Какие типы трехмерных моделей можно создавать в autocad

Обновлено: 07.07.2024

Любой трехмерный объект, созданный в AutoCAD, отличается от двухмерного наличием третьей координаты, придающей детали объем и реалистичность. Способы создания 3D-объектов могут быть различными и зависят, в первую очередь, от постановки задачи. Всего AutoCAD располагает тремя типами 3D-объектов: каркасы (wireframes), трехмерные поверхности (surfaces) и твердотельные объекты (solids).

Каркасы представляют собой трехмерные скелетные модели деталей, созданные путем индивидуального построения точек, прямых и кривых линий, формирующих ребра 3D-объектов. Каждая точка такого каркаса описывается тремя координатами – X, Y и Z. Для построения скелетных моделей используют различные приемы: построение совмещенных 20-объектов в ортогональных системах координат, добавление координаты Z, определяющей ПСК для плоскости XY, с использованием трехмерных полилиний и сплайнов и т.д. Следует заметить, что каркасные модели считаются самыми трудоемкими, отнимающими наибольшее количество времени, и при этом на них не распространяются способы визуализации, присущие другим типам объектов. Однако данный тип 3D-моделей имеет право на существование и в некоторых случаях позволяет добиться быстрого результата.

Трехмерные поверхности представляют собой объекты, которые помимо единого каркаса имеют грани (рис. 10.3а). Хотя эти объекты и не обладают физическими свойствами сплошных тел, зато уже более реально (в сравнении с каркасными моделями) позволяют представить деталь в пространстве. Дело в том, что поверхности имеют свойство закрывать объекты заднего плана и отбрасывать тень при раскрашивании и тонировании. Также нужно отметить, что AutoCAD располагает встроенной библиотекой поверхностных моделей (например: сфера, цилиндр, конус, призма, тор и т.д.), при помощи которой можно быстро создать чертеж, задав основные параметры модели. Кроме того, наличие специальных команд (например, команды построения поверхности объекта путем вращения образующей) позволит вам без труда создавать собственные поверхностные 3D-объекты.

Частным случаем поверхностей принято считать сетки – трехмерные модели, определенные на основе многоугольных плоских или аппроксимированных кривыми сеток (рис. 10.36). Для построения этих объектов AutoCAD также располагает широкими инструментальными возможностями, позволяющими быстро создавать самые разнообразные по сложности поверхностные модели.

Наконец, самые сложные и наиболее реалистические – это твердотельные объекты или тела (рис. 10.Зв). Такие объекты представляют собой полный цифровой вариант реальных деталей, обладающих такими физическими данными, как объем, масса, инерционные характеристики и т.д. Используя специальные инструменты для таких объектов, можно получить любые проекции, разрезы или отсечения.


Автор:

3D моделирование в AutoCAD включает моделирование 3D-тел, поверхностей, сетей и каркасных объектов.

Типы 3D-моделей

В AutoCAD доступно несколько типов 3D-моделирования. В рамках каждой из этих технологий 3D-моделирования доступны различные функциональные возможности.


  • Каркасное моделирование рекомендуется использовать на начальных этапах проекта и в качестве ссылочной геометрии — 3D-каркаса — для последующего моделирования или изменения.
  • Моделирование тел — эффективный процесс, с помощью которого легко комбинировать примитивы с выдавленными профилями; он также предоставляет ряд массовых свойств и функций создания сечений.
  • Моделирование поверхностей предоставляет функции управления криволинейными поверхностями, обеспечивая точность манипулирования и анализа.
  • Моделирование сетей предоставляет функции создания скульптур произвольной формы, создания сгибов и сглаживания.

3D-модели может включать в себя все перечисленные компоненты. Например, можно преобразовать твердотельный 3D-примитив в форме пирамиды в 3D-сеть, чтобы выполнить сглаживание сети. После этого можно преобразовать сеть в 3D-поверхность или обратно в 3D-тело, чтобы использовать возможности соответствующих функций моделирования.


Просмотр 3D-моделей

Наиболее эффективной командой для динамического просмотра 3D-моделей является команда 3DОРБИТА.

Помимо функций смены видов можно воспользоваться параметрами контекстного меню, появляющегося при щелчке правой кнопкой мыши. К самым популярным параметрам относятся следующие.

  • Переход между различными визуальными стилями ("Концептуальный", "Реалистичный" и "Просвечивание")
  • Переход между параллельным и перспективным проецированием
  • Выбор из стандартных видов ("Вид сверху", "Вид спереди" и др.)

Применение 2D- и 3D-команд AutoCAD

Большинство команд AutoCAD, используемых для 2D-операций, можно также применять и к 3D-моделям. Например, с помощью команды ПОВЕРНУТЬ можно вращать 3D-тело вокруг его оси, которая параллельна оси Z ПСК. Для вращения модели вокруг другой оси может потребоваться изменить направление оси Z ПСК.

Также доступны команды, специально предназначенные для работы в 3D-средах (например, команда 3DПОВЕРНУТЬ, которая отображает гизмо для поворота по любой основной оси).

CAD-система Autodesk AutoCAD позволяет не только проектировать в двумерном пространстве и создавать плоские чертежи, но и моделировать в трехмерной среде и создавать 3D-модели.

Создание модели в Автокаде

Рассмотрим основы создания трехмерной модели в Автокаде, разберем базовые принципы работы в трехмерном пространстве и изучим необходимые команды.

Рабочее пространство

В отличие от других CAD-систем, моделирование в Автокаде производится в той же самой среде, что и двумерное черчение. Однако, по умолчанию в Автокад включено пространство для создания и редактирования чертежей, которое называется «Рисование и аннотации». Для перехода к командам трехмерного моделирования переключите рабочее пространство на «Основы 3D» нажатием иконки с шестеренкой в статусной строке.


Обратите внимание на то, как изменилась лента: теперь на вкладке «Главная» находятся все основные инструменты моделирования в AutoCAD.

Навигация в трехмерной модели

Если при работе с двумерными чертежами достаточно использовать для навигации две команды: панорамирование и зуммирование, то для трехмерных моделей необходимы еще и операции смены ориентации вида. Смена ориентации вида позволяет посмотреть на трехмерную модель с разных сторон.

Смена ориентации осуществляется нажатием на обозначение текущего вида, которое находится в левом верхнем углу рабочего поля AutoCAD


Также сменить ориентацию вида можно с помощью видового куба, который находится в правом верхнем углу рабочего поля. Нажимая на его грани, ребра и вершины, имеющие соответствующие названия, можно выбрать нужную ориентацию модели.


Для произвольного вращения модели на экране удобно использовать команду «Трехмерная орбита», которую можно запустить нажатием кнопки «Орбита» на панели навигации, или ввести команду 3DОРБИТА.


После запуска команды нажмите и удерживайте левую кнопку мыши и переместите курсор по экрану, модель начнет вращаться на экране.

Также для вращения модели удобно использовать мышку: просто зажмите клавишу Shift и колесо мыши, а потом начните перемещать курсор по экрану.

Основы создания трехмерных тел

Создание модели в Автокаде можно проводить несколькими способами. Рассмотрим два самых распространенных из них:

  1. построение из готовых трехмерных примитивов
  2. построение из тел, созданных на основе двумерных эскизов.

Для создания трехмерного примитива выберите на ленте нужную форму.


Например, для построения кубика выберем команду «Ящик». После запуска команды необходимо внимательно смотреть на запросы в командной строке и вводить требуемые значения. Для построения ящика нужно сначала указать первую точку основания и ввести размеры длины и ширины (для переключения между размерами нажмите клавишу Tab), а затем ввести высоту ящика. После завершения ввода в пространстве появится требуемый ящик.


Точно также строятся и остальные типы примитивов.

Для смены визуального стиля отображения модели нажмите на название стиля, которое находится в левом верхнем углу рабочего поля AutoCAD, и выберете подходящий.


Для удобства моделирования рекомендуется выбирать стиль «Концептуальный», «Реалистичный» - или «Тонированный с кромками».

Для создания трехмерного тела на основе двумерного эскиза необходимо предварительно создать плоский замкнутый контур с помощью команды «Полилиния». Контур может находиться на любой из стандартных плоскостей AutoCAD или на плоской поверхности существующего тела.

Запустим команду «Полилиния» и создадим контур, который станет основой трехмерного тела. К контуру предъявляется два обязательных требования: он должен быть замкнутым и не иметь самопересечений.


После создания контура можно построить на его базе тело операцией выдавливания. Другими словами, - придать плоскому эскизу высоту. Запустим команду «Выдавить», выберем контур и введем высоту тела.


Обратите внимание, что положительное значение высоты позволяет построить тело в одну сторону от эскиза, отрицательное - в другую.

Кроме операции выдавливания можно тело построить вращением контура вокруг оси. Например, создадим с помощью полилинии замкнутый контур в виде прямоугольного треугольника


Запустим команду «Вращение» и выберем сначала контур, а потом укажем две точки оси, вокруг которой будет вращаться наш контур. Для завершения операции необходимо ввести угол вращения тела, введем 360.


В итоге получим модель конуса.


Редактирование тел

Рассмотрим несколько операций редактирования тел.

Как построить в кубе отверстие или бобышку? Для выполнения таких построений используются булевы операции «Объединение» (позволяет сложить два тела), «Вычитание» (позволяет вычесть одно тело из другого) и «Пересечение» (результат выполнения операции - общая часть двух тел). Для запуска этих команд необходимо нажать соответствующие кнопки на ленте.

Построим бобышку на кубе. Построим куб с помощью операции «Ящик», а затем построим цилиндр с помощью команды «Цилиндр», но в качестве плоскости построения выберем верхнюю грань куба, а сам цилиндр построим вверх по направлению от куба


В итоге получим два тела: куб и цилиндр. Для объединения их в одно тело необходимо запустить команду «Объединение» и выбрать тела.

Построим отверстие в кубе. Возьмем аналогичный куб и построим цилиндр на верхней грани, но в направлении внутрь куба (цилиндр получится внутри куба).


Для того, чтобы вычесть цилиндр из куба и получить отверстие, необходимо выбрать команду «Вычитание» и указать сначала то тело, из которого будет вычитаться (куб), а потом то тело, которое будет вычитаться (цилиндр).


Для скругления ребер тела используется команда «Сопряжение по кромке». Для создания скругления запустите команду нажатием кнопки на ленте, затем выберите все ребра, которые необходимо скруглить и укажите радиус скругления.


Заключение

Как вы смогли убедиться, создание трехмерных моделей в AutoCAD не требует специальных навыков и умений. Пользователь, имеющий опыт работы с плоскими чертежами, легко освоит трехмерное моделирование в Автокаде.

Полученные в Автокаде модели можно использовать для самых разных целей: от создания плоских чертежей до визуализации и анимации движения тел или работы механизмов.

В этом уроке мы будем учиться создавать трехмерные модели через программное средство AutoCAD. Разберемся с соответствующим функционалом программы.

Трехмерные координаты

Для представления и обработки трехмерных моделей программа AutoCAD применяет международную систему WCS. Соответствующий значок вы можете найти внизу чертежа с левой стороны. Вправо направляется ось Х, вверх - Y. Также есть и ось Z, простирающаяся по отношению к пользователю и по перпендикуляру к двум остальным осям. Формирование трехмерных объектов подразумевает собой одновременное использование всех координатных осей.

Способы внесения данных по координатам

В данном случае мы можем говорить о применении не только абсолютных, но и относительных координат. Абсолютные расскажут о положении объекта по отношению к узлу пересечения всех трех осей. Относительные координаты всегда получают на отношении уже готовых предметов или других элементов чертежа в пространстве. Они отличаются символом @ перед числовым значением.

Трехмерное пространство в системе Автокад позволяет также использовать на практике и прямоугольные координаты Декарта по трем осям. Вместо полярных координат можно применять сферические и цилиндрические координаты.

Под цилиндрическими параметрами понимают такие данные, которые просчитывают отрезок между началом координатной сетки и направлением под углом к каждой оси системы.

Под сферическими координатами понимаются отрезки между стартом координатной сетки и направлением под углом от оси абсцисс и плоскости ХY. Внесение требуемых координат всегда можно выполнить через строку команд или воспользовавшись интерактивной методикой, закрепив левую клавишу в заданном пункте. В последнем случае обязательно должен быть включен рабочий режим привязки к объектам и отслеживание объектов.

Значок, отвечающий за применение международной системы координат, расположился внизу слева. Именно он отмечает направление всех координатных осей, начало системы и задает ориентацию плоскостям. Пользователь системы может менять внешний вид такого символа по своему усмотрению.

10.1

10.2

10.3

Координатные системы

Программное средство AutoCad позволяет выполнять возведение объектов практически в любой плоскости в трехмерном режиме. Если плоскость, в которой выполняется формирование объектов не находится на параллели к плоскости XY, переход от международной системы к пользовательским настройкам можно совершить через задание дополнительной координатной сетки. Она должна выполнить функцию совмещения всех рабочих плоскостей. Функция UCS завершит такой переход. В таком случае начальная точка координатной пользовательской сетки будет находиться уже в другом пункте: центральная точка обрабатываемого объекта или его угол. Правило правой руки применяется для определения ориентации всех задействованных плоскостей. Когда по взаимному перпендикуляру выставляется большой, средний и указательный палец, ось Х будет совпадать с направлением большого пальца, ось Yбудет иметь общее направление с указательным, а Z– со средним пальцем. Положительное направление для вращения всегда будет выполняться против хода часов. Вращая правую руку, конструктор может в буквальном смысле увидеть, как располагаются оси координатной сетки.

Методы запуска программы:

10.4

X / Y / Z (Поворот вокруг осей X, Y, Z) — вращение координатной сетки выполняется в строгом соответствии с правилом правой руки. Если вы строите объекты через пользовательскую систему, точечные координаты будут полностью от неё зависеть. В некоторых случаях у конструктора возникает необходимость указать координаты точек именно по отношению к общепринятой международной системе. Тогда перед числовым значением стоит указать значок звездочки, например, *6,77.

Параметры высоты и уровня

Плоскость рабочего поля, совпадающая с XY из международной координатной сетки, именуется плоскостью построений. Для двумерных предметов всегда можно менять уровень через изменения параметра Z .

Особенно наглядно это можно рассмотреть в процессе перехода к видам изометрии. Сначала нужно активировать соответствующую вкладку View - 3D Views, потом выбрать нужный вид. Образ графического экрана кардинально преобразится. Теперь символ международной координатной сетки будет располагаться уже по центру. Все двумерные предметы будут выглядеть, как изометрические проекции.

Попробуем изобразить четырехугольную область с начальным углом в точке (0,0) и противоположным – (200,100).

Запустим работу контекстного меню, а именно вкладку Properties. Если менять значения поля Elevation на положительные или отрицательные цифры, положение уровня объекта будет варьироваться. Число +100 переместит фигуру вверх по оси Z , а -100 – санкционирует перемещение вниз по ней же.

Для построения трехмерных объектов, конструкторы часто используют еще и метод выдавливания. Под ним подразумевают манипуляцию с толщиной и высотой объекта. Выполнение функции может быть произведено через изменение соответствующих свойств объекта или посредством манипуляций над вкладкой Высоты. Разрешается внесение положительных или отрицательных чисел.

6.0pt'>Активация вкладки Tools ► New UCS

10.5

10.6

10.7

Криволинейная часть рабочих объектов отобразит несколько образующих линий. Если пользователь хочет выдавить прямоугольный объект или полилинию, будут сформированы предметы с боковыми элементами из непрозрачного материала. Если же речь идет о выдавливании цилиндра, основы также не будут прозрачными.

10.8

10.9

3D полилинии

В списке трехмерных объектов особое место принадлежит трехмерным полилиниям. Такая полилиния представляет собой трехмерный элемент, в состав которого входят прямолинейный объекты с общей взаимосвязью. Вершины таких объектов обязательно должны быть оснащены трехмерными координатами. Конструктор не может задать тип полилинии для такого предмета, так как он принадлежит сразу нескольким плоскостям. Создать такой объект можно через применение функции 3DPOLY, которая не гарантирует пользователю выполнение команд по возведению двумерных полилиний в качестве дуг и не только.

Читайте также: