Какая характеристика описывает ddr sdram

Обновлено: 02.07.2024

В последние годы индустрия DRAM выглядит одной из наиболее скандальных отраслей hi-tech, по напряженности конкуренции сравнявшись с битвами процессорных гигантов. Почти все компании-производители чипов памяти балансируют на грани рентабельности, а некоторые — сводят концы с концами лишь благодаря миллиардным кредитам (которые рано или поздно придется отдавать).

Прогноз на 2003 год вновь показывает значительное превосходство предложения над спросом (6%), что не может не провоцировать ценовые войны и вытекающие из них проблемы для производителей. В этой ситуации в выигрыше оказываются те, кто предлагает на рынке наибольший спектр решений, получая более высокий доход от продажи высокопроизводительных типов памяти, не обязательно имеющих высокую себестоимость. Известно, что производство чипов SDR и DDR SDRAM обходится компаниям примерно в одинаковую сумму, но рыночная конъюнктура такова, что цены на DDR почти вдвое выше. В таких условиях многие производители чипов негативно относятся к технологиям пусть даже весьма быстрой и технически продвинутой памяти, но дорогой в производстве, особенно когда за каждый изготовленный чип приходится платить лицензионные отчисления (пример — DRDRAM). Между тем разрыв между производительностью процессоров и RAM продолжает увеличиваться. Сравнение мультимедиа-компьютера класса hi-end на базе Pentium MMX 233 с памятью PC66 SDRAM (1997 год) и современного монстра с Pentium 4 3,06 ГГц и PC2700 DDR показывает, что если частота процессоров выросла в тринадцать раз, то время доступа к оперативной памяти уменьшилось только в 2,5 раза, а скорость передачи данных возросла лишь впятеро. В целом ситуация с течением времени ухудшается, что ясно видно на примере эволюции процессорных тестов: если ранние тестовые программы использовали очень малые объемы памяти и давали хорошую оценку быстродействия компьютеров на реальных задачах, то современные тесты (например, SPEC CPU2000), претендующие на объективность, все больше и больше зависят не столько от скорости самого процессора, сколько от мощи его подсистемы памяти. Большинство компьютеров не могут рассчитывать на десятки мегабайт высокоскоростной и дорогостоящей SRAM в качестве кэша энного уровня или на контроллеры, объединяющие пропускную способность множества каналов памяти, как у их двоюродных братьев из мира hi-end-серверов. Единственный выход — создание быстродействующей, компактной и недорогой оперативной памяти. Таким образом, производители процессоров кровно заинтересованы в появлении новых, все более быстрых типов RAM и в ряде случаев оказывают значительное влияние на продвижение более перспективных стандартов. В действительности любой современный стандарт DRAM представляет собой компромисс между потребностью в высокоскоростной оперативной памяти и возможностями/желаниями ее производителей, во многом обусловленными рыночной конъюнктурой. Сейчас Intel и многие ведущие компании-производители микросхем памяти (Samsung, Micron, Elpida и другие) пришли к согласию относительно выбора наследницы DDR SDRAM — с их точки зрения, в 2004-05 годах DDRII должна стать доминирующим типом памяти для настольных компьютеров, серверов и рабочих станций.

Попробуем разобраться, почему же эта технология так важна и что принесет нам новая память DDRII SDRAM, не забывая при этом, что чаще всего побеждают не самые быстрые и совершенные технологии, а наиболее целесообразные экономически.

На первый взгляд, DDRII выглядит просто как улучшенная DDR SDRAM — с увеличенными частотами, уменьшенным энергопотреблением и набором новых функций (ключевые характеристики DDRII и DDR SDRAM приведены в таблице ниже). Но в действительности под привычными очертаниями скрывается совершенно иная архитектура.

Сравнительная характеристика DDRII и DDR SDRAM
DDRII SDRAMDDR SDRAM
Скорость передачи данных (на рязряд), Мбит/с400/553/(667)200/266/333/(400)
Частота работы ядра, МГц200/266/333100/133/166/(200)
Размер предвыборки, бит42
Длина пакета4/84/8
Строб данныхдифференциальныйодиночный
Напряжение питания, В1,82,5
Интерфейс ввода-выводаSSTL _ 18SSTL _ 2
Энергопотребление (max), мВт304 (на 533 Мбит/с)418 (на 266 Мбит/с)
Упаковка чиповFBGA (без свинца)TSOP(II)
Тайминги, набор командто же, что и у DDR SDRAM

Предвыборка 4 бит (4-bit Prefetch)

Идея такова: при неизменной внутренней частоте ядра памяти частота буферов ввода-вывода удваивается; при этом за каждый такт передается два блока данных (как в обычной DDR). Получается, что по сравнению с частотой синхронизации ядра ввод-вывод данных осуществляется на четырехкратной скорости. Гениальное изобретение, позволяющее одним махом решить все проблемы микроэлектронной промышленности? Не совсем. Хотя благодаря этому ухищрению скорость потокового ввода-вывода действительно учетверяется, латентность преимущественно определяется собственной частотой ядра, а она для 400-МГц DDRII, как и для PC1600 DDR SDRAM и бабушки PC100 SDRAM, по-прежнему равна 100 МГц. Становятся понятными необычно большие тайминги (тройка CL, tRCD, tRP) DDRII: как вам 4-4-4 схема работы DDRII 400?! Все задержки приводятся для частоты буферов, то есть той частоты, с которой память общается с контроллером (чипсетом), а она в нашем случае в два раза больше реальной частоты ядра. Поэтому 4-4-4 для DDRII 400 соответствует 2-2-2 для DDR PC1600 или SDR PC100, что составляет 20 нс. Разумеется, увеличивать частоту буферов, занимающих несколько процентов общей площади кристалла, проще, чем поднимать скорость всей памяти. Проще , как обычно, значит дешевле — и совсем не обязательно для нас с вами. Фактически производители чипов памяти в очередной раз получили прекрасную возможность продать PC100 в новой упаковке по цене DDRII 400 . Немного утешает, что энергопотребление модулей будет меньше (об этом ниже) и в массовое производство почти наверняка пойдет более быстрая память — уже DDRII 533 по сумме характеристик сегодня выглядит весьма привлекательно. На настоящий момент доступны 512-мегабитные чипы DDRII 400 и DDRII 533 4-4-4 от Samsung и Elpida; пиковая пропускная способность (недостижимая по ряду фундаментальных причин) модулей, собранных из них, составит примерно 3200 и 4300 Мбайт/с (как у 32-разрядных RIMM и QBM SDRAM). Заметим, что латентность 3-3-3 DDR400 SDRAM (PC3200) примерно соответствует латентности 4-4-4 DDRII 533. DDRII 400 — явный аутсайдер.


"Начавшись в 1996 и завершающий в июне 2000, компания JEDEC развивал DDR (Двойная Скорость передачи данных) спецификация (JESD79) SDRAM". JEDEC установил нормы для скоростей передачи данных SDRAM DDR, разделенной на две части. Первая спецификация для микросхем памяти, и второе для модулей памяти.

Содержание

Спецификация чипов памяти

Чипы и модули

Название Частота памяти
(MHz)
Время цикла [2]
(ns)
Частота шины В./Выв.
(MHz)
Ск. передачи данных
(MT/s)
VDDQ
(V)
Название модуля Пик. ск. передачи данных
(MB/s)
Задержка
(CL-tRCD-tRP)
DDR-200 100 10 100 200 2.5±0.2 PC-1600 1600
DDR-266 133.33 7.5 133.33 266.67 PC-2100 2133.33 2.5-3-3
DDR-333 166.67 6 166.67 333.33 PC-2700 2666.67
DDR-400A
DDR-400B
DDR-400C
200 5 200 400 2.6±0.1 PC-3200 3200 2.5-3-3
3-3-3
3-4-4

Примечание :. Все перечисленные выше определяются как JEDEC JESD79F. Весь промежуток скоростей передачи данных RAM или выше этих перечисленных технических требований не стандартизирован JEDEC, часто они просто оптимизированы производителем с использованием более с помощью защиты напряжения чипов.

Размеры пакетов, в которых DDR SDRAM изготавливается также стандартизированы JEDEC.

Характеристики чипов

Организация Обозначения, как 64M × 4 означает, что матрица памяти имеет 64 млн 4-битовых ячеек памяти. Есть × 4, × 8, и 16 × DDR чипов. Чипы ×4 позволяют использование усовершенствованных функций коррекции ошибок как Chipkill, вычищение памяти и Intel SDDC в серверных средах, в то время как ×8 и ×16 микросхемы несколько менее дорогие. микросхемы x8, главным образом, используются на настольных компьютеров/ноутбуках, но превращают запись в рынок серверов. Обычно есть 4 банка, и только одна строка может быть активной в каждом банке. [4]

Особенности модулей

Вместимость. Количество устройств памяти DRAM Количество чипов кратно 8 для non-ECC модулей и кратно 9 модулей ECC. Чипсы могут занимать одну сторону (односторонняя) или с обеих сторон (двухсторонний) модуля. Максимальное количество чипов на модуль DDR составляет 36 (9 × 4) для ECC и 32 (8x4) для non-ECC.

ECC vs non-ECC Модули, имеющие код с исправлением ошибок помечены как ECC. Модули без исправлением ошибок помечены как non-ECC.

Задержки CAS Latency (CL), часы реального времени цикла (tCK), время цикла строки (tRC), время обновления строки цикла (tRFC), строка активное время (Tras).

Буферизация registered (или buffered) vs unbuffered.

Упаковка Обычно модуль DIMM или SODIMM.

Потребляемая мощность Тест с DDR и DDR2 RAM в 2005 году показало, что средняя потребляемая мощность оказалась порядка 1-3 Вт на модуль 512 Мб; этот риск возрастает с тактовой частотой, и при использовании, а не на холостом ходу. Завод-изготовитель производит калькуляторы для оценки мощности, используемой различными типами памяти. Общая емкость модуля является продуктом мощности одного чипа по количеству чипов. Модули ECC умножить его на 8/9, так как они используют один бит на байт для исправления ошибок. Поэтому модуль любого конкретного размера может быть собран либо из 32 маленьких чипов (36 для памяти ECC) или 16 (18) или 8 (9) более крупных. Ширина шины памяти DDR для каждого канала составляет 64 бит (72 для памяти ECC). Общая ширина модуля бит является произведением битов на микросхеме по количеству чипов. Оно также равно числу рангов (строк), умноженную на DDR ширины шины памяти. Следовательно, модуль с большим количеством чипов или с использованием × 8 фишек вместо × 4 будет иметь больше рангов.

Вариации модуля SDRAM 1GB PC2100 DDR с ECC
Module size (GB) Количество чипов Размер чипа (Мбит) Организация чипа Количество рангов
1 36 256 64M×4 2
1 18 512 64M×8 2
1 18 512 128M×4 1

История

Спецификация двойной скорости передачи данных (DDR) SDRAM

JEDEC Board Ballot JCB-99-70, и модифицированный многочисленными другими Board Ballots, сформулированной в виде Committee JC-42.3 на DRAM Parametrics.

Стандарт № 79 журнала ревизий:

  • Релиз 1, июнь 2000 г.
  • Релиз 2, май 2002 г.
  • Релиз C, март 2003 г. - JEDEC стандарт № 79C.

Структура

PC3200 DDR SDRAM предназначена для работы на частоте 200 МГц с использованием DDR-400 чипов с пропускной способностью 3200 Мб/с. Поскольку передает PC3200 памяти данные как восходящих и спадающих тактовых фронтов, его эффективная тактовая частота составляет 400 МГц. 1 Гб модулями PC3200 non-ECC обычно делаются с шестнадцати 512 Мбит чипами, восемь на каждой стороне (512 Мбит × 16 чипов) / (8 бит (один байт)) = 1,024 MB. Отдельные чипы, составляющие модуль памяти емкостью 1 Гб, как правило, организованы как 2^26 восьми-разрядных слов, обычно выражается в 64M × 8. Память изготовлена таким образом, является оперативная память с низкой плотностью и, как правило, совместима с любой материнской платой с указанием памяти PC3200 DDR-400.

Вариации

DDR SDRAM
Standard
Тактовая частота шины
(MHz)
Внут. скорость
(MHz)
Упреждающая выборка
(min burst)
Скорость передачи
(MT/s)
Напряжение DIMM
pins
SO-DIMM
pins
MicroDIMM
pins
DDR 100–200 100–200 2n 200–400 2.5/2.6 184 200 172
DDR2 200–533.33 100–266.67 4n 400–1066.67 1.8 240 200 214
DDR3 400–1066.67 100–266.67 8n 800–2133.33 1.5/1.35 240 204 214
DDR4 1066.67–2133.33 133.33–266.67 8n 2133.33–4266.67 1.05/1.2 288 256

DDR (DDR1) была заменена DDR2 SDRAM, которая имела модификации для достижения более высокой тактовой частоты и удвоения пропускной способности, но она работает по тому же принципу, что и DDR. Конкурировать с DDR2 стала Rambus XDR DRAM. Но DDR2 преобладает своей стоимостью и фактором поддержки. DDR2 в свою очередь был заменен DDR3 SDRAM, который предложил более высокую производительность при повышенных скоростях шины и новые возможности. DDR3, вероятно, будет заменен DDR4 SDRAM, который впервые был произведен в 2011 году и чьи стандарты все еще находятся в потоке (2012) со значительными архитектурными изменениями. Буферная глубина упреждающей выборки DDR 2 (бит), в то время как DDR2 использует 4. Несмотря на то, что эффективные тактовые частоты DDR2 выше, чем DDR, общая производительность была не больше в ранних реализациях, прежде всего из-за высоких задержек первых модулей DDR2. DDR2 начинал быть эффективным к концу 2004, поскольку модули с более низкими задержками стали доступными. Производитель памяти заявил, что это было непрактичным, массовое производство DDR1 памяти с эффективной скоростью передачи, превышающей 400 МГц (то есть 400 MT / с и 200 МГц внешнего тактового сигнала) из-за ограничений внутренней скорости. DDR2 поднимает, где DDR1 кончает, используя внутренние тактовые частоты, аналогичные DDR1, но доступен по эффективной скорости передачи данных 400 МГц и выше. DDR3 расширил возможности сохранения внутренних тактовых частот, обеспечивая при этом более эффективную скорость передачи данных путем повторного удвоения глубины упреждающей выборки. RDRAM был особенно дорогой альтернативой SDRAM DDR, и большинство производителей отбрасывало его поддержку со стороны своих чипсетов. Цены памяти DDR1 существенно увеличились начиная с 2 квартала 2008, в то время как цены DDR2 уменьшились. В январе 2009 DDR1 на 1 Гбайт был в 2-3 раза более дорогим, чем DDR2 на 1 Гбайт. RAM DDR высокой плотности удовлетворит приблизительно 10% системных плат PC на рынке, в то время как низкая плотность удовлетворит почти всем системным платам на Настольном рынке PC. [5]

MDDR является аббревиатурой, что некоторые предприятия используют для Mobile DDR SDRAM, тип памяти, используемой в некоторых портативных электронных устройствах, таких как мобильные телефоны, карманные компьютеры и цифровые аудиоплееры. Посредством методов, включая уменьшенную подачу напряжения и дополнительные параметры обновления, Mobile DDR может достичь большей энергетической эффективности.

Микросхемы памяти DDR SDRAM выпускались в корпусах TSOP и (освоено позднее) корпусах типа BGA (FBGA), производятся по нормам 0,13 и 0,09-микронного техпроцесса:

  • Напряжение питания микросхем: 2,6 В ± 0,1 В.
  • Потребляемая мощность: 527 мВт.
  • Интерфейс ввода-вывода: SSTL_2.

Ширина шины памяти составляет 64 бита, то есть по шине за один такт одновременно передаётся 8 байт. В результате получаем следующую формулу для расчёта максимальной скорости передачи для заданного типа памяти: (тактовая частота шины памяти) x 2 (передача данных дважды за такт) x 8 (число байтов передающихся за один такт). Например, чтобы обеспечить передачу данных дважды за такт, используется специальная архитектура «2n Prefetch». Внутренняя шина данных имеет ширину в два раза больше внешней. При передаче данных сначала передаётся первая половина шины данных по фронту тактового сигнала, а затем вторая половина шины данных по спаду.

Помимо удвоенной передачи данных, DDR SDRAM имеет несколько других принципиальных отличий от простой памяти SDRAM. В основном, они являются технологическими. Например, был добавлен сигнал QDS, который располагается на печатной плате вместе с линиями данных. По нему происходит синхронизация при передаче данных. Если используется два модуля памяти, то данные от них приходят к контроллеру памяти с небольшой разницей из-за разного расстояния. Возникает проблема в выборе синхросигнала для их считывания, и использование QDS успешно это решает.

JEDEC устанавливает стандарты для скоростей DDR SDRAM, разделённых на две части: первая для чипов памяти, а вторая для модулей памяти, на которых, собственно, и размещаются чипы памяти.

Синхронное динамическое ОЗУ с двойной скоростью передачи данных (GDDR SDRAM)

  • Время на рынке: с 2003 года по настоящее время
  • Популярные продукты, использующие GDDR SDRAM: видеокарты, некоторые планшеты
  • Подобно DDR SDRAM, GDDR SDRAM имеет собственную эволюционную линию (повышение производительности и снижение энергопотребления): GDDR2 SDRAM, GDDR3 SDRAM, GDDR4 SDRAM и GDDR5 SDRAM.

Совместимость типов памяти

Существует заблуждение, что из‐за особенностей интерфейса планку памяти невозможно вставить в неподходящие слоты. Скажу так: достаточно сильный парень (и даже некоторые девчонки) вставит что угодно куда угодно – не только оперативную память, но и процессор Intel в слот для AMD. Правда, есть одно НО: работать такая сборка, увы, не будет.

Остальные юзеры, собирающие компы аккуратно, обычно оперативку вставить в неподходящий слот не могут. Даже если планки имеют одинаковые габариты, это не позволит сделать так называемый ключ. Внутри слота есть небольшой выступ, не дающий смонтировать несоответствующий тип ОЗУ. На подходящей же планке в этом месте есть небольшой вырез, поэтому вставить ее можно без проблем.

Динамическое ОЗУ (DRAM)

  • Время на рынке: с 1970-х до середины 1990-х
  • Популярные продукты с использованием DRAM: игровые приставки, сетевое оборудование

Преимущества использования DRAM (по сравнению с SRAM) заключаются в низких затратах на производство и большей емкости памяти. Недостатками использования DRAM (по сравнению с SRAM) являются более медленные скорости доступа и высокое энергопотребление.

Из-за этих характеристик DRAM используется в таких устройствах:

  • Системная память
  • Видео графическая память

В 1990-х годах разработана расширенная динамическая ОЗУ с данными (EDO DRAM), за которой последовала ее эволюция, ОЗУ Burst EDO (BEDO DRAM). Эти типы памяти были привлекательны благодаря повышенной производительности/эффективности при меньших затратах. Но технология устарела в результате разработки SDRAM.

Жажда скорости

SDRAMDouble data rate synchronous dynamic random access memory (синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных)
single data rate SDRAM
Тип DRAM Обычная частота чипа Тактовый сигнал ввода-вывода Частота передачи данных
SDR 100 МГц 100 МГц 100 MT/s
DDR 100 МГц 100 МГц 200 MT/s
DDR2 200 МГц 400 МГц 800 MT/s
DDR3 200 МГц 800 МГц 1600 MT/s
DDR4 400 МГц 1600 МГц 3200 MT/s

Сверху вниз: DDR-SDRAM, DDR2, DDR3, DDR4
Тип DRAM Обычная частота памяти Тактовый сигнал ввода-вывода Частота передачи данных
GDDR 250 МГц 250 МГц 500 MT/s
GDDR2 500 МГц 500 МГц 1000 MT/s
GDDR3 800 МГц 1600 МГц 3200 MT/s
GDDR4 1000 МГц 2000 МГц 4000 MT/s
GDDR5 1500 МГц 3000 МГц 6000 MT/s
GDDR5X 1250 МГц 2500 МГц 10000 MT/s
GDDR6 1750 МГц 3500 МГц 14000 MT/s

Каковы основные характеристики оперативной памяти и зачем их знать

Итак, чем больше объём оперативной памяти, тем лучше, и именно поэтому пользователи нередко устанавливают на ПК дополнительный модуль ОЗУ. Однако нельзя вот так просто взять, пойти в магазин, купить любую память и подключить её к материнской плате. Если она будет выбрана неправильно, компьютер не сможет работать или ещё хуже, это приведёт к тому, что ОЗУ попросту выйдет из строя. Поэтому так важно знать её ключевые характеристики. К таковым относятся:

  1. Тип оперативной памяти. В зависимости от производительности и конструктивных особенностей различают модули DDR2, DDR3 и DDR4.
  2. Объём памяти. Параметр характеризуется объёмом данных, которые могут разместиться в ячейках памяти.
  3. Частота оперативной памяти. Параметр обуславливает скорость выполняемых операций за единицу времени. От частоты зависит пропускная способность модуля ОЗУ.
  4. Тайминг. Это временные задержки между отправкой команды контроллера памяти и её выполнением. С увеличением частоты тайминги возрастают, из-за чего разгон оперативки может привести к снижению ее производительности.
  5. Вольтаж. Напряжение, необходимое для оптимальной работы планки памяти.
  6. Форм-фактор. Физический размер, форма планки ОЗУ, а также количество и расположение контактов на плате.

Если вы устанавливаете дополнительную память, то она должна иметь те же объём, тип и частоту, что и основная. Если же производится полная замена оперативной памяти, внимание нужно обращать на поддержку заменяемой ОЗУ материнской платой и процессором с одним лишь нюансом. Если на ПК используются процессоры Intel Core i3, Intel Core i5, Intel Core i7, соответствие частоты памяти и материнской платы необязательно, потому что у всех этих процессоров контроллер ОЗУ располагается в самом процессоре, а не в северном мосту материнской платы. То же самое касается процессоров AMD.

А что дальше?

А дальше, полагаю, стандарты DDR5 и далее по нарастающей (но это неточно). Возможно, неожиданно изобретут нечто эдакое, что кардинально изменит архитектуру ЭВМ и сделает оперативную память для ПК лишним элементом.

Интересная тенденция: у каждого следующего поколения памяти увеличиваются тайминги, что инженеры стараются компенсировать увеличением рабочей частоты и скоростью передачи данных. Настолько эффективно, что следующее поколение оказывается шустрее предшественников.

Именно поэтому еще раз акцентирую ваше внимание на том, что при выборе комплектующих старайтесь «плясать» от стандарта DDR4 как самого нового и прогрессивного.

Пришествие DDR

Разработка стандарта DDR (Double Data Rate) началась еще в 1996 году и закончилась официальной презентацией в июне 2000 года. С приходом DDR уходящую в прошлое память SDRAM стали называть попросту SDR. Чем же стандарт DDR отличается от SDR?

После того как все ресурсы SDR были исчерпаны, у производителей памяти было несколько путей решения проблемы повышения производительности. Можно было бы просто наращивать число чипов памяти, тем самым увеличивая разрядность всего модуля. Однако это отрицательно сказалось бы на стоимости таких решений — уж очень дорого обходилась эта затея. Поэтому в ассоциации производителей JEDEC пошли иным путем. Было решено вдвое увеличить шину внутри чипа, а передачу данных осуществлять также на вдвое повышенной частоте. Кроме этого, в DDR предусматривалась передача информации по обоим фронтам тактового сигнала, то есть два раза за такт. Отсюда и берет свое начало аббревиатура DDR — Double Data Rate.

Double Data Rate Synchronous Dynamic Random-Access Memory ( DDR SDRAM ) является двойной скоростью передачи данных (DDR) память с произвольным доступом синхронной динамической (SDRAM) класс памяти интегральных схем , используемых в компьютерах . DDR SDRAM, также задним числом называемая DDR1 SDRAM, была заменена DDR2 SDRAM , DDR3 SDRAM , DDR4 SDRAM и DDR5 SDRAM . Ни один из его преемников не имеет прямой или обратной совместимости с DDR1 SDRAM, а это означает, что модули памяти DDR2, DDR3, DDR4 и DDR5 не будут работать с материнскими платами , оснащенными DDR1 , и наоборот.

По сравнению с SDRAM с одинарной скоростью передачи данных ( SDR ) интерфейс DDR SDRAM обеспечивает более высокие скорости передачи за счет более строгого контроля синхронизации электрических данных и сигналов синхронизации. Реализации часто должны использовать такие схемы, как петли фазовой автоподстройки частоты и самокалибровка, чтобы достичь требуемой точности синхронизации. В интерфейсе используется двойная накачка (передача данных как по переднему, так и по заднему фронту тактового сигнала ) для удвоения пропускной способности шины данных без соответствующего увеличения тактовой частоты. Одним из преимуществ снижения тактовой частоты является то, что это снижает требования к целостности сигнала на печатной плате, соединяющей память с контроллером. Название «двойная скорость передачи данных» относится к тому факту, что DDR SDRAM с определенной тактовой частотой обеспечивает почти вдвое большую пропускную способность, чем SDR SDRAM, работающая на той же тактовой частоте, из-за этой двойной накачки.

При передаче данных 64 бита за раз, DDR SDRAM дает скорость передачи (в байтах / с) (тактовая частота шины памяти) × 2 (для двойной скорости) × 64 (количество переданных битов) / 8 (количество битов). /байт). Таким образом, при частоте шины 100 МГц DDR SDRAM дает максимальную скорость передачи 1600 МБ / с .

СОДЕРЖАНИЕ

История


В конце 1980-х годов IBM создала DRAM с использованием функции синхронизации с двумя фронтами и представила свои результаты в Международной конвенции по твердотельным схемам в 1990 году.

Компания Samsung продемонстрировала первый прототип памяти DDR в 1997 году и выпустила первый коммерческий чип DDR SDRAM (64 МБ ) в июне 1998 года, а вскоре после этого в том же году компания Hyundai Electronics (ныне SK Hynix ). Разработка DDR началась в 1996 году, прежде чем ее спецификация была завершена JEDEC в июне 2000 года (JESD79). JEDEC установил стандарты скорости передачи данных для DDR SDRAM, разделенной на две части. Первая спецификация предназначена для микросхем памяти, а вторая - для модулей памяти. Первая материнская плата для ПК, использующая DDR SDRAM, была выпущена в августе 2000 года.

Технические характеристики





Сравнение модулей памяти для портативных / мобильных ПК ( SO-DIMM ).

Модули

Добавление модулей к единой шине памяти создает дополнительную электрическую нагрузку на ее драйверы. Чтобы смягчить результирующее падение скорости передачи сигналов по шине и преодолеть узкое место в памяти , в новых наборах микросхем используется многоканальная архитектура.

Сравнение стандартов DDR SDRAM
Имя Чип Автобус Сроки Напряжение ( В )
Стандарт Тип Модуль Тактовая частота ( МГц ) Время цикла ( нс ) Тактовая частота (МГц) Скорость передачи (МТ / с) Пропускная способность ( МБ / с ) CL-T RCD -T RP Задержка CAS (нс)
DDR-200 ПК-1600 100 10 100 200 1600 2,5 ± 0,2
DDR-266 PC-2100 133⅓ 7,5 133⅓ 266,67 2133⅓ 2,5-3-3
DDR-333 PC-2700 166⅔ 6 166⅔ 333⅓ 2666⅔ 2,5
DDR-400 А PC-3200 200 5 200 400 3200 2,5-3-3 3 2,6 ± 0,1
B 3-3-3 2,5
C 3-4-4 2

Примечание. Все вышеперечисленное обозначено JEDEC как JESD79F. Все скорости передачи данных RAM между этими перечисленными спецификациями или выше не стандартизированы JEDEC - часто они просто оптимизируются производителем с использованием более жестких допусков или микросхем с повышенным напряжением. Размеры пакетов, в которых производится DDR SDRAM, также стандартизированы JEDEC.

Архитектурных различий между модулями DDR SDRAM нет. Модули вместо этого предназначены для работы на разных тактовых частотах: например, модуль PC-1600 предназначен для работы на частоте 100 МГц , а PC-2100 предназначен для работы на частоте 133 МГц . Тактовая частота модуля обозначает скорость передачи данных, с которой он гарантированно работает, следовательно, он гарантированно работает на более низких ( разгон ) и, возможно, может работать на более высоких ( разгонных ) тактовых частотах, чем те, для которых он был создан.

Модули DDR SDRAM для настольных компьютеров, двухрядные модули памяти (DIMM) , имеют 184 контакта (в отличие от 168 контактов в SDRAM или 240 контактов в DDR2 SDRAM) и могут отличаться от модулей DIMM SDRAM по количеству выемок ( У DDR SDRAM один, у SDRAM два). DDR SDRAM для портативных компьютеров, модули SO-DIMM , имеют 200 контактов, что равно количеству контактов, что и в модулях SO-DIMM DDR2. Эти две характеристики имеют очень похожие выемки, и при установке необходимо соблюдать осторожность, если вы не уверены в правильном совпадении. Большая часть DDR SDRAM работает при напряжении 2,5 В по сравнению с 3,3 В для SDRAM. Это может значительно снизить энергопотребление. Чипы и модули со стандартом DDR-400 / PC-3200 имеют номинальное напряжение 2,6 В.

Незначительное увеличение рабочего напряжения может увеличить максимальную скорость за счет увеличения рассеиваемой мощности и нагрева, а также с риском выхода из строя или повреждения.

Характеристики модуля и микросхемы неразрывно связаны.

Общая емкость модуля - это произведение емкости одной микросхемы и количества микросхем. Модули ECC умножают его на 8/9, потому что они используют 1 бит на байт (8 бит) для исправления ошибок. Таким образом, модуль любого размера может быть собран либо из 32 маленьких микросхем (36 для памяти ECC), либо из 16 (18) или 8 (9) больших.

Ширина шины памяти DDR на канал составляет 64 бита (72 для памяти ECC). Общая разрядность модуля - это произведение количества бит на микросхему и количества микросхем. Он также равен количеству рангов (строк), умноженному на ширину шины памяти DDR. Следовательно, модуль с большим количеством микросхем или использующий × 8 микросхем вместо × 4 будет иметь больше рангов.

Пример: варианты модуля памяти DDR SDRAM объемом 1 ГБ PC2100 с ECC
Размер модуля (ГБ) Количество фишек Размер чипа (Мбит) Чиповая организация Количество рангов
1 36 256 64М × 4 2
1 18 512 64М × 8 2
1 18 512 128M × 4 1

В этом примере сравниваются различные модули памяти реального сервера с общим размером 1 ГБ. При покупке модулей памяти на 1 ГБ определенно следует быть осторожным, потому что все эти варианты могут продаваться по одной цене, без указания, являются ли они × 4 или × 8, одно- или двухуровневыми.

Принято считать, что количество рангов модуля равно количеству сторон. Как показывают приведенные выше данные, это не так. Также можно найти 2-сторонние / 1-ранговые модули. Можно даже представить себе односторонний / 2-ранговый модуль памяти, имеющий 16 (18) микросхем на одной стороне по 8 штук каждая, но маловероятно, что такой модуль когда-либо производился.

Характеристики чипа


Спецификация SDRAM с двойной скоростью передачи данных (DDR)

Из бюллетеня для голосования JCB-99-70 и измененного множеством других бюллетеней Правления, составленных в рамках полномочий Комитета JC-42.3 по параметрам DRAM.

Протокол изменений Стандарта № 79:

  • Выпуск 1, июнь 2000 г.
  • Выпуск 2, май 2002 г.
  • Версия C, март 2003 г. - Стандарт JEDEC № 79C.

«Этот всеобъемлющий стандарт определяет все необходимые аспекты DDR SDRAM объемом от 64 МБ до 1 ГБ с интерфейсами данных X4 / X8 / X16, включая функции, функциональность, параметры переменного и постоянного тока, пакеты и назначение контактов. Этот объем впоследствии будет расширен, чтобы формально применяться к устройствам x32. , а также устройства с более высокой плотностью ".

Организация

PC3200 - это DDR SDRAM, предназначенная для работы на частоте 200 МГц с использованием микросхем DDR-400 с пропускной способностью 3200 МБ / с. Поскольку память PC3200 передает данные как по нарастающему, так и по спадающему фронту тактовой частоты, ее эффективная тактовая частота составляет 400 МГц.

Поколения

DDR (DDR1) была заменена DDR2 SDRAM , которая была модифицирована для более высокой тактовой частоты и снова удвоила пропускную способность, но работает по тому же принципу, что и DDR. Конкуренция с DDR2 была Rambus XDR DRAM . DDR2 преобладала из-за стоимости и факторов поддержки. DDR2, в свою очередь, была заменена DDR3 SDRAM , которая предлагала более высокую производительность для увеличения скорости шины и новых функций. На смену DDR3 пришла DDR4 SDRAM , которая впервые была произведена в 2011 году и стандарты которой все еще менялись (2012 год) со значительными архитектурными изменениями.

Глубина буфера предварительной выборки DDR составляет 2 (бит), тогда как DDR2 использует 4. Хотя эффективные тактовые частоты DDR2 выше, чем DDR, общая производительность не была выше в ранних реализациях, в первую очередь из-за высоких задержек первых модулей DDR2. DDR2 начала действовать к концу 2004 года, когда стали доступны модули с более низкой задержкой.

Производители памяти заявили, что массовое производство памяти DDR1 с эффективной скоростью передачи данных, превышающей 400 МГц (т. Е. 400 МТ / с и 200 МГц внешняя частота), нецелесообразно из-за внутренних ограничений скорости. DDR2 начинается там, где заканчивается DDR1, используя внутренние тактовые частоты, аналогичные DDR1, но доступна с эффективными скоростями передачи 400 МГц и выше. Достижения DDR3 расширили возможности сохранения внутренней тактовой частоты, одновременно обеспечивая более высокую эффективную скорость передачи за счет повторного удвоения глубины предварительной выборки.

DDR4 SDRAM - это высокоскоростная динамическая память с произвольным доступом, внутренне сконфигурированная как 16 банков, 4 группы банков по 4 банка для каждой группы банков для x4 / x8 и 8 банков, 2 группы банков по 4 банка для каждой группы банков для x16 DRAM . DDR4 SDRAM использует архитектуру предварительной выборки 8 n для достижения высокоскоростной работы. Архитектура предварительной выборки 8 n объединена с интерфейсом, предназначенным для передачи двух слов данных за такт на выводах ввода / вывода. Один операция чтения или записи для DDR4 SDRAM состоит из одного 8 п -битных шириной передачи данных 4- х часов на внутреннем ядре DRAM и 8 , соответствующих п -битных шириной передачи данных половину тактового цикла на I / O булавки.

RDRAM была особенно дорогой альтернативой DDR SDRAM, и большинство производителей отказались от ее поддержки в своих наборах микросхем. Цены на память DDR1 существенно выросли со второго квартала 2008 года, тогда как цены на DDR2 снизились. В январе 2009 года 1 ГБ DDR1 был в 2–3 раза дороже, чем 1 ГБ DDR2.

Сравнение поколений DDR SDRAM
Имя Выпуск
год
Чип Автобус Напряжение
(В)
Булавки
Gen Стандарт Тактовая частота
(МГц)
Время цикла
(нс)
Предварительная
загрузка
Тактовая частота
(МГц)
Скорость передачи
( МТ / с )
Пропускная способность
(МБ / с)
DIMM SO-
DIMM
Micro-
DIMM
DDR DDR-200 2001-2005 гг. 100 10 2n 100 200 1600 2,5 184 200 172
DDR-266 133 7,5 133 266 2133⅓
DDR-333 166⅔ 6 166⅔ 333 2666⅔
DDR-400 200 5 200 400 3200 2,6
DDR2 DDR2-400 2006-2010 100 10 4n 200 400 3200 1,8 240 200 214
DDR2-533 133⅓ 7,5 266⅔ 533⅓ 4266⅔
DDR2-667 166⅔ 6 333⅓ 666⅔ 5333⅓
DDR2-800 200 5 400 800 6400
DDR2-1066 266⅔ 3,75 533⅓ 1066⅔ 8533⅓
DDR3 DDR3-800 2011-2015 гг. 100 10 8n 400 800 6400 1,5 / 1,35 240 204 214
DDR3-1066 133⅓ 7,5 533⅓ 1066⅔ 8533⅓
DDR3-1333 166⅔ 6 666⅔ 1333⅓ 10666⅔
DDR3-1600 200 5 800 1600 12800
DDR3-1866 233⅓ 4,29 933⅓ 1866⅔ 14933⅓
DDR3-2133 266⅔ 3,75 1066⅔ 2133⅓ 17066⅔
DDR4 DDR4-1600 2016-2020 гг. 200 5 8n 800 1600 12800 1,2 / 1,05 288 260 -
DDR4-1866 233⅓ 4,29 933⅓ 1866⅔ 14933⅓
DDR4-2133 266⅔ 3,75 1066⅔ 2133⅓ 17066⅔
DDR4-2400 300 3⅓ 1200 2400 19200
DDR4-2666 333⅓ 3 1333⅓ 2666⅔ 21333⅓
DDR4-2933 366⅔ 2,73 1466⅔ 2933⅓ 23466⅔
DDR4-3200 400 2,5 1600 3200 25600
DDR5 DDR5-3200 2021-2025 гг. 200 5 16n 1600 3200 25600 1.1 288
DDR5-3600 225 4,44 1800 3600 28800
DDR5-4000 250 4 2000 г. 4000 32000
DDR5-4800 300 3⅓ 2400 4800 38400
DDR5-5000 312½ 3.2 2500 5000 40000
DDR5-5120 320 3⅛ 2560 5120 40960
DDR5-5333 333⅓ 3 2666⅔ 5333⅓ 42666⅔
DDR5-5600 350 2,86 2800 5600 44800
DDR5-6400 400 2,5 3200 6400 51200

Мобильная DDR

MDDR - это аббревиатура, которую некоторые предприятия используют для Mobile DDR SDRAM, типа памяти, используемой в некоторых портативных электронных устройствах, таких как мобильные телефоны , карманные компьютеры и цифровые аудиоплееры . Благодаря таким методам, как пониженное напряжение питания и расширенные возможности обновления, Mobile DDR может достичь большей энергоэффективности.


Новые поколения процессоров стимулировали разработку более скоростной памяти SDRAM (Synchronous Dynamic Random Access Memory) с тактовой частотой 66 МГц, а модули памяти с такими микросхемами получили название DIMM(Dual In-line Memory Module).
Для использования с процессорами Athlon, а потом и с Pentium 4, было разработано второе поколение микросхем SDRAM — DDR SDRAM (Double Data Rate SDRAM). Технология DDR SDRAM позволяет передавать данные по обоим фронтам каждого тактового импульса, что предоставляет возможность удвоить пропускную способность памяти. При дальнейшем развитии этой технологии в микросхемах DDR2 SDRAM удалось за один тактовый импульс передавать уже 4 порции данных. Причем следует отметить, что увеличение производительности происходит за счет оптимизации процесса адресации и чтения/записи ячеек памяти, а вот тактовая частота работы запоминающей матрицы не изменяется. Поэтому общая производительность компьютера не увеличивается в два и четыре раза, а всего на десятки процентов. На рис. показаны частотные принципы работы микросхем SDRAM различных поколений.


Существуют следующие типы DIMM:

    • 72-pin SO-DIMM (Small Outline Dual In-line Memory Module) — используется для FPM DRAM (Fast Page Mode Dynamic Random Access Memory) и EDO DRAM (Extended Data Out Dynamic Random Access Memory)


      • 100-pin DIMM — используется для принтеров SDRAM (Synchronous Dynamic Random Access Memory)


        • 144-pin SO-DIMM — используется для SDR SDRAM (Single Data Rate … ) в портативних компьютерах



          • 172-pin MicroDIMM — используется для DDR SDRAM (Double date rate)



            • 200-pin SO-DIMM — используется для DDR SDRAM и DDR2 SDRAM




              • 214-pin MicroDIMM — используется для DDR2 SDRAM



                • 240-pin DIMM — используется для DDR2 SDRAM, DDR3 SDRAM и FB-DIMM (Fully Buffered) DRAM









                Чтобы нельзя было установить неподходящий тип DIMM-модуля, в текстолитовой плате модуля делается несколько прорезей (ключей) среди контактных площадок, а также справа и слева в зоне элементов фиксации модуля на системной плате. Для механической идентификации различных DIMM-модулей используется сдвиг положения двух ключей в текстолитовой плате модуля, расположенных среди контактных площадок. Основное назначение этих ключей — не дать установить в разъем DIMM-модуль с неподходящим напряжением питания микросхем памяти. Кроме того, расположение ключа или ключей определяет наличие или отсутствие буфера данных и т. д.


                Модули DDR имеют маркировку PC. Но в отличие от SDRAM, где PC обозначало частоту работы (например PC133 – память предназначена для работы на частоте 133МГц), показатель PC в модулях DDR указывает на максимально достижимую пропускную способностью, измеряемую в мегабайтах в секунду.

                DDR2 SDRAM

                Название стандарта Тип памяти Частота памяти Частота шины Передача данных в секунду (MT/s) Пиковая скорость передачи данных
                PC2-3200 DDR2-400 100 МГц 200 МГц 400 3200 МБ/с
                PC2-4200 DDR2-533 133 МГц 266 МГц 533 4200 МБ/с
                PC2-5300 DDR2-667 166 МГц 333 МГц 667 5300 МБ/с
                PC2-5400 DDR2-675 168 МГц 337 МГц 675 5400 МБ/с
                PC2-5600 DDR2-700 175 МГц 350 МГц 700 5600 МБ/с
                PC2-5700 DDR2-711 177 МГц 355 МГц 711 5700 МБ/с
                PC2-6000 DDR2-750 187 МГц 375 МГц 750 6000 МБ/с
                PC2-6400 DDR2-800 200 МГц 400 МГц 800 6400 МБ/с
                PC2-7100 DDR2-888 222 МГц 444 МГц 888 7100 МБ/с
                PC2-7200 DDR2-900 225 МГц 450 МГц 900 7200 МБ/с
                PC2-8000 DDR2-1000 250 МГц 500 МГц 1000 8000 МБ/с
                PC2-8500 DDR2-1066 266 МГц 533 МГц 1066 8500 МБ/с
                PC2-9200 DDR2-1150 287 МГц 575 МГц 1150 9200 МБ/с
                PC2-9600 DDR2-1200 300 МГц 600 МГц 1200 9600 МБ/с

                DDR3 SDRAM

                Название стандарта Тип памяти Частота памяти Частота шины Передач данных в секунду(MT/s) Пиковая скорость передачи данных
                PC3-6400 DDR3-800 100 МГц 400 МГц 800 6400 МБ/с
                PC3-8500 DDR3-1066 133 МГц 533 МГц 1066 8533 МБ/с
                PC3-10600 DDR3-1333 166 МГц 667 МГц 1333 10667 МБ/с
                PC3-12800 DDR3-1600 200 МГц 800 МГц 1600 12800 МБ/с
                PC3-14400 DDR3-1800 225 МГц 900 МГц 1800 14400 МБ/с
                PC3-16000 DDR3-2000 250 МГц 1000 МГц 2000 16000 МБ/с
                PC3-17000 DDR3-2133 266 МГц 1066 МГц 2133 17066 МБ/с
                PC3-19200 DDR3-2400 300 МГц 1200 МГц 2400 19200 МБ/с

                В таблицах указываются именно пиковые величины, на практике они могут быть недостижимы.
                Для комплексной оценки возможностей RAM используется термин пропускная способность памяти. Он учитывает и частоту, на которой передаются данные и разрядность шины и количество каналов памяти.

                Пропускная способность = Частота шины x ширину канала x кол-во каналов

                (400 МГц x 64 бит x 2)/ 8 бит = 6400 Мбайт/с

                • Kingston KVR800D2N6/1G
                • OCZ OCZ2M8001G
                • Corsair XMS2 CM2X1024-6400C5

                На сайте многих производителей памяти можно изучить, как читается их Part Number.

                Читайте также: