Как взаимодействуют основные устройства компьютера

Обновлено: 07.07.2024

Презентация на тему: " Схема компьютера Взаимодействие устройств в компьютере." — Транскрипт:

1 Схема компьютера Взаимодействие устройств в компьютере

2 Общая структурная схема компьютера

3 Компьютер – система взаимосвязанных компонентов Каждое внешнее устройство взаимодействует с процессором ПК через КОНТРОЛЛЕР специальный блок – КОНТРОЛЛЕР, который преобразует информацию, поступающую от процессора в соответствующие сигналы, управляющие работой устройства. Существуют контроллеры монитора, клавиатуры, принтера, дисковода…

4 Данные, управляющие сигналы, адреса должны передаваться от одного устройства к другому. Следовательно, в, которое компьютере должно быть некое устройство организует передачу информации между всеми его составными частями. Эти функции выполняет системная шина.

5 Системная шина Системная шина – информационная магистраль, которая связывает друг с другом все устройства компьютера (группа токопроводящих кабелей или линий на системной плате)

9 Последовательность команд для выполнения некоторого задания в компьютере определяют как программу. Процессор обеспечивает выполнение команд программы, повторяя следующие действия: –с–считать команду из памяти, –р–расшифровать команду, –о–обеспечить ее выполнение, –с–считать следующую команду, и так до тех пор, пока не закончатся команды программы. Таким образом, компьютер работает в соответствии с принципом программного управления, то есть обеспечивает автоматическое выполнение программы, хранящейся в памяти компьютера.

10 Порты Связь компьютера с различными внешними устройствами осуществляется через порты – специальные разъемы, расположенные на тыльной стороне системного блока.

11 Принцип открытой архитектуры В любом системном блоке находятся обязательные узлы, обеспечивающие работу компьютера: блок питания, системные часы, аккумулятор, сигнальные индикаторы. Любой современный системный блок содержит разъемы для подключения дополнительных устройств (слоты). Наличие слотов расширения позволяет модифицировать компьютер, подключая к нему новые устройства. Главный принцип построения современного персонального компьютера Принцип открытой архитектуры правила построения компьютера, в соответствии с которыми каждый новый узел (блок) совместим со старым и легко устанавливается на компьютере.

По своему назначению компьютер - это универсальный прибор для работы с информацией. По принципам своего устройства компьютер - это модель человека, работающего с информацией.


Персональный компьютер (ПК) — это компьютер, предназначенный для обслуживания одного рабочего места. По своим характеристикам он может отличаться от больших ЭВМ, но функционально способен выполнять аналогичные операции. По способу эксплуатации различают настольные (desktop), портативные (laptop и notebook) и карманные (palmtop) модели ПК.

Аппаратное обеспечение. Поскольку компьютер предоставляет все три класса информационных методов для работы с данными (аппаратные, программные и естественные), принято говорить о компьютерной системе как о состоящей из аппаратных и программных средств, работающих совместно. Узлы, составляющие аппаратные средства компьютера, называют аппаратным обеспечением. Они выполняют всю физическую работу с данными: регистрацию, хранение, транспортировку и преобразование как по форме, так и по содержанию, а также представляют их в виде, удобном для взаимодействия с естественными информационными методами человека.

Совокупность аппаратных средств компьютера называют его аппаратной конфигурацией.

Видео YouTube

Программное обеспечение. Программы могут находиться в двух состояниях: активном и пассивном. В пассивном состоянии программа не работает и выглядит как данные, содержательная часть которых - сведения. В этом состоянии содержимое программы можно «читать» с помощью других программ, как читают книги, и изменять. Из него можно узнать назначение программы и принцип ее работы. В пассивном состоянии программы создаются, редактируются, хранятся и транспортируются. Процесс создания и редактирования программ называется программированием.

Когда программа находится в активном состоянии, содержательная часть ее данных рассматривается как команды, согласно которым работают аппаратные средства компьютера. Чтобы изменить порядок их работы, достаточно прервать исполнение одной программы и начать исполнение другой, содержащей иной набор команд.

Совокупность программ, хранящихся на компьютере, образует его программное обеспечение. Совокупность программ, подготовленных к работе, называют установленным программным обеспечением. Совокупность программ, работающих в тот или иной момент времени, называют программной конфигурацией.


Устройство компьютера. Любой компьютер (даже самый большой)состоит из четырех частей:

устройства ввода информации

устройства обработки информации

устройства вывода информации.

Конструктивно эти части могут быть объединены в одном корпусе размером с книгу или же каждая часть может состоять из нескольких достаточно громоздких устройств

Базовая аппаратная конфигурация ПК. Базовой аппаратной конфигурацией персонального компьютера называют минимальный комплект аппаратных средств, достаточный для начала работы с компьютером. С течением времени понятие базовой конфигурации постепенно меняется.

Чаще всего персональный компьютер состоит из следующих устройств:

Дополнительно могут подключатся другие устройства ввода и вывода информации, например звуковые колонки, принтер, сканер.

Системный блок — основной блок компьютерной системы. В нем располагаются устройства, считающиеся внутренними. Устройства, подключаемые к системному блоку снаружи, считаются внешними. Для внешних устройств используют также термин периферийное оборудование.
Монитор — устройство для визуального воспроизведения символьной и графической информации. Служит в качестве устройства вывода. Для настольных ПК в настоящее время наиболее распространены мониторы, основанные на электронно-лучевых трубках. Они отдаленно напоминают бытовые телевизоры.
Клавиатура — клавишное устройство, предназначенное для управления работой компьютера и ввода в него информации. Информация вводится в виде алфавитно-цифровых символьных данных.
Мышь — устройство «графического» управления.

Внутренние устройства персонального компьютера.
Внутренними считаются устройства, располагающиеся в системном блоке. Доступ к некоторым из них имеется на лицевой панели, что удобно для быстрой смены информационных носителей, например гибких магнитных дисков. Разъемы некоторых устройств выведены на заднюю стенку — они служат для подключения периферийного оборудования. К некоторым устройствам системного блока доступ не предусмотрен — для обычной работы он не требуется.

Процессор. Микропроцессор — основная микросхема персонального компьютера. Все вычисления выполняются в ней. Основная характеристика процессора — тактовая частота (измеряется в мегагерцах, МГц). Чем выше тактовая частота, тем выше производительность процессора. Так, например, при тактовой частоте 500 МГц процессор может за одну секунду изменить свое
состояние 500 миллионов раз. Для большинства операций одного такта недостаточно, поэтому количество операций, которые процессор может выполнить в секунду, зависит не только от тактовой частоты, но и от сложности операций.

Единственное устройство, о существовании которого процессор «знает от рождения», — оперативная память — с нею он работает совместно. Оттуда поступают данные и команды. Данные копируются в ячейки процессора (они называются регистрами), а потом преобразуются в соответствии с содержанием команд. Более полную картину того, как процессор взаимодействует с оперативной памятью, вы получите в главах, посвященных основам программирования.

Оперативная память. Оперативную память можно представить как обширный массив ячеек, в которых хранятся числовые данные и команды в то время, когда компьютер включен. Объем оперативной памяти измеряется в миллионах байтов — мегабайтах (Мбайт).

Процессор может обратиться к любой ячейке оперативной памяти (байту), поскольку она имеет неповторимый числовой адрес. Обратиться к индивидуальному биту оперативной памяти процессор не может, так как у бита нет адреса. В то же время, процессор может изменить состояние любого бита, но для этого требуется несколько действий.

Материнская плата. Материнская плата — это самая большая плата персонального компьютера. На ней располагаются магистрали, связывающие процессор с оперативной памятью, — так называемые шины. Различают шину данных, по которой процессор копирует данные из ячеек памяти, адресную шину, по которой он подключается к конкретным ячейкам памяти, и шину команд, по которой в процессор поступают команды из программ. К шинам материнской платы подключаются также все прочие внутренние устройства компьютера. Управляет работой материнской платы микропроцессорный набор микросхем — так называемый чипсет.

Видеоадаптер. Видеоадаптер — внутреннее устройство, устанавливаемое в один из разъемов материнской платы. В первых персональных компьютерах видеоадаптеров не было. Вместо них в оперативной памяти отводилась небольшая область для хранения видеоданных. Специальная микросхема (видеоконтроллер) считывала данные из ячеек видеопамяти и в соответствии с ними управляла монитором.

По мере улучшения графических возможностей компьютеров область видеопамяти отделили от основной оперативной памяти и вместе с видеоконтроллером выделили в отдельный прибор, который назвали видеоадаптером. Современные видеоадаптеры имеют собственный вычислительный процессор (видеопроцессор), который снизил нагрузку на основной процессор при построении сложных изображений. Особенно большую роль видеопроцессор играет при построении на плоском экране трехмерных изображений. В ходе таких операций ему приходится выполнять особенно много математических расчетов.

В некоторых моделях материнских плат функции видеоадаптера выполняют микросхемы чипсета — в этом случае говорят, что видеоадаптер интегрирован с материнской платой. Если же видеоадаптер выполнен в виде отдельного устройства, его называют видеокартой. Разъем видеокарты выведен на заднюю стенку. К нему подключается монитор.

Звуковой адаптер. Для компьютеров IBM PC работа со звуком изначально не была предусмотрена. Первые десять лет существования компьютеры этой платформы считались офисной техникой и обходились без звуковых устройств. В настоящее время средства для работы со звуком считаются стандартными. Для этого на материнской плате устанавливается звуковой адаптер. Он может быть интегрирован в чипсете материнской платы или выполнен как отдельная подключаемая плата, которая называется звуковой картой.
Разъемы звуковой карты выведены на заднюю стенку компьютера. Для воспроизведения звука к ним подключают звуковые колонки или наушники. Отдельный разъем предназначен для подключения микрофона. При наличии специальной программы это позволяет записывать звук. Имеется также разъем (линейный выход) для подключения к внешней звукозаписывающей или звуковоспроизводящей аппаратуре (магнитофонам, усилителям и т.п.).

Жесткий диск. Поскольку оперативная память компьютера очищается при отключении питания, необходимо устройство для длительного хранения данных и программ. В настоящее время для этих целей широко применяют так называемые жесткие диски.
Принцип действия жесткого диска основан на регистрации изменений магнитного поля вблизи записывающей головки.

Основным параметром жесткого диска является емкость, измеряемая в гигабайтах (миллиардах байтов), Гбайт. Средний размер современного жесткого диска составляет 80 — 160 Гбайт, причем этот параметр неуклонно растет.

Дисковод гибких дисков. Для транспортировки данных между удаленными компьютерами используют так называемые гибкие диски. Стандартный гибкий диск (дискета) имеет сравнительно небольшую емкость 1,44 Мбайт. По современным меркам этого совершенно недостаточно для большинства задач хранения и транспортировки данных, но низкая стоимость носителей и высокая степень готовности к работе сделали гибкие диски самыми распространенными носителями данных.

Для записи и чтения данных, размещенных на гибких дисках, служит специальное устройство — дисковод. Приемное отверстие дисковода выведено на лицевую панель системного блока.

Дисковод CD-ROM. Для транспортировки больших объемов данных удобно использовать компакт-диски CD-ROM. Эти диски позволяют только читать ранее записанные данные — производить запись на них нельзя. Емкость одного диска составляет порядка 650-700 Мбайт.

Для чтения компакт-дисков служат дисководы CD-ROM. Основной параметр дисковода CD-ROM— скорость чтения. Она измеряется в кратных единицах. За единицу принята скорость чтения, утвержденная в середине 80-х гг. для музыкальных компакт-дисков (аудиодисков). Современные дисководы CD-ROM обеспечивают скорость чтения 40х - 52х.
Основной недостаток дисководов CD-ROM — невозможность записи дисков — преодолен в современных устройствах однократной записи — CD-R. Существуют также устройства CD-RW, позволяющие осуществлять многократную запись.

Принцип хранения данных на компакт-дисках не магнитный, как у гибких дисков, а оптический.

Коммуникационные порты. Для связи с другими устройствами, например принтером, сканером, клавиатурой, мышью и т. п., компьютер оснащается так называемыми портами. Порт — это не просто разъем для подключения внешнего оборудования, хотя порт и заканчивается разъемом. Порт — более сложное устройство, чем просто разъем, имеющее свои микросхемы и управляемое программно.

Сетевой адаптер. Сетевые адаптеры необходимы компьютерам, чтобы они могли обмениваться данными между собой. Этот прибор следит за тем, чтобы процессор не подал новую порцию данных на внешний порт, пока сетевой адаптер соседнего компьютера не скопировал к себе предыдущую порцию. После этого процессору дается сигнал о том, что данные забраны и можно подавать новые. Так осуществляется передача.

Когда сетевой адаптер «узнает» от соседнего адаптера, что у того есть порция данных, он копирует их к себе, а потом проверяет, ему ли они адресованы. Если да, он передает их процессору. Если нет, он выставляет их на выходной порт, откуда их заберет сетевой адаптер очередного соседнего компьютера. Так данные перемещаются между компьютерами до тех пор, пока не попадут к адресату.

Определить некоторые важные принципы работы современного компьютера.

Опорные понятия:

Аппаратное обеспечение компьютера;

Назначение и характеристики отдельных устройств компьютера;

Новые понятия:

Структурная схема компьютера;

Принцип программного управления;

Принцип открытой архитектуры.

Задачи учителя:

Рассмотреть структурную схему компьютера;

Определить назначение и характеристики системной шины;

Рассмотреть состав системного блока;

Объяснить суть принципа программного управления;

Рассмотреть назначение и виды портов;

Дать представление об открытой архитектуре компьютера и других компонентах.

План урока

2. Повторение изученного материала:

назначение и классификация устройств вывода;

назначение и характеристики мониторов;

назначение и характеристики мониторов;

назначение и характеристики плоттеров;

возможности устройств звукового вывода.

Взаимодействие устройств компьютера:

Структурная схема компьютера;

Назначение и характеристики системной шины;

Состав системного блока;

Объяснение принципа программного управления;

Назначение и виды портов;

Открытая архитектура компьютера и другие компоненты.

Подведение итогов за урок;

Домашнее задание – конспект. Читать тема 21, стр. 281-289,

Методика проведения урока

СТРУКТУРНАЯ СХЕМА КОМПЬЮТЕРА

Мы познакомились с назначением и характеристиками основных устройств компьютера. Все эти устройства не могут работать по отдельности, а только в составе всего компьютера. Для понимания того, как компьютер обрабатывает информацию, необходимо рассмотреть структуру компьютера и основные принципы взаимодействия его устройств.

В соответствии с назначением компьютера как инструмента обработки информации взаимодействие входящих в него устройств должно быть организовано таким образом, чтобы обеспечить основные этапы обработки данных.

Рассмотрим структурную схему обработки информации компьютером, на которой в верхнем ряду указаны основные этапы этого процесса. Выполнение каждого из этих этапов определяется наличием в структуре компьютера соответствующих устройств. Ввод и вывод информации осуществляется с помощью устройств ввода (клавиатура, мышь и др.) и вывода (монитор, принтер и др.). Для хранения информации используются внутренняя и внешняя память на различных носителях (магнитные или оптические диски, магнитные ленты и пр.).

Темные стрелки обозначают обмен информацией между различными устройствами компьютера. Пунктирные линии со стрелками символизируют управляющие сигналы, которые поступают от npoцессора. Светлые пустые стрелки отображают потоки входной и выходной информации.

hello_html_m45ac26ab.jpg

Структурная схема компьютера

Компьютер представляет собой систему взаимосвязанных компонентов. Конструктивно все основные компоненты компьютера объединены в системном блоке, который является важнейшей частью персонального компьютера.

НАЗНАЧЕНИЕ И ХАРАКТЕРИСТИКИ СИСТЕМНОЙ ШИНЫ

Для обеспечения информационного обмена между различными устройствами компьютера в нем должна быть предусмотрена какая-то магистраль для перемещения потоков информации.

В компьютере происходит движение информационных потоков по информационной магистрали. Роль такой информационной магистрали , связывающей друг с другом все устройства компьютера , выполняет системная шина, расположенная внутри системного блока. Упрощенно системную шину можно представить как группу кабелей и электрических (токопроводящих) линий на системной плате.

Все основные блоки персонального компьютера подсоединены к системной шине. Основной ее функцией является обеспечение взаимодействия между процессором и остальными электронными компонентами компьютера . По этой шине осуществляется передача данных, адресов памяти и управляющей информации.

hello_html_m15426542.jpg

Назначение системной шины

Системная шина предназначена для передачи информации, закодированной в двоичном коде.

От типа системной шины так же, как и от типа процессора, зависит скорость обработки информации персональным компьютером. К основным характеристикам системной шины относятся разрядность и производительность канала связи.

Разрядность шины определяет количество бит информации, передаваемых одновременно от одного устройства к другому .

Системные шины первых персональных компьютеров могли передавать только 8 бит информации, используя для этого 8 линий данных в виде 8 параллельных проводников. Дальнейшее развитие компьютеров привело к созданию 16-битной системной шины, а затем ее разрядность увеличилась до 32 и далее до 64 бит. Увеличение разрядности шины данных привело к повышению скорости обмена информацией, а увеличение разрядности адресной шины обеспечило больший объем оперативной памяти.

Производительность шины определяется объемом информации, который можно передать по ней за одну секунду.

Производительность системной шины во многом определяется ее разрядностью. Чем выше разрядность шины, тем больше бит информации одновременно может передаваться по ней, например из процессора в память. Это приводит к более быстрому обмену данными и освобождению процессора для решения других задач.

Однако системная шина как основная информационная магистраль не может обеспечить достаточную производительность для внешних устройств. Для решения этой проблемы в компьютере стали использовать локальные шины, которые связывают микропроцессор с различными устройствами памяти, ввода и вывода..

СОСТАВ СИСТЕМНОГО БЛОКА

Внутри системного блока располагаются следующие устройства:

внутренняя память компьютера;

дисководы — устройства внешней памяти;

электронные схемы, обеспечивающие связь различных компонентов компьютера;

электромеханическая часть компьютера, включающая блок питания, системы вентиляции, индикации и защиты.

hello_html_56a3cbed.jpg

Все устройства, входящие в состав системного блока, помещены в корпус, причем существуют различные типы корпусов. Тип корпуса системного блока зависит от вида персонального компьютера и определяет размер, размещение и количество устанавливаемых компонентов системного блока. Для стационарных персональных компьютеров наиболее распространенными корпусами являются горизонтальные или настольные (desktop) либо в виде башни (tower). В портативных компьютерах системный блок объединен с монитором и выполнен в стандарте booksize, то есть размером с книгу.

hello_html_m4a6dfcb2.jpg

ОБЪЯСНЕНИЕ ПРИНЦИПА ПРОГРАММНОГО УПРАВЛЕНИЯ

Технической (аппаратной) основой персонального компьютера является системная, или материнская, плата . Системная плата является главной платой в системном блоке компьютера. На ней расположены важнейшие микросхемы — процессор и память. Системная плата связывает в единое целое различные устройства,

обеспечивает условия работы и связь основных компонентов персонального компьютера. Процессор обеспечивает не только преобразование информации, но и управление работой всех остальных устройств компьютера.

В основе работы компьютера лежит так называемый принцип программного управления. В соответствии с ним команды программы и данные хранятся в закодированном виде в оперативной памяти. При работе компьютера команды, которые необходимо выполнить, и данные, которые им требуются, считываются по очереди из памяти и поступают в процессор, где они расшифровываются, а затем выполняются. Результаты выполнения различных команд, в свою очередь, могут быть записаны в память или переданы на различные устройства вывода . Скорость выполнения процессором операций по обработке информации является решающим фактором, определяющим его производительность. Дело в том, что любая информация (числа, текст, рисунки, музыка и т. д.) хранится и обрабатывается на компьютере только в цифровой форме. Поэтому ее обработка сводится к выполнению процессором различных арифметических и логических операций, предусмотренных его системой команд.

Таким образом, компьютер работает в соответствии с принципом программного управления , то есть обеспечивает автоматическое выполнение программы, хранящейся в компьютера

НАЗНАЧЕНИЕ И ВИДЫ ПОРТОВ

hello_html_4368f454.jpg

Связь компьютера с различными устройствами ввода и вывода осуществляется через порты. Для некоторых устройств предусмотрено внешнее подключение к портам через разъемы, которые обычно тоже называют портами. Эти разъемы расположены на тыльной стороне системного блока. Дисководы гибких, жестких и лазерных дисков устанавливаются и подключаются внутри системного блока. Порты бывают последовательные и параллельные .

Параллельные порты

Этот тип портов используется для подсоединения внешних устройств, которым необходимо передавать большой объем информации на близкое расстояние. Через параллельный порт обычно передается одновременно 8 бит данных по 8 параллельным проводникам. К параллельному порту подключаются принтер, сканер. Число параллельных портов у компьютера не превышает трех, и они имеют соответственно логические имена LPT1, LPT2, LPT3 (от англ. line PrinTer — линия принтера).

Последовательные порты

Данный тип портов используется для подключения к системному блоку мыши, модемов и многих других устройств. Через такой порт идет последовательный поток данных по 1 биту. Последовательная передача данных используется на больших расстояниях. Поэтому последовательные порты часто называют коммуникационными. Количество коммуникационных портов не превышает четырех, и им присвоены имена от СОМ1 до COM4 (англ. COMmunication port — коммуникационный порт).

ОТКРЫТАЯ АРХИТЕКТУРА КОМПЬЮТЕРА И ДРУГИЕ КОМПОНЕНТЫ

Системная плата, кроме перечисленных выше важнейших компонентов компьютера, содержит дополнительные микросхемы, переключатели и перемычки. Все эти устройства необходимы для обеспечения взаимодействия различных устройств компьютера, установки режимов их работы. Например, на системной плате могут быть установлены микросхемы, которые требуют различного напряжения питания. Параметры работы устройств задаются переключателями на системной плате.

В любом системном блоке находятся обязательные узлы, обеспечивающие работу компьютера, — блок питания, системные часы, аккумулятор, сигнальные индикаторы передней стороны системного блока.

Системные часы определяют скорость выполнения компьютером операций, которая связана с тактовой частотой, измеряемой в мегагерцах (1 МГц равен 1 млн тактов в секунду). Системные часы определяют ритм работы всего компьютера, синхронизируют работу большинства компонентов его системной платы.

Платы и слоты расширения обеспечивают реализацию так называемого принципа открытой архитектуры построения современного персонального компьютера. Слотом называется разъем, куда вставляется плата . Наличие слотов расширения на системной плате позволяет рассматривать персональный компьютер как устройство, которое можно модифицировать. Расширение возможностей компьютера осуществляется путем установки в слоте платы расширения. К разъему этой платы с помощью кабеля присоединяется некоторое устройство, расположенное вне системного блока. Вместо термина «плата расширения» часто используют названия «карта», «адаптер». К распространенным платам расширения относятся видеокарты, звуковые карты и внутренние модемы.

Технология производства компьютеров быстро развивается, что обеспечивает непрерывный рост их производительности, объема памятей и как результат — возможностей решать все более сложные задачи. Стремительно совершенствуются одни устройства, создаются другие, принципиально новые. При столь бурном развитии технологии необходимо предусмотреть такой принцип построения компьютера, который позволял бы использовать уже имеющиеся в нем устройства (блоки), а также без изменения конструкции заменять их на новые, более совершенные. Как города строятся по законам архитектуры, так и устройство компьютера должно развиваться по определенным законам. Главный принцип построения современного персонального компьютера — это принцип открытой архитектуры: каждый новый блок должен быть программно и аппаратно совместим с ранее созданными. Принцип открытой архитектуры позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а также приобретать и устанавливать новые блоки и узлы. При этом места для их установки (разъемы) во всех компьютерах являются стандартными и не требуют никаких изменений в самой конструкции компьютера.

Принцип открытой архитектуры — правила построения компьютера, в соответствии с которыми каждый новый узел (блок) должен быть совместим со старым и легко устанавливаться в том же месте в компьютере.

Какие основные блоки образуют структуру компьютера и как они связаны с этапами обработки информации ?

Какова роль процессора персонального компьютера в обработке информации?

Что такое принцип программного управления?

Каковы назначение и основные компоненты системного блока?

Какие виды корпусов системного блока вам известны?

Для чего нужна системная плата?

Каково назначение системной шины в персональном компьютере?

В чем состоит аналогия между системной шиной и транспортными магистралями?

Какие вы знаете характеристики системной шины?

Что такое порт компьютера? Какие виды портов бывают и в чем их различие?

Зачем нужны платы расширения?

В чем состоит принцип открытой архитектуры?

Что вам известно из художественной литературы, научно популярных изданий, из телевизионных передач и кинофильмов о возможностях и использовании компьютеров будущего?

Все рассмотренные выше устройства, из которых может состоять компьютерная система, определенным образом взаимодействуют между собой.

Схематично взаимодействие устройств показано на рис. 2.1. На нем видно, что центральными передаточными узлами являются системный и функциональный контроллеры – основные элементы чипсета материнской платы. Системный контроллер обменивается данными с процессором (и кэш-памятью) по системной шине, с оперативной памятью с помощью шины памяти и с видеоадаптером по шине AGP. Функциональный контроллер поддерживает «диалог» с платами расширения на шинах ISA, PCI, VLB, USB, IDE, с устройствами, подключенными к портам PS/2, последовательному и параллельному, а также с приводом гибких дисков и микросхемой BIOS.


Рис. 2.1. Схема взаимодействия устройств в компьютере.

Координатором всех действий является процессор, который выполняет программы и иногда в процессе должен принимать информацию от различных устройств. Чтобы устройства могли вовремя сообщать процессору о необходимости обработки поступившей информации, используется система прерываний.

Получив сигнал об активном прерывании, процессор приостанавливает текущий процесс, например выполнение программы. Это делается, чтобы обработать поступившую информацию. После этого и, возможно, соответствующих действий, процессор возвращается к прерванному ранее процессу.

Систему прерываний обычно поясняют, используя бытовую метафору. Замените мысленно процессор, выполняющий программу, на обедающего человека. Прием пищи – это процесс. Вдруг зазвонил телефон – это сигнал на прерывание: обед приостанавливается, обрабатывается информация, поступившая от собеседника. Когда информация обработана – разговор закончен, человек возвращается к обеду. Можно при этом создать список возможных прерываний обедающего человека: телефонный звонок, стук в дверь, захныкавший ребенок в соседней комнате и т. д.

Таким же образом процессор, выполняющий программу, может в случае необходимости приостанавливать текущий процесс, чтобы обработать поступившую информацию (например, о нажатой клавише) и, возможно, совершить соответствующее действие в ответ (сформировать сигнал для вывода на экран соответствующей буквы).

Существует определенный порядок обработки процессором прерываний (в зависимости от их приоритета, выраженного определенным номером). Чем меньше номер прерывания, тем выше его приоритет. Сигналы прерываний поступают от устройств не прямо на процессор, а на специальный контроллер прерываний, который знает, прерывание с каким номером соответствует какому устройству, и, получив сигнал от устройства, устанавливает сигнал прерывания с соответствующим номером в активное состояние.

Всего существует 16 прерываний, которые нумеруются числами от 0 до 15. Этого, как выясняется, очень мало.

ПРИМЕЧАНИЕ.

В некоторых случаях может быть задействован расширенный контроллер прерываний, и тогда их становится 24.

Почему же прерываний недостаточно, если плат расширения обычно подключено не более трех-четырех?

Дело в том, что некоторые прерывания уже закреплены за системными устройствами, поэтому свободных остается совсем немного. Кроме того, существуют устройства, которые норовят занять более одного прерывания (если в плате совмещены несколько различных устройств). Хорошо еще, что современные устройства для шины PCI, как правило, «знают» о проблемах с недостатком прерываний, и часто вполне могут уживаться на одном прерывании вдвоем или даже втроем. Впрочем, несложно догадаться, что стабильность и скорость работы системы от этого снижается.

Рассмотрим кратко, каким образом используются прерывания и какие из них можно выделить для плат расширения.

? Прерывание 0 – наиболее приоритетное, жестко закреплено за системным таймером. Оно не может быть использовано каким-либо другим устройством.

? Прерывание 1 – жестко закреплено за контроллером клавиатуры. Таким образом, сигналы от клавиатуры по умолчанию являются наиболее приоритетными пользовательскими сигналами. Первое прерывание не может быть назначено какому-либо другому устройству.

? Прерывание 2 – имеет техническое значение. С его помощью изначальное количество прерываний путем некоторых системных манипуляций в свое время было увеличено с 8 до 16. Таким образом, это прерывание также не может быть использовано каким-либо устройством.

? Прерывание 3 – обычно используется вторым последовательным портом компьютера. Если это так, то оно не может быть назначено другим устройствам. Однако если данный порт не нужен, то его можно отключить, и тем самым прерывание 3 освободится для использования другими устройствами.

? Прерывание 4 – аналогично использованию прерывания № 3 только для первого последовательного порта.

? Прерывание 5 – изначально является свободным и может назначаться различным устройствам по усмотрению пользователя (или операционной системы, если в ней предусмотрена автоматическая настройка).

ВНИМАНИЕ!

Если необходимо использовать звук в играх (особенно старых) или же в системе установлена звуковая карта, совместимая с Sound Blaster Pro и подключаемая к шине ISA, то пятое прерывание должно быть закреплено за звуковой картой.

? Прерывание 6 – жестко закреплено за контроллером привода гибких дисков. Оно не может использоваться какими-либо другими устройствами (за исключением случая, когда привод гибких дисков в системе отсутствует и BIOS может сообщить операционной системе об этом).

? Прерывание 7 – обычно используется параллельным портом компьютера. Однако если данный порт не нужен, то его можно отключить, а прерывание 7 назначить другим устройствам.

? Прерывание 8 – жестко закреплено за часами реального времени и не может быть использовано другими устройствами.

? Прерывание 9 – изначально является свободным и может использоваться платами расширения по усмотрению пользователя или операционной системы. Однако довольно часто данное прерывание использует система расширенного управления питанием или контроллер USB-порта, так что претендентов на него вполне достаточно.

? Прерывание 10 – является изначально свободным и может использоваться платами расширения по усмотрению пользователя или операционной системы.

? Прерывание 11 – также является изначально свободным и может использоваться платами расширения по усмотрению пользователя или операционной системы. Однако обычно оно закрепляется за видеоадаптером, если, конечно, для него вообще выделено отдельное прерывание.

? Прерывание 12 – жестко закреплено за мышью, подключаемой к порту PS/2. Поскольку большинство современных компьютеров оснащены именно такой мышью, прерывание 12 оказывается занятым. Если PS/2-мышь в системе отсутствует, то прерывание можно освободить и назначить другим устройствам.

? Прерывание 13 – жестко закреплено за встроенным или внешним математическим сопроцессором. Даже если такой отсутствует (например, используется система на базе процессора 80 386SX при отсутствующем сопроцессоре 80 387), прерывание 13 остается занятым, и другие устройства не могут его использовать.

? Прерывание 14 – жестко закреплено за первым каналом контроллера IDE. Обычно IDE-контроллер в системе используется, поэтому о назначении прерывания 14 платам расширения можно забыть.

ПРИМЕЧАНИЕ.

Теоретически в редчайших случаях, когда первый канал встроенного IDE-контроллера оказывается ненужным, его можно отключить, и, если позволяет программа настройки параметров BIOS, освободить прерывание № 14 для назначения другим устройствам.

? Прерывание 15 – возможности его использования аналогичны прерыванию 14, только в отношении второго канала контроллера IDE.

Таким образом, для использования платами расширения остается совсем немного прерываний – номера 5, 9, 10 и, возможно, 11.

В некоторых случаях для корректного взаимодействия с системой платы расширения используют также каналы прямого доступа к памяти (DMA – Direct Memory Access). Хотя существует всего восемь таких каналов (они нумеруются числами от 0 до 7), из них недоступными для плат расширения являются только канал 4, который используется самим контроллером прямого доступа к памяти для корректной работы, и 2, жестко закрепленный за контроллером привода гибких дисков.

Если параллельный порт компьютера работает в режиме ECP, то для него обычно выделяется DMA-канал 3 (с другим каналом он, скорее всего, просто не будет работать).

Понятие о взаимодействии устройств при помощи системы прерываний и каналов прямого доступа к памяти может помочь быстро решить проблему на уровне операционной системы или BIOS в случае возникновения конфликта устройств по ресурсам.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Целиться на взаимодействие

Целиться на взаимодействие Если в течение последних нескольких лет мы все делали правильно, то работали на основе веб-стандартов (семантическая HTML-разметка и CSS для форматирования, шрифтов, цветов и так далее), оставляя большинство интерактивных эффектов – анимацию,

Преобразовывая взаимодействие

Преобразовывая взаимодействие Результат получился довольно впечатляющим, учитывая совсем небольшое количество написанного CSS-кода. Б?льшая часть эффекта достигается непосредственно за счет браузеров, которые поддерживают CSS-свойства, – вместо того, чтобы привлекать

Взаимодействие XT с Java

Взаимодействие XT с Java Процессор XT также может работать с Java. API XT спроектирован для работы с классами, определенными в Project X TR2 фирмы Sun, которые поддерживают обработку XML. Вам будет необходим файл xml.jar фирмы Sun, который можно получить, загрузив Project X TR2. Чтобы получить xml.jar,

Взаимодействие

Взаимодействие Уведомите свою группу и начальство о неприятностях. Изложите свой план по выходу из кризиса. Обратитесь к ним за информацией и советом. Избегайте сюрпризов. Ничто не сердит людей и не делает их менее рациональными так, как сюрпризы. Сюрпризы повышают

11.3 ВЗАИМОДЕЙСТВИЕ В СЕТИ

11.3 ВЗАИМОДЕЙСТВИЕ В СЕТИ Программы, поддерживающие межмашинную связь, такие, как электронная почта, программы дистанционной пересылки файлов и удаленной регистрации, издавна используются в качестве специальных средств организации подключений и информационного

3.3. Взаимодействие процессов

3.3. Взаимодействие процессов Из всех средств межпроцессного взаимодействия, которыми так богаты UNIX-подобные ОС, в этой главе мы рассмотрим только конвейеры и

Взаимодействие транзакций

Взаимодействие транзакций Интересен процесс определения, является ли текущая версия мусором или, возможно, она еще нужна какой-то транзакции.Для описания этого процесса придется ввести несколько важных понятий. Прежде всего, надо отметить, что все определения строятся

18.2.3. Взаимодействие с РОР-сервером

Взаимодействие ограничений

Взаимодействие ограничений Комбинируя формальное ссылочное ограничение с другими ограничениями целостности (см. главу 16), можно реализовать большинство (если не все) бизнес-правил с высокой степенью точности. Например, ограничение столбца NOT NULL будет корректировать

Взаимодействие с ActiveSync

Взаимодействие с ActiveSync Разработчики теперь могут запускать и останавливать процесс синхронизации ActiveSync, используя методы ActiveSyncStart и

3.9. Калибровка устройств компьютера

3.9. Калибровка устройств компьютера Профили устройств Что делать, если один и тот же файл на разных мониторах выглядит по-разному? И откуда берутся различия в картинке, если один и тот же снимок распечатать на разных принтерах? В таких случаях устройства чаще всего

Взаимодействие с не объектным ПО

Взаимодействие с не объектным ПО До сих пор, элементы ПО выражались полностью в ОО-нотации. Но программы появились задолго до распространения ОО-технологии. Часто возникает необходимость соединить объектное ПО с элементами, написанными, например, на языках С, Fortran или

Взаимодействие с мышью

Взаимодействие с мышью Для взаимодействия с мышью служит объект Mouse. Единственный экземпляр этого объекта под именем Mouse создается самим Flash.Прежде всего, этот объект предоставляет методы hide и show. Первый метод скрывает курсор мыши, а второй — вновь выводит его на экран. Ни

Всем привет, дорогие друзья. Рад вас видеть! Компьютеры входят в нашу жизнь все плотнее, а значит - мы просто обязаны знать больше о том, как они все-таки работают. Начнем пожалуй!

Начнем с основ

Я уже писал о том, из чего состоит компьютер, однако мало времени уделил именно принципу работы комплектующих. В данной статье я расскажу о том, как именно работают основные комплектующие (а во второй части разберем НЕ основное железо).

В основе всего лежит вот эта штука:

Это транзистор, и он имеет два положения - "0" (нет) и "1" (да). Этим, к слову, обусловлено использование двоичной системы счисления в компьютерах. И да, транзисторы в комплектующих далеко не такие, как на картинке.

Это - процессор под микроскопом. То, что вы видите на картинке - транзисторы, соединенные между собой дорожками. Ширина такой дорожки - всего несколько нанометров. Это - процессор под микроскопом. То, что вы видите на картинке - транзисторы, соединенные между собой дорожками. Ширина такой дорожки - всего несколько нанометров.

Процессор

Выглядит данное устройство следующим образом:

Состоит процессор из текстолитовой подложки, кристалла, крышки. Интересует нас только кристалл, ибо в нем находится главный орган любого современного компьютера - транзистор.

Число транзисторов в процессоре может переваливать за несколько десятков миллиардов, и именно они, как я уже и говорил, выполняют основную работу.

Работа процессора возложена на транзисторы, однако самому процессору нужно взаимодействовать с системой, обмениваться данными, а также где-то хранить базовый набор инструкций, чтобы "знать" как выполнять то или иное действие. Для этого существует кэш.

Если вкратце - то это буфер между процессором и оперативной памятью, который бывает нескольких видов:

  • L1 - самый быстрый и немногочисленный
  • L2 - медленнее, но его больше
  • L3 - медленный, но имеет самый большой объем
  • L4 - очень редко встречается. Имеет огромный объем, но самую низкую скорость работы

Принцип работы хорошо описал Паша с канала "Этот компьютер". Допустим процессор - это школьник, который делает уроки. В таком случае для решения задачи ему нужна нужная страница учебника - это кэш L1.

Если нужной информации на данной странице нет, то нужно пролистать учебник - это кэш L2.

Если информации и там нет, то нужно взять другой, более подробный учебник - это кэш L3.

Если у процессора нет кэша 4-го уровня, то приходится идти вниз к книжному шкафу, чтобы найти нужную книгу - это оперативная память. Кэш L4 в данном случае - что-то вроде книжной свалки на столе.

Оперативная память

Оперативная память хранит в себе всю информацию, которая может понадобиться для выполнения текущей задачи. К примеру, при игре в игру, в оперативную память будет загружаться все от текста диалогов, до указаний процессора к видеокарте - где нужно взаимодействовать с текстурой.

Оперативная память также работает на транзисторах, но их число, как правило, меньше, чем в процессорах. Останавливаться на ней особого смысла не вижу - просто запомните, что это "буфер" - связующее звено между всеми комплектующими, которое хранит информацию, которая может понадобиться вот прямо сейчас.

Видеокарта

Видеокарта выводит изображение на экран, а также выполняет ряд других функций - например, она может делать просчеты сцены (профессиональные видеокарты), рендерить кадры в играх, а также использоваться при расчетах (видеокарты Nvidia Tesla, которые очень дорогие).

У видеокарты есть своя память, которая используется для нужд графического процессора - видеопамять. Это как оперативная память, только несколько быстрее, при этом хранит только информацию для нужд ГП (текстуры, карты света в играх и т.д).

Видеокарты бывают трех видов - офисные, игровые, профессиональные. Первые активно заменяются интегрированной в процессор графикой, тогда как чем отличаются вторые и третьи я подробно расписывал в одной из статей (ссылка будет в конце). Продолжим.

Видеокарта, как и процессор, состоит из ядер, способных обрабатывать потоки информации. Вот только если у процессора несколько "умных" и мощных ядер, то у видеокарты - пара тысяч "глупеньких", такое исполнение обусловлено задачами, для которых видеокарты и нужны.

Кстати, не забудь подписаться на нашу группу ВК со статьями, смешными картинками, а также обсуждениями и криворуким оператором.

Теперь подытожим. Процессор - мозг компьютера, который отдает все команды. Оперативная память - связующий узел, который хранит всю нужную информацию. Видеокарта - глаза компьютера, которые, к тому же, умеют хорошо обрабатывать графику.

Читайте также: