изменения угла, под которым сегмент сплайна входит в вершину, выберите инструмент Select and Move (Выделить и переместить), щелкните на маркере и перемещайте его вокруг вершины (рис. 3), наблюдая за изменением ориентации сегмента, которому соответствует перемещаемый маркер для вершин типа Bezier Corner (Безье с изломом) или обоих примыкающих к вершине сегментов – для вершин типа Bezier (Безье).
Рисунок 3. Перемещение маркера касательного вектора вокруг вершины.
Для изменения кривизны сегмента перемещайте маркер к вершине или от нее. Приближение маркера к вершине увеличивает кривизну сегмента для вершин типа Bezier Corner (Безье с изломом) или обоих сегментов для вершин типа Bezier (Безье), а удаление – уменьшает кривизну сегмента (сегментов) в районе вершины (рис. 4).

Рисунок 4. Удаление или приближение маркера к вершине.
Шаг 7. При необходимости можно обеспечить синхронное перемещение маркеров касательных векторов сразу нескольких выделенных вершин: это иногда помогает избежать непредвиденного искажения формы сплайна. Для этого следует установить флажок Lock Handles (Блокировать маркеры) в свитке Selection (Выделение), показанном на рисунке 5. Если при этом установлен переключатель Alike (Подобные), то перемещение одного из маркеров будет заставлять перемещаться маркеры подобных касательных векторов (только входящих в вершины или только исходящих из вершин). Если установлен переключатель All (Все), то перемещение любого из маркеров заставляет синхронно перемещаться и все остальные.
Рисунок 5. Блокировкой перемещения маркеров управляет флажок Lock Handles.
На рисунке 6 показано для примера, как при установке переключателя Alike (Подобные) перемещение маркера касательного вектора, исходящего из четвертой сверху вершины, заставляет синхронно с ним перемещаться маркер вектора, исходящего из второй сверху вершины.

Синхронно перемещаются только маркеры подобных (в данном случае, исходящих) касательных векторов выделенных вершин. При этом маркер касательного вектора, входящего во вторую сверху вершину, остается неподвижным, так как это вершина типа Bezier Corner (Безье с изломом).

На рисунке 7 демонстрируется результат синхронного перемещения всех маркеров выделенных вершин при установке переключателя Аll (Все).

РИСУНОК 7. Синхронно перемещаются все маркеры касательных векторов выделенных вершин

Вращение сплайнов

Форма-сплайн, к которой применяется метод вращения, поворачивается вокруг заданной оси, проходящей через одну из точек этой формы. При вращении сплайна поверхность вращения преобразуется в оболочку трехмерного объекта. Метод подходит для создания объектов, имеющих центральную симметрию.

Вращение сплайна осуществляется за счет применения к нему модификатора Lathe (Вращение).

Применение модификатора Lathe сводится к выбору исходной формы и настройке ряда параметров. В свитке Parameters можно задавать величину угла вращения (определяется счетчиком Degrees), на который будет повернуто сечение, число сегментов (для управления гладкостью боковой поверхности).

Установка оси вращения в глобальной системе координат (параметр Direction, по умолчанию это ось У), выбирается кнопками X, Y, Z группы Direction (Направление) (рис.8).
Рисунок 8. Результат применения Lathe для вращения сплайна по разным осям.
Группа Align (Ориентация) управляет положением оси вращения, устанавливая ее в положения Min (Минимум), Center (Центр) и max (Максимум) (рис. 9).
Рисунок 9. Установка положения оси вращения.
По умолчанию ось вращения проходит через центр габаритного контейнера сплайна (параметр Center), но ее можно переместить на левый край сплайна (точка минимума - параметр Min) или на правый край (точка максимума - параметр Мах). Флажок Weld Core (Объединить главные вершины) объединяет вершины на оси вращения, а Flip Normals (Вывернуть нормали) изменяет направление нормалей на противоположное.

Простейшее редактирование формы тела вращения Кривая, показанная на рисунке 10, рассчитана на создание методом вращения тела наподобие плафона керосиновой лампы. Чтобы получить нужное тело, ось вращения следует поместить левее левого края габаритного контейнера формы-профиля. Для этого следует выполнить следующее:

Шаг 1. Выделите тело вращения и щелкните на кнопке Sub-Object (Подобъект) в свитке Modifier Stack (Стек модификаторов) командной панели Modify (Изменить). По умолчанию в списке Selection Level (Уровень выделения) будет выбран вариант Axis (Ось). Ось вращения изобразится в окнах проекций в виде линии желтого цвета.

Шаг 2. Выберите инструмент Select and Move (Выделить и переместить), щелкните на оси и перетащите ее влево, наблюдая за изменением формы тела вращения, как показано на рисунке 10.
Рисунок 10. Слева – исходный вид тела вращения, справа – оно же после перемещения оси вращения.

Сразу оговорюсь, что урок не будет слишком подробным, но основные моменты я опишу.

Приступим непосредственно к моделингу.
Сначала я поставил текстуру на Background окна проекции TOP. Жмем Alt+B и настраиваем как у меня:

Теперь наша текстура должна появится на виде TOP ее можно перемещать! Можно приступать к моделированию.
Я создал Plane с 4 сегментами по ширине и немного их подвинул

Я старался сделать так, чтобы в мой элемент протектора попала каждая повторяющаяся деталь. И чтобы она желательно не находилась с краю, иначе могут возникнуть трудности на дальнейших этапах!

Следующий этап это добавление новых ребер и размещение их на своих местах. Для создания новых ребер я использовал инструмент connect в режиме редактирования edge. Ну и потом подвинул на свои места.

Старайтесь не создавать не обоснованных ребер! Делайте их только там, где это необходимо.

Вот что получилось

Итак мы получили заготовку с размеченными на ней местами для углублений, теперь нужно увеличить кол-во граней.

Жмем сначала ring, чтобы выделить остальные нужные нам грани

Получаем в итоге нашу модель с кучей полигонов. Может кто-то считает что они не совсем оправданы, но когда применяешь модификатор Bend в конце, модель становится менее угловатой.

Ну вот готово. Осталось толкьо применить extrude и окончательно доработать модель.
Выделяем полигоны, которые собиремся выдавливать:

Теперь немного подчистим нашу модель, надо удалить боковые полигоны, образовавшиеся после выдавливания. И подвинуть их на свои места, и отрегулировать глубину некоторых ямок.

Склеиваем вершины на концах.

После некоторых манипуляции и передвижений вершин получил такой вот результат. Теперь уже проясняется наша текстура протектора.

Осталось только выделить нужные грани и применить к ним chamfer.

Немного переделал треугольные ямки. Делались элементарно, если кому-то потребуется объяснение, напишу отдельно.

Ну и скриншоты отдельных частей работы

Далее строим боковую часть шины

Вторую сторону я показывать не буду. Решил применить для интереса модификатор MeshSmoth:

И начинаем на одном двигать вершины чтобы избавится от этих косяков. Я использовал опять же привязку по вертексам.

5 минут работы и шва не видно вовсе. Да, кстати не забудьте поиграться с группами сглаживания полигонов!

Завершающий этап, создание самой покрашыки, я размнодил кусок своего протектора, 40 -50 копий.

Выделяем все и применяем модификатор Bend
Мои параметры были Angle 367.5, Direction – 90, Axis Y

Ну вот собственно и все! Моделька конечно у меня не ахти получилась, но я думаю у вас все будет гораздо круче. Дерзайте!

Всем привет! Хочу поделиться с Вами своими знаниями о 3d моделировании, а конкретно о программе ЗDs max. Эта статья рассчитана на начинающих 3d-шников или на людей, которые не знают где скачать программу и что нужно знать, чтобы начать в ней работать.

image


С чего все началось

Вкратце расскажу о моем знакомстве с ЗDs max. Мне всегда хотелось творить, поэтому после окончания школы я поступил учиться на архитектора. На 3 курсе обучения мы стали проектировать здания и интерьеры, которые требовали красивой и красочной визуализации (чтобы будущий заказчик захотел приобрести данный проект). Я выбрал очень серьезную и сложную программу ЗDs max, которую изучаю до сих пор.

Конечно, решить поставленную задачу можно было и с помощью более доступных и простых программ, таких как:

ArchiCAD — программный пакет для архитекторов, основанный на технологии информационного моделирования (Building Information Modeling — BIM), созданный фирмой Graphisoft. Предназначен для проектирования архитектурно-строительных конструкций и решений, а также элементов ландшафта, мебели и так далее.

Проще говоря, когда вы чертите чертежи, эта программа автоматически выстраивает 3d модель и так же автоматически рассчитывает конструкции. Она пользуется большой популярностью у архитекторов и конструкторов.

Естественно, существует аналог ArchiCAD — Autodesk Revit.

SketchUP — программа для моделирования относительно простых трёхмерных объектов — строений, мебели, интерьера.

Но я посчитал, что выбор этих упрощенных программ будет несерьезным и непрофессиональным шагом (хотя изучить их все же пришлось – они входили в программу обучения).

Характеристики компьютера

Итак, я приступил к изучению 3Ds max. Первое, на что акцентировали внимание преподаватели — для быстрого рендера и стабильной работы в ней нужна серьезная машина. Конечно, первые мои проекты делались на ноутбуке с самыми минимальными требованиями на 2012 год. Но все же считаю, что любой человек, решивший встать на путь 3d-шника, должен хотя бы знать, на что нужно делать упор при покупке компьютера:

Процессор – сердце вашего компьютера. Основная нагрузка в рендере ложится именно на него. Иными словами, чем быстрее ваш процессор, тем быстрее будут рендериться сцены.

Материнская плата – необходима для объединения всех частей системного блока в единое целое. Она слабо влияет на производительность в 3d графике, однако именно от качества материнской платы зависит возможность разгона процессора, так как при этом повышается энергопотребление и нагрузка на цепи питания процессора (которые расположены как раз на материнской плате).

Оперативная память – при работе компьютера в ней хранятся данные, необходимые процессору для вычислений. При работе в 3d в ней хранятся файлы проекта – модели, текстуры, а при запуске рендера — промежуточные вычисления. Основной характеристикой памяти применительно к 3d графике является объём.

Видеокарта – необходима для вывода изображения на монитор. Все, что происходит в окнах проекций 3d программ, обрабатывает видеокарта, и от её мощности зависит комфорт работы в выбранном вами софте. Основными характеристиками, которые будут определять комфортность работы с картой (разумеется, в рамках конкретного поколения карт и одного производителя) являются количество потоковых процессоров, их частота и объём видеопамяти. Другие параметры, например, разрядность шины, в 3d графике будут иметь меньшее влияние на производительность.

Система охлаждения («кулер») – необходима для отвода тепла от процессора. Бывают жидкостные и воздушные. Воздушные системы могут быть активными и пассивными (если в системе охлаждения присутствует вентилятор, она называется активной, если вентилятор отсутствует – пассивной). Плюс пассивных систем – отсутствие шума, минус – низкая производительность. Активные системы шумят, но обеспечивают высокую производительность, эффективно охлаждая процессор даже жарким летом.

Жидкостное охлаждение бывает замкнутое и сборное. Замкнутое продаётся уже готовым к использованию и не требует (или почти не требует) обслуживания, в то время как сборное требует сборки пользователем и доливки охлаждающей жидкости.

Жесткий диск – необходим для хранения информации. В отличие от оперативной памяти способен сохранять данные и после выключения питания компьютера. Жесткие диски делятся на твердотельные и накопители на твёрдых магнитных дисках (HDD). Твердотельные накопители (они же SSD) очень быстрые, тихие, лишены таких недостатков как большое время доступа либо фрагментация, однако имеют высокую цену за 1Гб и меньшую, чем у HDD надёжность. SSD предназначены для установки на них программ (с целью повышения скорости запуска и сохранения проектных файлов) и для повышения комфортности работы (SSD не является обязательным комплектующим, на нём можно экономить при недостатке финансов на сборку ПК). HDD же предназначены для хранения больших объёмов информации. Они более медленные, чем SSD, подвержены фрагментации, однако имеют крайне низкую цену за 1Гб места и очень надёжны, так как техпроцесс их производства хорошо отлажен.

Блок питания – необходим для подачи напряжения на схемы питания компьютера. Блок питания необходимо подбирать индивидуально под каждый компьютер, учитывая количество и мощность компонентов, а также наличие разгона.

Я отлично понимаю, что у всех разные финансовые возможности, поэтому представляю лишь перечень минимальных условий, оставляя выбор за вами. Однако расстраиваться, если вы не проходите даже по минимальным требованиям, не стоит. Берите свой ноутбук или компьютер, устанавливайте ЗDs max версии 12 и ниже, пробуйте! В любом случае в первое время вы не сможете использовать все ресурсы ЗDs max…

image

Студенческая лицензия

Может, это станет для кого-то открытием, но всю продукцию Autodesk можно установить абсолютно бесплатно с лицензией. Как это делается на примере 3d max:

1. Пройдите по ссылке и нажмите Create Account.

2. В новом окне укажите вашу страну, обязательно образовательный статус Student, дату рождения и нажмите Next.

3. Заполните поля: Имя, Фамилия, укажите электронную почту, повторите ее в поле Confirm email и придумайте пароль. Пароль должен содержать в себе как цифры, так и буквы на латинице. Поставьте галочку как на скриншоте и нажмите Create Account.

5. Вас перебросит на страницу авторизации, введите ваш E-mail и нажмите «Далее».

7. Вы увидите уведомление о том, что ваш аккаунт подтвержден. Нажмите «Done».

8. Далее вас спросят, в каком учебном заведении вы проходите обучение. Для этого в первой строчке нужно указать Knower, всплывет подсказка: Can't find your school? Нажмите на нее.

9. Вас снова перебросит в предыдущее окно, где уже будет указан учебный центр. Останется выбрать во второй строчке Other и ниже — период обучения (рекомендую ставить 4 года). Нажмите Next.

Вас перенаправит на страницу, с которой мы начали (если этого не произошло, перейдите по ссылке и авторизуйтесь).

1) Далее укажите версию 3ds max, которую хотите скачать, выберите операционную систему и язык (English). Обязательно перепишите себе Serial number и Product key — они будет необходимы для активации студенческой версии на 3 года! (они также придут вам на почту).

2) После того как скачается дистрибутив программы, запустите его (это может занять время, не торопитесь), выберите путь извлечения (рекомендуем диск С) и нажмите «ОК».

3) Дождитесь, пока установщик распакуется, во всплывающем окне нажмите Install.

4) В следующем окне поставьте галочку I Accept и нажмите Next.

5) Далее поставьте галочку Stand-Alone, введите ваш серийный номер и ключ продукта, которые сохраняли ранее (их можно найти в почте) и нажмите Next.

6) Выберите папку сохранения программы (рекомендуем диск С), нажмите Install и наблюдайте за процессом установки.

7) После установки программы запустите 3ds Max, в появившемся окне нажмите I Agree.

8) Когда он запустится, посмотрите, что написано наверху. Если Student Version, все отлично! Autodesk 3ds max активирован, и вы можете пользоваться студенческой версией целых 3 года совершенно бесплатно!

9) ВАЖНО! Если после шага 18 у вас возникла ошибка 400 и при каждом запуске выскакивает окно, в котором написано, что версия программы на 30 дней, вам необходимо активировать 3ds max вручную. Как это сделать смотрите здесь. Если такой ошибки нет, полный порядок — все активировалось автоматически!

3Ds max. C чего начать?

1. Папка проекта

Первое что нужно сделать, начиная работу в 3d max — создать папку проекта. Она обеспечивает простой способ хранения всех ваших файлов, организованных для конкретного проекта.

• Application Menu → Manage → Set Project Folder
• Quick Access Toolbar → (Project Folder)

Папка проекта всегда является локальной, то есть 3d max, создает свою папочку в компьютере, в которую сохраняет автобеки. Путь для этого может зависеть от используемой вами операционной системы:

Windows 7 и Windows 8:
C: / Users / <имя пользователя> / Мои документы / 3dsmax / autoback /

Вы можете использовать Set Project Folder, чтобы указать другое место. Или установить папку проекта из диалогового окна Asset Tracking → меню Paths.

При установке папки проекта 3ds max автоматически создает серию папок внутри нее, таких как archives, autoback, downloads, export, express, import, materiallibraries, previews, scenes и т.д. При сохранении или открытии файлов из браузера это местоположение (папки проекта 3ds) используется по умолчанию. Использование последовательной структуры папок проекта среди членов команды – хорошая практика для организации работы и обмена файлами.

При установке папки проекта 3ds max может отображать предупреждение — некоторые пути к файлам больше не действительны. Если сцены, с которыми вы работаете, принадлежат выбранному проекту, можно безопасно игнорировать это предупреждение.

3ds max создает файл MXP с различными путями, которые относятся к папке проекта, и сохраняет его в папку, которую вы выбрали.

Примечание: Среди файлов, установленных вместе с 3ds max — ряд материалов библиотек, а также карт, используемых этими библиотеками. Эти файлы по умолчанию размещены в папке программы, в \ materiallibraries и \ карты подпутей соответственно. Если вы хотите использовать какой-либо из материалов библиотек в проекте, рекомендуется скопировать файлы библиотеки в папку проект\ materiallibraries. А в случае необходимости можно использовать внешнюю функцию настройки Path чтобы добавить \ карты путь вместе с их подпутями (включите Add подпутей при добавлении \ карты пути).

2. Единицы измерения

  • Любую сцену в 3ds max нужно начинать с установки единиц измерения.

При этом внутренние математические операции преобразуются в соответствии с выбранными единицами измерения.

Проверьте и при необходимости включите флажок Respect System Units in Files (автоматически переключаться в системные единицы открываемого файла).

При открытии файла с другими системными единицами 3ds max выведет диалоговое окно,
в котором должен быть выбран переключатель Adopt the File’s Unit Scale? (Адаптировать под единицы открываемого файла?).

Помните, что размеры объектов сцены должны соотноситься с единицами измерения.
Если размер реальной комнаты равен 12 метрам, то и размер моделируемой комнаты должен быть 12 метров — 12000 мм, но никак не 12 дюймов или 12 миллиметров.

3. Рендеринг

Ре́ндеринг (англ. rendering — «визуализация») — термин в компьютерной графике, обозначающий процесс получения изображения модели с помощью компьютерной программы.

Часто в компьютерной графике (художественной и технической) под рендерингом (3D-рендерингом) понимают создание плоской картинки — цифрового растрового изображения — по разработанной 3D-сцене. Синонимом в данном контексте является визуализация.

Визуализация — один из наиболее важных разделов компьютерной графики, тесным образом связанный с остальными на практике. Обычно программные пакеты трёхмерного моделирования и анимации включают в себя также и функцию рендеринга.

В зависимости от цели различают пре-рендеринг (достаточно медленный процесс визуализации, применяющийся в основном при создании видео) и рендеринг в режиме реального времени (например, в компьютерных играх). Последний часто использует 3D-ускорители.

Компьютерная программа, производящая рендеринг, называется рендером (англ. render) или рендерером (англ. renderer).

Существуют отдельные программные продукты, выполняющие рендеринг. Самые распространённые — это Corona render и V-ray.

В интернете можно встретить много споров на тему: «Что же лучше — Corona или V-ray?»
Мною проверено на практике — легче. Ее не нужно настраивать до потери пульса, как V-ray, которая при любом клике на не ту галочку перестанет рендерить вообще. Можно даже рендерить с установками, которые стоят у который у Сorona по умолчанию. Также она стабильней, чем V-ray. И есть бесплатная версия на официальном сайте для всех желающих ее попробовать. V-ray же очень дорогой, и смысла его приобретать я не вижу (особенно если вы – только начинающий).

Что дальше?

  1. А дальше вам нужно изучить интерфейс. За что отвечает каждая кнопочка, окно, значок.
  2. Затем — стандартные примитивы, с помощью которых в 3ds max в основном все и рисуется.
  3. Далее вас ждет серьезная тема — модификаторы, применяя которые можно нарисовать самые сложные объекты.

Параллельно (тем, кто пока не дружит с иностранными языками) советую изучать английский. Именно на нем снимают самые классные уроки. Правда, придется научиться различать сложные диалекты и интонации (мне было сложно понять, что говорит англоязычный индус, а в итоге данный урок оказался одним из самых полезных).

Ставьте перед собой конкретные цели! Например, мой первый урок был посвящен моделированию яблока, а второй – стола и стульев. Верьте в себя, горите идеями не сомневайтесь в своих способностях, — у вас все получится!

Хочу заметить — мы с вами живем в 21 веке. В интернете имеется масса статей, уроков и отзывов о 3ds max. Данная статья – мое сугубо личное мнение, основанное на собственном опыте. Спасибо всем, кто ее прочел (надеюсь, она помогла вам разобраться, что такое 3ds max и как приступить к ее изучению). Удачи!

Дисклеймер: Данный пост нельзя рассматривать как урок или пособие для обучения. Примененные автором методы и приемы несовершенны и не единственно возможны. Серия постов будет отражать лишь общую суть, основные этапы и примерный объём работ при моделировании автомобиля. Именно поэтому автор постарается применять минимум специфической лексики и минимально углубляться в теорию.

Ну что же, пора продолжать моделить A6. Предыдущий пост не зашел, но т.к. число подписчиков увеличилось в 6 раз (теперь их стало 6), я просто обязан продолжить. Итак, в прошлый раз мы остановились на том, что полюбовались сглаженным крылом нашей телеги:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Описывать дальнейшее построение базовой формы не вижу смысла: продолжая вытягивать ребра и расставляя точки по их местам (опять урок "как нарисовать сову"), мы получим примерно такую оболочку кузова:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

После сглаживания и при визуализации это выглядит вот так:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Конечно, две симметричные половинки никто не делает. Умный Макс позволяет сделать зависимую отраженную копию. Все манипуляции, которые вы будете с ней проводить, будут автоматически дублироваться на второй половинке.
Теперь, дабы наша модель не выглядела, как цементом облитая, необходимо нарезать зазоры капота, стекол, багажника, дверей и т.д. Делается это так: выделяются рёбра, по которым будет проходить зазор (лучше вести моделирование оболочки с учетом того, что создаваемые ребра будут образовывать в будущем зазор, или же придется нарезать ребра):

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Затем это ребро делается двойным, и образованные между этими ребрами новые полигоны "вдавливаются" вовнутрь:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Вдавленные же полигоны удаляются, чтобы между ними можно было лицезреть вселенскую пустоту:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Зазор создали, но он какой-то неестественно плавный. Почему? Да потому, что волшебство TurboSmooth не жалеет ни одного полигона и сглаживает всех под одну гребенку. Именно для этого нам необходимо уточнить форму ребер, создав там тоненькие полигоны. При многократном приближении это выглядит примерно так:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Долгая, мелкая, кропотливая работа, для которой и нужна хорошая мышь и монитор, о которых я говорил ранее. Зато после рендера мы получаем вот такую красоту:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Работа ведется, в основном, точками. А в точках порой получается месиво. В финальном варианте на стыке дверей и молдингов образуется 24 точки, которые попробуй расставь, как надо, чтобы после сглаживания оно как-то выглядело:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Детали, которые не связаны с нашей оболочкой (решетки, внутрянки фар, выхлопные трубы и т.д.) моделируются отдельно из примитивов. Например, решетку для противотуманных фар я создал из трубы и двух прямоугольников, которые соединил полигонами на заднем плане:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Внутренности передней фары также созданы из труб и прямоугольников, которые соединялись на заднем плане полигонами. Главное, чтобы полигоны были без разрывов, для всего остального есть TurboSmooth:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

На фото ниже нарезаны зазоры, решетка радиатора смоделирована из тонких прямоугольников, площадка под номер тоже из прямоугольника:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Теперь модель имеет такую сетку:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Обратите внимание на количество граней в передней части авто и там, где первичная оболочка еще не тронута.

Можно проделать то же самое и с задней частью:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Точно так же поступаем со всеми остальными зазорами, отделяя кузовные детали друг от друга:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

На этом фото также видна жирная линия, идущая сквозь весь кузов от передней до задней фары. Такая острая кромка есть у оригинальной модели:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

На самом деле линия не жирная, а двойная. Принцип ее создания тот же, что и при создании зазоров: мы "раздваиваем" грани, делая между ними небольшое расстояние, и это уже будет препятствием для сглаживания. После того, как мы "покромсали" кузов, можно перейти к созданию дисков. И тоже нет смысла моделировать его целиком. Моделируем по фото половинку спицы:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Отражаем половинку и поправляем форму, т.к. она не симметрична:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

В итоге получаем ровно пятую часть диска. Копируем образовавшуюся спицу, вращая копии на 360/5=72 градуса. Вместо рук у меня лапки, поэтому некоторые точки "съехали" относительно начального положения:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Помните, для TurboSmooth критичны разрывы сетки? Поэтому все "разорванные" точки необходимо объединить между собой. Тоже долгая и нудная работа, если поторопиться, как я. После сращивания точек и сглаживания наш диск выглядит вот так:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Конечно, нужны еще мелкие детали вроде ступичной крышки, гаек, ниппеля и т.д., но я пока оставил так. Примерим?

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Думаю, понятно, что диски потом просто копируются и из одного получается четыре. Ах, да, я же не показал, как моделировал дверные ручки. Выбираем полигон, в котором будет размещаться ручка и нарезаем новые грани, создавая контур будущей ручки:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Верхние полигоны выдавливаем, а нижние втапливаем:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Ну и, конечно, добавляем новые ребра, чтобы уточнить форму и разгребаем месиво точек:

Моделирование автомобиля в 3ds Max. Часть 2. 3D моделирование, 3DS max, Автомоделизм, Audi, Длиннопост

Ну вот и все, пикабу не разрешает размещать еще больше фото в посте. Растягивать серию в эпопею не хочется, поэтому постараюсь в следующий раз закончить рассказ полностью.

Читайте также: