Какие возможности компьютера являются важными при компьютерном математическом моделировании

Обновлено: 07.07.2024

§ 9. Информационное моделирование на компьютере

Основные темы параграфа:

♦ основное преимущество компьютера перед человеком;
♦ для чего нужны математические модели;
♦ компьютерная математическая модель;
♦ что такое вычислительный эксперимент;
♦ управление на основе моделей;
♦ имитационное моделирование.

Основное преимущество компьютера перед человеком

Современным инструментом для информационного моделирования является компьютер. Конечно, на компьютере можно писать тексты (строить вербальные модели), рисовать карты и схемы (графические модели), строить таблицы (табличные модели). Но при таком использовании компьютера в моделировании его возможности проявляются не в полной мере.

Главное преимущество компьютера перед человеком — способность к быстрому счету. Современные компьютеры считают со скоростями в сотни тысяч, миллионы и даже миллиарды операций в секунду!

Учитывая, что расчеты производятся над многозначными числами (10-20 десятичных цифр), вычислительные способности человека нельзя даже сравнивать с компьютерными. Эти феноменальные вычислительные возможности проявляются, прежде всего, в компьютерном математическом моделировании.

Для чего нужны математические модели

Многие процессы, происходящие в природе, в технике, в экономических и социальных системах, описываются сложными математическими соотношениями. Это могут быть уравнения, системы уравнений, системы неравенств и пр., которые являются математическими моделями описываемых процессов.

Математическая модель — это описание моделируемого процесса на языке математики.

В прежние времена, до появления ЭВМ, ученые стремились создавать такие математические модели, которые можно было бы просчитать вручную или с помощью несложных вычислительных механизмов. Поэтому математические модели были относительно простыми. Но простая модель не всегда хорошо описывает процесс. Ошибка расчетов по такой модели может быть слишком большой и полностью обесценить результат.

Еще в XVIII-XIX веках ученые-математики начали изобретать методы решения таких математических задач, которые не удавалось решить точно, аналитически. Например, вы знаете, что квадратное уравнение всегда можно решить точно, а вот кубическое — уже не всегда. Такие методы называются численными методами. Они сводят решение любой задачи к последовательности арифметических операций. Но эта цепочка арифметических вычислений может быть очень длинной. И чем точнее мы хотим получить решение, тем она длиннее.

Может оказаться так, что для решения сложной задачи численным методом ученому потребуется вся жизнь. А может и этого не хватить! Например, какой смысл начинать расчет прогноза погоды на завтрашний день, если для этого потребуется несколько лет работы?

Компьютерная математическая модель

Появление компьютеров сняло эти проблемы. Стало возможным проводить расчеты сложных математических моделей за приемлемое время. Например, рассчитать погоду на завтрашний день до его наступления. Ученые перестали себя ограничивать в сложности создаваемых математических моделей, полагаясь на быстродействие компьютеров.

Компьютерная математическая модель — это программа, реализующая расчеты состояния моделируемой системы по ее математической модели.

Что такое вычислительный эксперимент

Использование компьютерной математической модели для исследования поведения объекта моделирования называется вычислительным экспериментом. Говорят также: «численный эксперимент».

Вычислительный эксперимент в некоторых случаях может заменить реальный физический эксперимент.

Впечатляющий пример использования такой возможности — прекращение испытаний ядерного оружия, которые сопровождались значительным экологическим ущербом. Благодаря очень точным математическим моделям и мощным компьютерам стало возможно просчитать все последствия, к которым приводит изменение в конструкции ядерной бомбы. Образно говоря, удалось «взорвать бомбу» внутри компьютера, ничего не разрушив.

Важным свойством компьютерных математических моделей является возможность визуализации результатов расчетов. Этим целям служит использование компьютерной графики.

Представление результатов в наглядном виде важнейшее условие для их лучшего понимания. Например, результаты расчетов распределения температуры в некотором объекте представляются в виде его разноцветного изображения: участки с самой высокой температурой окрашиваются в красный цвет, а в самой холодной в синий. Участки с промежуточными значениями температуры окрашиваются в цвета спектра, равномерно переходящие от красного к синему (рис.2.7).

Графическое представление результатов

Для изображения изменяющихся со временем (динамических) результатов используют графическую анимацию.

Компьютерная графика позволяет человеку в процессе проведения численного эксперимента «заглянуть» в недоступные места исследуемого объекта. Можно получить изображение любого сечения объекта сложной формы с отображением рассчитываемых характеристик: температурных полей, давления и пр. В реальном физическом эксперименте такое можно сделать далеко не всегда. Например, невозможно выполнить измерения внутри работающей доменной печи или внутри звезды. А на модели это сделать можно.

Управление на основе моделей

Еще одно важное направление компьютерного математического моделирования связано с использованием компьютеров в управлении. Компьютеры используют для управления работой химических реакторов на заводах, атомных реакторов на электростанциях, ускорителей элементарных частиц в физических лабораториях, полета автоматических космических станций и т. д.

Управляя производственной или лабораторной установкой, компьютер должен просчитывать ее характеристики для того, чтобы вовремя снять показания с датчиков или оказать управляющее воздействие: включить реле, открыть клапан и т. п.

Все расчеты производятся по заложенным в программу управления математическим моделям. Важно, чтобы результаты этих расчетов получались в режиме реального времени управляемого процесса.

Имитационное моделирование

Имитационное моделирование — особая разновидность моделирования на компьютере.

Имитационная модель воспроизводит поведение сложной системы, элементы которой могут вести себя случайным образом. Иначе говоря, поведение которых заранее предсказать нельзя.

Такое поведение в математике называется стохастический. Из курса физики вам знакомо явление броуновского движения: хаотического перемещения легких частиц на поверхности жидкости из-за неравномерных ударов молекул с разных сторон. Нельзя точно рассчитать траекторию броуновской частицы, но ее можно сымитировать на экране компьютера. Отсюда и происходит название — имитационная модель.

К имитационным моделям относятся модели систем массового обслуживания: например, системы торговли, автосервиса, скорой помощи, в которых появление заявок на обслуживание и длительность обслуживания одной заявки — события случайные.

Задачи, решаемые с помощью имитационных моделей систем массового обслуживания, заключаются в поиске режимов работы служб сервиса (магазинов, автозаправок и пр.), уменьшающих время ожидания клиентов.

Еще одним популярным объектом для имитационного моделирования являются транспортные системы: сеть городских дорог, перекрестки, светофоры, автомобили.

Модель имитирует движение транспортных потоков по городским улицам (рис. 2.8). Эксперименты на такой модели позволяют найти режимы управления движением (работа светофоров), уменьшающие возможность возникновения пробок. Работа имитационной модели всегда визуализируется на экране компьютера.

Окно программы, имитирующей движение городского транспорта

Коротко о главном

Компьютерная математическая модель — это программа, реализующая расчеты состояния моделируемой системы по ее математической модели.

Высокое быстродействие компьютеров позволяет быстро решать достаточно сложные математические задачи в процессе моделирования.

Вычислительный эксперимент — использование компьютерной математической модели для исследования поведения моделируемой системы.

Компьютерное управление техническими устройствами происходит в процессе расчетов по математическим моделям в режиме реального времени.

Имитационная модель воспроизводит поведение сложной системы, элементы которой могут вести себя случайным образом.

Вопросы и задания

1. Что общего и в чем различие понятий «математическая модель» и «компьютерная математическая модель»?
2. Расчет прогноза погоды на современном компьютере с быстродействием 1 млн операций в секунду длится в течение 1 часа. Оцените, сколько времени понадобилось бы для этого человеку, имеющему в своем распоряжении арифмометр (механический калькулятор)?
3. В чем состоит особенность компьютерного математического моделирования в процессе управления техническим устройством?
4. Самолет находится на высоте 5000 метров. Обнаружилась неисправность работы двигателя. Самолет начал падать. Бортовой компьютер производит диагностику неисправности и сообщает пилоту о необходимых действиях. Для решения этой задачи ему нужно выполнить 10 8 вычислительных операций. Быстродействие компьютера — 1 млн оп/сек. Успеет ли летчик спасти самолет, если минимальная высота, на которой самолет можно вывести из пике, — 2000 метров?
5. В каких ситуациях используется имитационное моделирование?
6. Придумайте по одному примеру формы использования компьютерной графики для вычислительного эксперимента, для компьютерного управления и для имитационной модели.

Чему вы должны научиться, изучив главу 2

• Строить табличные информационные модели по словесному описанию объектов и их свойств.

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов


Сборник конспектов уроков информатики, учебная программа по информатике 9 класс, материалы для подготовки к урокам, готовые домашние задания


Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.

Моделирование является одним из способов познания мира.

Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.

Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.

Объект, который получается в результате моделирования, называется моделью . Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.

Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.

  1. Создание модели.
  2. Изучение модели.
  3. Применение результатов исследования на практике и/или формулирование теоретических выводов.

Видов моделирования огромное количество. Вот некоторые примеры типов моделей:

Математические модели . Это знаковые модели, описывающие определенные числовые соотношения.

Графические модели. Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.

Имитационные модели. Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.

Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.

Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.

Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.

Для компьютерного моделирования важно наличие определенного программного обеспечения.

При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.

Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.

Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.

С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.

Если система сложна, а требуется проследить за каждым ее элементом, то на помощь могут придти компьютерные имитационные модели. На компьютере можно воспроизвести последовательность временных событий, а потом обработать большой объем информации.

Однако следует четко понимать, что компьютер является хорошим инструментом для создания и исследования моделей, но он их не придумывает. Абстрактный анализ окружающего мира с целью воссоздания его в модели выполняет человек.

Одной из важных проблем в области разработки и создания современных сложных технических систем является исследование динамики их функционирования на различных этапах проектирования, испытания и эксплуатации. Сложными системами называются системы, состоящие из большого числа взаимосвязанных и взаимодействующих между собой элементов. При исследовании сложных систем возникают задачи исследования как отдельных видов оборудования и аппаратуры, входящих в систему, так и системы в целом.

К разряду сложных систем относятся крупные технические, технологические, энергетические и производственные комплексы.

При проектировании сложных систем ставится задача разработки систем, удовлетворяющих заданным техническим характеристикам. Поставленная задача может быть решена одним из следующих методов:

  • методом синтеза оптимальной структуры системы с заданными характеристиками;
  • методом анализа различных вариантов структуры системы для обеспечения требуемых технических характеристик.

Оптимальный синтез систем в большинстве случаев практически невозможен в силу сложности поставленной задачи и несовершенства современных методов синтеза сложных систем. Методы анализа сложных систем, включающие в себя элементы синтеза, в настоящее время достаточно развиты и получили широкое распространение.

Любая синтезированная или определенная каким-либо другим образом структура сложной системы для оценки ее показателей должна быть подвергнута испытаниям. Проведение испытаний системы является задачей анализа ее характеристик. Таким образом, конечным этапом проектирования сложной системы, осуществленного как методом синтеза структуры, так и методом анализа вариантов структур, является анализ показателей эффективности проектируемой системы.

Среди известных методов анализа показателей эффективности систем и исследования динамики их функционирования следует отметить:

  • аналитический метод;
  • метод натуральных испытаний;
  • метод полунатурального моделирования;
  • моделирование процесса функционирования системы на ЭВМ.

Строгое аналитическое исследование процесса функционирования сложных систем практически невозможно. Определение аналитической модели сложной системы затрудняется множеством условий, определяемых особенностями работы системы, взаимодействием ее составляющих частей, влиянием внешней среды и т.п.

Натуральные испытания сложных систем связаны с большими затратами времени и средств. Проведение испытаний предполагает наличие готового образца системы или ее физической модели, что исключает или затрудняет использование этого метода на этапе проектирования системы.

Широкое применение для исследования характеристик сложных систем находит метод полунатурального моделирования. При этом используется часть реальных устройств системы. Включенная в такую полунатуральную модель ЭВМ имитирует работы остальных устройств системы, отображенных математическими моделями. Однако в большинстве случаев этот метод также связан со значительными затратами и трудностями, в частности, аппаратной стыковкой натуральных частей с ЭВМ.

Исследование функционирования сложных систем с помощью моделирования их работы на ЭВМ помогает сократить время и средства на разработку.

Затраты рабочего времени и материальных средств на реализацию метода имитационного моделирования оказываются незначительными по сравнению с затратами, связанными с натурным экспериментом. Результаты моделирования по своей ценности для практического решения задач часто близки к результатам натурного эксперимента.

Метод имитационного моделирования основан на использовании алгоритмических (имитационных) моделей, реализуемых на ЭВМ, для исследования процесса функционирования сложных систем. Для реализации метода необходимо разработать специальный моделирующий алгоритм. В соответствии с этим алгоритмом в ЭВМ вырабатывается информация, описывающая элементарные процессы исследуемой системы с учетом взаимосвязей и взаимных влияний. При этом моделирующий алгоритм сроится в соответствии с логической структурой системы с сохранением последовательности протекаемых в ней процессов и отображением основных состояний системы.

Основными этапами метода имитационного моделирования являются:

  • моделирование входных и внешних воздействий;
  • воспроизведение работы моделируемой системы (моделирующий алгоритм);
  • интерпретация и обработка результатов моделирования.

Перечисленные этапы метода многократно повторяются для различных наборов входных и внешних воздействий, образуя внутренний цикл моделирования. Во внешнем цикле организуется просмотр заданных вариантов моделируемой системы. Процедура выбора оптимального варианта управляет просмотром вариантов, внося соответствующие коррективы в имитационную модель и в модели входных и внешних воздействий.

Процедура построения модели системы, контроля точности и корректировки модели по результатам машинного эксперимента задает и затем изменяет блок и внутреннего цикла в зависимости от фактических результатов моделирования. Таким образом, возникает внешний цикл, отражающий деятельность исследователя по формированию, контролю и корректировке модели.

Метод имитационного моделирования позволяет решать задачи исключительной сложности. Исследуемая система может одновременно содержать элементы непрерывного и дискретного действия, быть подверженной влиянию многочисленных случайных факторов сложной природы, описываться весьма громоздкими соотношениями и т.п. Метод не требует создания специальной аппаратуры для каждой новой задачи и позволяет легко изменять значения параметров исследуемых систем и начальных условий. Эффективность метода имитационного моделирования тем более высока, чем на более ранних этапах проектирования системы он начинает использоваться.

Следует, однако, помнить, что метод имитационного моделирования является численным методом. Его можно считать распространением метода Монте-Карло на случай сложных систем. Как любой численный метод, он обладает существенным недостатком – его решение всегда носит частный характер. Решение соответствует фиксированным значениям параметров системы и начальных условий. Для анализа системы приходится многократно моделировать процесс ее функционирования, варьируя исходные данные модели. Таким образом, для реализации имитационных моделей сложной модели необходимо наличие ЭВМ высокой производительности.

Для моделирования системы на ЭВМ необходимо записывать моделирующий алгоритм на одном из входных языков ЭВМ. В качестве входных языков для решения задач моделирования могут быть с успехом использованы универсальные алгоритмические языки высокого уровня, Си, Паскаль и др.

Анализ развития наиболее сложных технических систем позволяет сделать вывод о все более глубоком проникновении ЭВМ в их структуру. Вычислительные машины становятся неотъемлемой, а зачастую и основной частью таких систем. Прежде всего это относится к сложным радиоэлектронным системам. Среди них различные автоматические системы, в том числе системы автоматической коммутации (электронные АТС), системы радиосвязи, радиотелеметрические системы, системы радиолокации и радионавигации, различные системы управления.

При построении таких систем в значительной степени используются принципы и структуры организации вычислительных машин и вычислительных систем (ВС). Характерной особенностью является наличие в системах нескольких процессоров, объединенных различными способами в специализированную ВС. При этом осуществляется переход от «жесткой» логики функционирования технических систем к универсальной «программной» логике. В силу этого все более значительную роль в таких системах, наряду с аппаратными средствами, играет специализированное системное и прикладное программное обеспечение.

На этапах разработки, проектирования, отладки и испытания сложных систем с высоким удельным весом аппаратно-программных средств вычислительной техники ставится задача анализа и синтеза вариантов организации структуры аппаратных средств, а также разработки и отладки специализированного ПО большого объема. Эта задача может быть решена с помощью аппаратно-программного моделирования с использованием универсальных моделирующих комплексов, построенных на базе однородных ВС с программируемой структурой.

Аппаратно-программное моделирование можно считать частным случаем полунатурного моделирования. На первом этапе разрабатывается концептуальная модель заданного класса систем на основе анализа типовых процессов, структур и аппаратных блоков. Концептуальная модель реализуется на аппаратно-программных средствах моделирующего комплекса. При этом моделирующий комплекс может настраиваться на соответствующую структуру системы программным путем за счет возможности программирования структуры используемой микропроцессорной ВС. Часть аппаратных и программных средств микропроцессорной ВС моделирующего комплекса непосредственно отражает аппаратно-программные средства, входящие в исследуемую систему (аппаратное моделирование), другая часть реализует имитационную модель функциональных средств исследуемой системы, внешней обстановки, влияния помех и т.п. (программное моделирование).

Разработка аппаратно-программных моделирующих комплексов является сложной технической задачей. Несмотря на это, применение таких комплексов находит все большее распространение. При достаточной производительности вычислительных средств комплекса процесс исследования системы может вестись в реальном масштабе времени. В составе комплекса могут использоваться как универсальные микроЭВМ общего назначение, так и вычислительные средства, непосредственно входящие в исследуемую систему. Подобные моделирующие комплексы являются универсальными стендами для разработки и отладки аппаратно-программных средств, проектируемых систем заданного класса. Они могут использоваться в качестве тренажеров по обучению обслуживающего персонала.

Любое явление или объект обладает огромным количеством свойств, характеристик или параметров, охватить которые бывает очень сложно, поэтому приходится проводить упрощение такого объекта, отбрасывая несущественные детали. Иными словами, строить модель.

Под моделью мы будем понимать любой материальный или идеальный объект, обладающий некоторыми свойствами, совпадающими со свойствами реального объекта.




При этом исследователь будет выбирать такие свойства, которые являются существенными для изучаемого объекта. Например, при проектировке здания архитектору важен внешний вид объекта, для инженера — прочность и материалы, для инженера-геолога – нагрузка на грунт. Поэтому модель одного и того же здания будет различна.

Давайте рассмотрим еще один класс моделей — это математические модели. Например, все геометрические объекты (круг, треугольник, прямая) являются моделями. В окружающем нас мире не существует таких объектов.

Например, стол. Можем ли мы сказать, что он идеально прямоугольный? Нет, конечно, так как каждый край стола не может быть идеальной прямой линией. Однако, во многих случаях можно считать, что это так.

Подобные рассуждения справедливы и для всех других математических объектов — вектор, числа, функций, производных, интегралов.

Будем считать, что математическое моделирование — это описание реальной ситуации с помощью математических терминов, математических операций и математической символики.


Основоположником математического моделирования в России был академик Российской академии наук Александр Андреевич Самарский, который первый предложил использовать математические модели, реализуемые с помощью компьютера и дальнейшее их исследование. Важнейшим преимуществом использования таких моделей заключается в невысоких финансовых затратах и относительной простоте. При этом практика является и остается критерием истинности и завершающим звеном в исследовании.


Моделирование требует четкого плана действий. На первом этапе формируется задача, которую необходимо решить с помощью модели, далее разрабатывается некий математический эквивалент исследуемого объекта, после чего происходит тестирование такой модели и сравнение с практическими знаниями. Если модель на тестовом этапе не противоречит практике, то проводится эксперимент с моделью, после чего анализируются результаты и делаются выводы. Давайте рассмотрим все этапы моделирования на примере колеса, вращающегося внутри более большого:

ЭТАП 1. Постановка задачи

В колесе радиуса R катится колесо радиуса r. Какую траекторию описывает точка, расположенная на ободе колеса r?

ЭТАП 2. Математическая модель

Траектория движения этой точки находится по формулам:


где φ изменяется от 0 до 2π (угол смещения колеса r).

Вывод уравнения движения смотри по ссылке .

ЭТАП 3. Алгоритм решения

Для получения траектории движения колеса, нам необходимо изменять значение φ от 0 до 30. Вычислять координаты и представлять их на графике. Попробуем это сделать с помощью программы Excel.

ЭТАП 4. Разработка программы. Тестирование

Создадим таблицу по образцу:


В столбец А занесем значения угла φ от 0 до 6.28 с шагом 0.01.



Запишем в ячейку а в ячейку

С помощью маркера заполнения распространим эти формулы до конца таблицы.


По значениям столбцов B и С построим точечный график:


ЭТАП 5. Вычислительный эксперимент

Изменяя значения в ячейках F3 и F4, получи различные картинки:

ЭТАП 6. Анализ результатов. Выводы

Вычислительный эксперимент показал, что вид фигуры зависит от отношения радиусов маленького и большого колеса. Такие фигуры носят названия — ГИПОЦИКЛЫ.

Любое явление или объект обладает огромным количеством свойств, характеристик или параметров, охватить которые бывает очень сложно, поэтому приходится проводить упрощение такого объекта, отбрасывая несущественные детали. Иными словами, строить модель.

Под моделью мы будем понимать любой материальный или идеальный объект, обладающий некоторыми свойствами, совпадающими со свойствами реального объекта.




При этом исследователь будет выбирать такие свойства, которые являются существенными для изучаемого объекта. Например, при проектировке здания архитектору важен внешний вид объекта, для инженера — прочность и материалы, для инженера-геолога – нагрузка на грунт. Поэтому модель одного и того же здания будет различна.

Давайте рассмотрим еще один класс моделей — это математические модели. Например, все геометрические объекты (круг, треугольник, прямая) являются моделями. В окружающем нас мире не существует таких объектов.

Например, стол. Можем ли мы сказать, что он идеально прямоугольный? Нет, конечно, так как каждый край стола не может быть идеальной прямой линией. Однако, во многих случаях можно считать, что это так.

Подобные рассуждения справедливы и для всех других математических объектов — вектор, числа, функций, производных, интегралов.

Будем считать, что математическое моделирование — это описание реальной ситуации с помощью математических терминов, математических операций и математической символики.


Основоположником математического моделирования в России был академик Российской академии наук Александр Андреевич Самарский, который первый предложил использовать математические модели, реализуемые с помощью компьютера и дальнейшее их исследование. Важнейшим преимуществом использования таких моделей заключается в невысоких финансовых затратах и относительной простоте. При этом практика является и остается критерием истинности и завершающим звеном в исследовании.


Моделирование требует четкого плана действий. На первом этапе формируется задача, которую необходимо решить с помощью модели, далее разрабатывается некий математический эквивалент исследуемого объекта, после чего происходит тестирование такой модели и сравнение с практическими знаниями. Если модель на тестовом этапе не противоречит практике, то проводится эксперимент с моделью, после чего анализируются результаты и делаются выводы. Давайте рассмотрим все этапы моделирования на примере колеса, вращающегося внутри более большого:

ЭТАП 1. Постановка задачи

В колесе радиуса R катится колесо радиуса r. Какую траекторию описывает точка, расположенная на ободе колеса r?

ЭТАП 2. Математическая модель

Траектория движения этой точки находится по формулам:


где φ изменяется от 0 до 2π (угол смещения колеса r).

Вывод уравнения движения смотри по ссылке .

ЭТАП 3. Алгоритм решения

Для получения траектории движения колеса, нам необходимо изменять значение φ от 0 до 30. Вычислять координаты и представлять их на графике. Попробуем это сделать с помощью программы Excel.

ЭТАП 4. Разработка программы. Тестирование

Создадим таблицу по образцу:


В столбец А занесем значения угла φ от 0 до 6.28 с шагом 0.01.



Запишем в ячейку а в ячейку

С помощью маркера заполнения распространим эти формулы до конца таблицы.


По значениям столбцов B и С построим точечный график:


ЭТАП 5. Вычислительный эксперимент

Изменяя значения в ячейках F3 и F4, получи различные картинки:

ЭТАП 6. Анализ результатов. Выводы

Вычислительный эксперимент показал, что вид фигуры зависит от отношения радиусов маленького и большого колеса. Такие фигуры носят названия — ГИПОЦИКЛЫ.

Читайте также: