Какими были предшественники компьютерной эры английский

Обновлено: 07.07.2024

История счётных устройств насчитывает много веков. Компьютер, в настоящее время незаменимый инструмент в деловых, промышленных и бытовых задачах, является наследником многих других изобретений, начиная с математики и вычислительных машин. Мы предлагаем вам кратко проследить историю этого изобретения.

К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

Компьютер "Эниак" . Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода- вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства. Быстродействие порядка 10-20 тысяч операций в секунду. Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет.

Процесс отладки был наиболее длительным по времени. Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

ЭВМ "Урал". Эти проблемы начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.

Деление компьютерной техники на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования.

Отечественные машины первого поколения:

МЭСМ (малая электронная счётная машина), БЭСМ, Стрела, Урал, М-20.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета.

Второе поколение компьютерной техники - машины, сконструированные примерно в 1955-65 гг.

Характеризуются использованием в них как электронных ламп, так и дискретных транзисторных логических элементов.

Их оперативная память была построена на магнитных сердечниках . В это время стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски. Память на магнитных сердечниках обладала быстродействием до сотен тысяч операций в секунду, а ёмкость памяти составляла до нескольких десятков тысяч слов.

Появились так называемые языки высокого уровня , средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде.

Программа, написанная на алгоритмическом языке , непонятна компьютеру, воспринимающему только язык своих собственных команд.

Поэтому специальные программы, которые называются трансляторами , переводят программу с языка высокого уровня на машинный язык .

Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы , управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

Операционная система - важнейшая часть программного обеспечения компьютера, предназначенная для автоматизации планирования и организации процесса обработки программ, ввода-вывода и управления данными, распределения ресурсов, подготовки и отладки программ, других вспомогательных операций обслуживания.

Таким образом, операционная система является программным расширением устройства управления компьютера.

Для некоторых машин второго поколения уже были созданы операционные системы с ограниченными возможностями.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе . Наиболее ярким представителем ЭВМ второго поколения была ЭВМ БЭСМ - 6 . С появлением транзисторной элементной базы становится возможным создание относительно небольших, но обладающих значительными возможностями малых ЭВМ типа Проминь и Наири.

Машины третьего поколения созданы примерно после 60-x годов.

Поскольку процесс создания компьютерной техники шел непрерывно, и в нём участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда "поколение" начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры .

Машины третьего поколения - это семейства машин с единой архитектурой , т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы , которые также называются микросхемами .

Машины третьего поколения имеют развитые операционные системы.

Они обладают возможностями мультипрограммирования , т.е. одновременного выполнения нескольких программ.

Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

Краткое описание процесса изготовления микросхем.

ЧИП и ДИП. Как делают микросхемы.

🧭1 Разработчики с помощью компьютера создают электрическую схему новой микросхемы. Для этого они вводят в компьютер перечень свойств, которыми должна обладать микросхема, а компьютер с помощью специальной программы разрабатывает детальную структуру соединений и конструкций всех взаимодействующих элементов микросхемы.

🧭 2 Компьютер создаёт схемы расположения элементов на поверхности полупроводникового кристалла кремния. По этим схемам изготавливаются фотошаблоны - стеклянные пластинки со штриховым рисунком. Через фотошаблоны специальными лампами или источниками рентгеновского излучения, а иногда, и электронными пучками, освещают (засвечивают) нанесённый на поверхность кристалла кремния слой фото- или, соответственно, рентгеночувствительного лака.

🧭 3 Засвеченные (или, наоборот, незасвеченные) участки лака меняют свои свойства и удаляются специальными растворителями. Этот процесс называется травлением. Вместе с лаком с поверхности кристалла кремния удаляется и слой окисла, и эти места становятся доступными для легирования - внедрения в кристаллическую решётку кремния атомов бора или фосфора. Легирование обычно требует нагрева пластинки в парах нужного элемента до 1100 - 1200 °С.

🧭 4 Последовательно меняя шаблоны и повторяя процедуры травления и легирования, создают один за другим слои будущей микросхемы . При этом на одной пластинке кристалла кремния создаётся множество одинаковых микросхем.

🧭 5 Каждая микросхема проверяется на работоспособность. Негодные выбраковываются .

🧭 6 После завершения всех операций пластинки разрезаются на отдельные кристаллики с микросхемами, к ним присоединяют выводы и устанавливают в корпуса .

Четвёртое поколение - это теперешнее поколение компьютерной техники, разработанное после 1970 года. Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвёртого поколения проектировались в расчете на эффективное использование современных высокоуровневых языко в и упрощение процесса программирования для конечного пользователя. В аппаратурном отношении для них характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой ёмкостью в десятки мегабайт.

В первой половине XIX в. английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер (Бэббидж называл его Аналитической машиной). Именно Бэббидж впервые додумался до того, что компьютер должен содержать память и управляться с помощью программы. Бэббидж хотел построить свой компьютер как механическое устройство, а программы собирался задавать посредством перфокарт — карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках). Однако довести до конца эту работу Бэббидж не смог — она оказалась слишком сложной для техники того времени.

1.2 Первые компьютеры

В 40-ходах XX в. сразу несколько групп исследователей повторили попытку Бэббиджа на основе техники XX в. — электромеханических реле. Некоторые из этих исследователей ничего не знали о работах Бэббиджа и переоткрыли его идеи заново. Первым из них был немецкий инженер Конрад Цузе, который в 1941 г. построил небольшой компьютер на основе нескольких электромеханических реле. Но из-за войны работы Цузе не были опубликованы. А в США в 1943 г. на одном из предприятий фирмы IBM американец Говард Эйкен создал более мощный компьютер под названием «Марк-1». Он уже позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и реально использовался для военных расчетов.

Однако электромеханические реле работают весьма медленно и недостаточно надежно. Поэтому начиная с 1943 г. в США группа специалистов под руководством Джона Мочли и Преспера Экерта начала конструировать компьютер ENIAC на основе на основе электронных ламп. Созданный ими компьютер работал в тысячу раз быстрее, чем Марк-1. Однако обнаружилось, что большую часть времени этот компьютер простаивал — ведь для задания метода расчетов (программы) в этом компьютере приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

2. Компьютеры с хранимой в памяти программой

Чтобы упростить и убыстрить процесс задания программ, Мочли и Экерт стали конструировать новый компьютер, который мог бы хранить программу в своей памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этом компьютере. Доклад был разослан многим ученым и получил широкую известность, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т.е. универсальных вычислительных устройств. И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом. Мы расскажем о принципах фон Неймана в следующем параграфе.

2.1 Развитие элементной базы компьютеров

В 40-х и 50-х годах компьютеры создавались на основе электронных ламп. Поэтому компьютеры были очень большими (они занимали огромные залы), дорогими и ненадежными — ведь электронные лампы, как и обычные лампочки, часто перегорают. Но в 1948 г. были изобретены транзисторы — миниатюрные и недорогие электронные приборы, которые смогли заменить электронные лампы. Это привело к уменьшению размеров компьютеров в сотни раз и повышению их надежности. Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов был созданы и значительно более компактные внешние устройства для компьютеров, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник и стоимостью всего 20 тыс. дол. (компьютеры 40-х и 50-х годов обычно стоили миллионы дол.).

После появления транзисторов наиболее трудоемкой операцией при производстве компьютеров было соединение и спайка транзисторов для создания электронных схем. Но в 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел способ, позволяющий создавать на одной пластине кремния транзисторы и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В 1968 г. фирма Burroughs выпустила первый компьютер на интегральных схемах, а в 1970 г. фирма Intel начала продавать интегральные схемы памяти. В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год, что и обеспечивает постоянное уменьшение стоимости компьютеров и повышение быстродействия.

3. Появление персональных компьютеров

Вначале микропроцессоры использовались в различных специализированных устройствах, например, в калькуляторах. Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т.е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя. В начале 1975 г. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер продавался по цене около 500 дол. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т.д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало популярности персональных компьютеров.

Успех Альтаир-8800 заставил многие фирмы также заняться производством персональных компьютеров. Персональные компьютеры стали продаваться уже в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы, разработанные для деловых применений. Появились и коммерчески распространяемые программы, например, программа для редактирования текстов WordStar и табличный процессор VisiCalc (соответственно 1978 и 1979 гг.). Эти (и многие другие) программы сделали покупку персональных компьютеров весьма выгодным для бизнеса: с их помощью стало возможно выполнять бухгалтерские расчеты, составлять документы и т.д. Использование же больших компьютеров для этих целей было слишком дорого.

4. Компьютеры фирмы IBM

В конце 1980 года маленькая группа, названная Entry Systems Division, была образована в составе фирмы IВМ. Первоначальный штат состоял из 12 человек (инженеров и конструкторов) под руководством Дона Эстриджа. Главным конструктором "команды" был Льюис Эггебрехт. Это подразделение получило задание- разработать первый реальный ПК фирмы IВМ.

Фирма IBМ считала, что система 5100, разработанная в 1975 году, является "разумным" программируемым терминалом, а не настоящим компьютером, хотя она действительно была компьютером.

Эстридж и группа конструкторов быстро разработали проект и спецификации новой системы. Группа изучила рынок, который оказал огромное влияние на проект IВМ РС. Конструкторы смотрели господствующие стандарты, изучили другие успешные системы и включили все эти особенности - и даже больше - в новый ПК. Фирма IВМ была готова производить систему, которая идеально заполнила свою нишу на рынке ЭВМ.

После того, как параметры для проекта были определены с помощью изучения рынка, фирма IВМ была в состоянии пройти путь от идеи до выпуска системы за один год. Компания совершила этот подвиг, прибегнув к покупке максимального количества компонентов у внешних продавцов. Например, фирма IВМ выдала контракт на разработку языков программирования и операционной системы маленькой компании Мicrosoft. (Сначала фирма IВМ предлагала сотрудничество фирме Digital Research, однако, та не заинтересовалась сделкой. фирма Мicrosoft заинтересовалась и сейчас она стала одной из крупнейших в мире в области программного обеспечения). Кроме помощи в быстром выпуске конечного продукта, использование внешних продавцов было открытым приглашением к дальнейшей поддержке системы. Так это и случилось. Дебют IВМ РС, использующего РС 005, состоялся во вторник, августа 1981 года. В этот день новый стандарт занял свое место в компьютерной индустрии. С тех пор фирма IВМ продала более чем 10 миллионов РС, и РС вырос в целое семейство компьютеров и внешних устройств. Для этого семейства написано больше программных продуктов, чем для любой другой системы, имеющейся на рынке.


Электронные вычислительные машины того времени представляли из себя массивные конструкции весом в несколько тонн. Каждый новый этап развития ЭВМ был связан не только с техническим прогрессом, но и с программным. Взять хотя бы Windows, который пришел на смену "бездушному" DOS.

Именно IBM, годом основания которой считается 1889 год, внесла огромный вклад в развитие компьютерной техники. Ее прародительница, корпорация CTR (Computing Tabulating Recording) включала в себя сразу три компании и выпускала самое различное электрическое оборудование: весы, сырорезки, приборы учета времени. После смены директора в 1914 году компания начала специализироваться на создании табуляционных машин (для обработки информации). Спустя 10 лет CTR поменяло свое название на International Business Machines или IBM.


Еще в 1888 году инженер Герман Холлерит, основатель IBM, создал первую электромеханическую счетную машину - табулятор, который мог считывать и сортировать данные, закодированные на перфокартах (бумажных карточках с отверстиями). Его даже использовали при переписи населения в 1890 году в США.

При этом история компьютеров IBM началась спустя более полувека, в 1941 году, когда был разработан и создан первый программируемый компьютер "Марк 1" весом порядка 4,5 тонн, 17 метров в длину, 2,5 метра – в высоту. Президент IBM вложил в него 500 тысяч долларов. Впервые "Марк 1" был запущен в Гарвардском университете в 1944 году. Чтобы понять, насколько сложна была конструкция машины, достаточно сказать, что общая длина проводов составила 800 км. При этом компьютер осуществлял три операции сложения и вычитания в секунду.

Первое поколение ЭВМ


Первая ЭВМ, основанная на ламповых усилителях, под названием "Эниак" была создана в США в 1946 году. По размерам она была больше, чем "Марк 1": 26 метров в длину, 6 метров в высоту, а ее вес составлял около 30 тонн. При этом по производительности "Эниак" в 1000 раз превышала "МАРК-1", а на ее создание ушло почти 500 тысяч долларов. Но у нее были существенные недостатки: очень мало памяти для хранения данных и долгое время перепрограммирования – от нескольких часов и до нескольких дней.

Кстати, среди создателей "Эниак" был ученый Джон фон Нейман, предложивший архитектуру ЭВМ, заложенную в компьютерах с конца 1940-х до середины 1950-х годов. Именно он осуществил переход к двоичной системе счисления и хранению полученной информации.

В 1951 году появился первый коммерческий компьютер UNIVAC, и уже в 1952 году вышел "IBM 701". Это был первый крупный ламповый научный коммерческий компьютер, причем создали его достаточно быстро – в течение двух лет. Его процессор работал значительно быстрее, чем у UNIVAC - 2200 операций в секунду против 455. В одну секунду процессор "IBM 701" мог выполнять почти 17 тысяч операций сложения и вычитания.

Второе поколение ЭВМ


Второе поколение ЭВМ использовало в своей основе транзисторы, созданные в 1947 году. Это была очередная революция, в результате которой существенно уменьшились размеры и энергопотребление компьютеров, так как сами биполярные транзисторы в разы меньше вакуумных ламп.

В 1959 году появились первые компьютеры IBM на транзисторах. Они были надежны, и ВВС США стали использовать их в системе раннего оповещения ПВО. А в 1960 году IBM разработала мощную систему Stretch или "IBM-7030". Она была и вправду сильна – создатели добились 100-кратного увеличения быстродействия. В течение трех лет он был самым быстрым компьютером в мире. Однако со временем IBM уменьшила его стоимость, а вскоре и вовсе сняла с производства.

Третье поколение ЭВМ


Третье поколение компьютеров связано с использованием интегральных схем (в которых используется от десятков до сотен миллионов транзисторов), впервые изготовленных в 1960 году американцем Робертом Нойсом.

В 1964 году IBM объявила о начале работы над целой линейкой IBM System/360.

System/360 хорошо продавалась даже спустя шесть лет после анонса системы. За 6 лет IBM выпустила более 30 тысяч машин. Однако затраты на разработку System/360 были очень велики - около пяти миллиардов долларов. Таким образом, System/360 заложила фундамент для следующих поколений, первым из которых был System/370.

Четвертое поколение ЭВМ


Четвертое поколение связано с использованием микропроцессоров. Первый такой микропроцессор под названием "Intel-4004" был создан в 1971 году компанией Intel, до сих пор остающейся в лидерах. Спустя 10 лет IBM выпустила первый персональный компьютер, который так и назывался IBM PC. Самая дорогая конфигурация стоила 3000 долларов и предназначалась для бизнеса, а конфигурация за 1500 долларов – для дома.

Процессор Intel 8088 работал на частоте 4,77 МГц (сейчас этот показатель в тысячи раз больше), а объем ОЗУ - 64 кбайта (сейчас – в миллионы раз больше). Для хранения информации использовались 5,25-дюймовые флоппи-дисководы. Жесткий диск нельзя было установить из-за недостаточной мощности блока питания.

Интересно, что разработкой компьютера занимались всего четыре человека. Причем IBM не запатентовала ни операционную систему DOS, ни BIOS, что породило огромное количество клонов. Уже в 1996 году IBM уступило первое место по продажам ПК на ею же основанном рынке.

Несмотря на то, что современные гаджеты сильно отличаются по характеристикам от своего предшественника, все они относятся к тому же поколению ЭВМ.

Основные толчки для развития компьютеров дала наука (появление ламп, а затем транзисторов). В настоящее время распространяется ввод информации с голоса, общения с машиной на человеческом языке (приложение Siri в iPhone) и активная работа над роботами. Основное мнение, что будущее – за квантовыми компьютерами, которые будут использовать в своей основе молекулы и нейрокомпьютерами, использующими центральную нервную систему человека и непосредственно его мозг. Однако для того, чтобы эти технологии появились, необходимо досконально изучить эти системы.


Поколения компьютеров в основном делятся по уровню развития компьютерных технологий. Каждое поколение определяет основные технологические разработки, на которых были основаны компьютерные системы.

Сколько существует поколений компьютеров?

Хотя разработка компьютерных технологий началась примерно в 1940 году, развитие этой технологии началось примерно в 1946 году с первого поколения компьютеров и с тех пор постоянно развивается. На данный момент существует пять поколений компьютеров .

Пять поколений компьютеров

Пять поколений компьютеров перечислены ниже:

Каждое из этих поколений компьютеров также обсуждается ниже с необходимыми деталями и соответствующими изображениями. Разберем подробно каждое поколение:

Первое поколение (1946 - 1959)

Это самое раннее поколение компьютеров, известное как первое поколение компьютеров. Период первого поколения считается с 1946 по 1959 год. В первом поколении компьютеры разрабатывались с использованием электронных ламп в качестве базовой технологии. В компьютерах первого поколения использовался машинный язык, язык программирования самого низкого уровня, поэтому он мог легко обрабатываться и пониматься компьютерами.

ENIAC, сокращение от Electronic Numeric Integrated and Calculator, является наиболее популярным примером компьютера первого поколения. Другие примеры включают UNIVAC, EDVAC, EDSAC, IBM-650, IBM-701, Manchester Mark 1, Mark 2, Mark 3 и т. д.

Преимущества компьютеров первого поколения


Ниже перечислены основные преимущества компьютеров первого поколения:

  • Электронные лампы использовались в компьютерах первого поколения, и это поколение помогло внедрить компьютерные устройства.
  • Благодаря использованию машинных языков компьютеры этого поколения были быстрее на раннем этапе развития.
  • Компьютеры могли выполнять вычисления за миллисекунды.


Ниже перечислены основные недостатки компьютеров первого поколения:

  • Компьютеры первого поколения были очень большими и могли покрыть целую комнату.
  • Компьютеры этого поколения выделяли слишком много тепла и требовали большой системы охлаждения.
  • Емкость запоминающих устройств в компьютерах в этом поколении была очень низкой.

Второе поколение (1959-1965)

Второе поколение компьютеров началось с широкого использования транзисторов. В этом поколении электронные лампы больше не были основной технологией. Их заменили транзисторы. Период второго поколения считается с 1959 по 1965 год. Магнитные сердечники (как первичные запоминающие устройства) и магнитные ленты (как вторичные запоминающие устройства) также использовались для требований к памяти в компьютерах.

Во втором поколении компьютеры использовали языки ассемблера вместо двоичных машинных языков. Кроме того, в этом поколении были представлены ранние версии языков высокого уровня, такие как COBOL и FORTRAN

CDC-3600 и IBM-7094 - самые популярные компьютеры второго поколения. К другим примерам относятся компьютеры серий UNIVAC-1108, IBM-7070, CDC-1604, IBM-1400, серии IBM-1600, серии IBM-7000, Honeywell-400 и т. д.

Преимущества компьютеров второго поколения

Ниже перечислены основные преимущества компьютеров второго поколения:

  • Транзистор помог сделать компьютер второго поколения немного меньше, чем компьютер первого поколения.
  • Благодаря технологии магнитного сердечника компьютеры этого поколения могут хранить инструкции в памяти.
  • Компьютеры стали быстрее, надежнее и могли выполнять вычисления за микросекунды.

Ниже перечислены основные недостатки компьютеров второго поколения:

  • Во втором поколении по-прежнему требовалась система охлаждения.
  • Компьютеры второго поколения требовали регулярного обслуживания.
  • Стоимость компьютера все еще оставалась высокой; однако меньше, чем компьютер первого поколения.

Третье поколение (1965 - 1971)

Третье поколение компьютеров характеризовалось использованием в компьютерах интегральных схем (ICs), а не транзисторов. Период третьего поколения считается с 1965 по 1971 год. В этом поколении интегральные схемы использовались как основная часть технологии. Интегральные схемы были очень маленькими по размеру и помогли сделать компьютер меньше, чем его предшественник.

Кроме того, в этом поколении были представлены усовершенствованные устройства ввода-вывода, такие как мышь, клавиатура и монитор. До появления этих устройств в компьютерах использовались перфокарты и распечатки. Что касается языков, компьютеры третьего поколения использовали языки более высокого уровня, такие как COBOL, BASIC, ALGOL-68, PASCAL PL/1, FORTRAN-II-IV и т. д.

Компьютеры, разработанные в рамках семейства IBM-360, являются лучшими образцами компьютеров третьего поколения. Другие примеры включают PDP-8, PDP-11, TDC-316, Honeywell-6000 series, ICL 2900 и т. д. Кроме того, в сегодняшнем поколении компьютеров до сих пор используются интегральные схемы.

Преимущества компьютеров третьего поколения

Ниже перечислены основные преимущества компьютеров третьего поколения:

  • Компьютеры третьего поколения были меньше компьютеров предыдущего поколения, что делало компьютеры второго поколения портативными и доступными для коммерческого использования по относительно низким ценам.
  • Компьютеры были быстрыми, надежными и могли выполнять вычисления за наносекунды. У них также было больше места для хранения.
  • Компьютеры третьего поколения производили меньше тепла и стали более энергоэффективными, чем компьютеры предыдущего поколения.

Ниже перечислены основные недостатки компьютеров третьего поколения:

  • Для компьютеров третьего поколения также требовалась система охлаждения.
  • В то время производство и обслуживание интегральных схем было трудным.
  • Цена на компьютеры третьего поколения для личных нужд оставалась высокой.

Четвертое поколение (1971-1980)

Период четвертого поколения рассматривается с 1971 по 1980 год. В течение этого поколения разрабатывались компьютеры, в которых микропроцессор был основным компонентом технологии. Микропроцессоры также были основаны на технологиях LSI (крупномасштабная интеграция) и VLSI (очень крупномасштабная интеграция). Они были разработаны путем сборки нескольких интегральных схем на одном кремниевом кристалле.

Микропроцессоры не только помогли уменьшить размеры компьютеров, но также сделали их такими мощными и надежными. Благодаря своим компактным размерам компьютеры стали доступны для личного использования в четвертом поколении. Кроме того, в компьютерах этого поколения использовались языки программирования высокого уровня, такие как C, C ++, DBASE и др. В компьютерах этого поколения также использовались сетевые распределенные операционные системы с разделением времени.

IBM-5100, Altair-8800 и Micral - самые популярные компьютеры четвертого поколения. Другие примеры включают PDP-11, DEC-10, IBM-4341, STAR-1000, CRAY-1, CRAY-X-MP и т. Д. Кроме того, микропроцессоры все еще используются в сегодняшнем поколении (пятое поколение компьютеров). Однако в нынешнем поколении они не считаются базовой технологией.

Преимущества компьютеров четвертого поколения

Ниже перечислены основные преимущества компьютеров четвертого поколения:

  • Благодаря компактным размерам компьютер стал широко доступен для коммерческого и личного использования. Это также привело к революционному использованию персональных компьютеров (ПК).
  • Компьютеры четвертого поколения были быстрее, меньше, надежнее и энергоэффективнее своих предшественников. Кроме того, у компьютеров четвертого поколения была большая доступность хранилища.
  • Значительно снижено количество тепла в компьютерах четвертого поколения. Выделяемое тепло было почти незначительным, и, следовательно, в системе кондиционирования больше не было необходимости.

Ниже перечислены основные недостатки компьютеров четвертого поколения:

  • Создание схем СБИС и микропроцессоров было сложным и требовало сложных технологий и передовых технических навыков.
  • Вентилятор охлаждения был включен в компьютеры вместо системы кондиционирования воздуха. Эти охлаждающие вентиляторы создавали шум при интенсивном использовании компьютеров.
  • В компьютерах четвертого поколения по-прежнему использовались интегральные схемы, поэтому для создания и сборки этих ИС требовались высокие технические навыки.

Пятое поколение (с 1980 г. по настоящее время)

Компьютеры пятого поколения основаны на технологии ULSI (Ultra Large Scale Integration), программном обеспечении AI (искусственный интеллект) и аппаратном обеспечении параллельной обработки. ULSI произвел революцию в разработке микропроцессоров. Теперь около десяти миллионов электронных устройств можно собрать на одной микросхеме микропроцессора. С другой стороны, AI помогает компьютерам эффективно реагировать на естественные языки.

Считается, что период пятого поколения начался в 1980 году и продолжается. Это означает, что нынешнее поколение - это пятое поколение компьютеров. В компьютерах пятого поколения интегральные схемы все еще используются для удовлетворения различных потребностей. Однако основная технология - это AI, где еще есть возможности для улучшения.

Пять поколений компьютеров: с 1-го по 5-е

Пять поколений компьютеров: с 1-го по 5-е Reviewed by Admin on июля 13, 2021 Rating: 5

Читайте также: