Какой компьютерный эксперимент называется вычислительным

Обновлено: 06.07.2024

Принципиальное отличие вычислительного эксперимента от классического состоит в том, что он проводится не с реальной системой, а с ее моделью. В этом контексте особенно заслуживают внимания имитационные эксперименты. Под вычислительным экспериментом понимается численный метод проведения экспериментов с математическими и имитационными моделями, описывающими поведение сложных систем в некоторый период времени. В процессе вычислительного эксперимента исследователь имеет дело с тремя основными моделями (рис. 42):

1) реальным объектом (система);

2) имитационной моделью объекта;

3) информационно-вычислительной системой (ИВС).

В понятие «имитационная модель объекта» (или имитация) при вычислительном эксперименте вкладывается широкий смысл. Здесь понимается не только «чисто» имитационная модель, но и комплекс математических моделей, описывающих функционирование системы разной природы. Таким образом, вычислительный эксперимент — это всегда имитация некоторой реальности.

Область применения вычислительных экспериментов в экономике и управлении простирается от имитации конкретных видов деятельности до имитации функционирования корпорации и даже экономики страны с применением различного класса моделей. Об этом свидетельствуют исследования Т. Нейлора и его коллег из Университета социальных систем и имитационного моделирования, а также разработки в области моделирования экономики, управления и практического менеджмента — деловые игры, «case — stade» и практические управленческие задачи.


Рис. 4.1. Агрегированная структура вычислительного эксперимента

Вычислительные эксперименты позволяют исследовать все то, что не подвластно классическому эксперименту, а именно:

а) изучить сложные внутренние взаимодействия подсистем и эле­ментов системы и воздействие на их функционирование различного характера изменений во внешней среде;

б) вскрыть важные особенности в функционировании системы и разработать предложения по ее совершенствованию;

в) получить новые знания, изучить и оценить новые ситуации, рас­полагая неполной информацией о событиях будущего;

г) проработать варианты стратегий и политики и предсказать узкие места и другие трудности до их фактического применения.

Схема основных этапов вычислительного эксперимента, составленная с учетом рекомендаций из публикаций, приводится на рис. 43.

Дадим краткое пояснение выделенным на рис. 43 этапам вычислительного эксперимента. Как и любое исследование, вычислительный эксперимент начинается с формулировки проблемы (этап I) и ясного изложения целей эксперимента. Цели эксперимента задают в виде:

• рабочих гипотез, которые надо проверить;

• вопросов, на которые надо ответить;

• управляющих воздействий, которые надо оценить.

Построению базовой модели всегда предшествует принятие гипотезы об особенностях функционирования исследуемой системы (этап II), например она динамическая или статическая, детерминированная или вероятностная, характер ее функционирования непрерывный или дискретный и т.д.

При построении имитационной модели системы (этап III) возникает несколько проблемных вопросов:

1) о сложности модели — надо строить такие математические мо­дели, которые давали бы точное описание поведения системы и не тре­бовали бы сложного программирования и вычисления;

2) о продолжительности программирования и вычислений на компьютере — эксперимент должен проходить за приемлемое для исследователя время;

3) об адекватности модели описываемой реальности. Пока этот вопрос не решен, ценность модели остается незначительной, а имитационный эксперимент превращается в упражнение.

Разработка программного обеспечения эксперимента (этап IV) включает создание комплекса программ компьютерной имитации, организацию данных и начальных условий функционирования системы, а также генерирование недостающих данных.

Наиболее сложная задача, выполняемая на этапе V, связана с планированием вычислительного эксперимента, так как тип плана эксперимента всегда зависит от поставленной цели и исследуемого объекта.


Рис. 4.2. Содержание и последовательность этапов




В теории планирования эксперимента есть два важных понятия: фактор и реакция. Оба термина относятся к переменным. Фактор — экзогенная или управляющая переменная, реакция — эндогенная (выходная) переменная. Анализ факторов при выполнении вычислительных экспериментов производится по следующей общепринятой схеме.

1. Управляем ли рассматриваемый фактор?

2. Наблюдаемы ли (измеряются, регистрируются, фиксируются) значения фактора?

3. Составляет ли влияние фактора предмет изучения или он включен только для увеличения точности эксперимента?

4. Являются ли уровни фактора количественными или качественными?

5. Является ли фактор фиксированным или случайным?

Планирование вычислительного эксперимента проводится с целью сокращения числа вычислительных прогонов и их продолжительности, количества наблюдаемых переменных, шагов изменения параметров и т.д. Не исключаются случаи, когда исследователь отказывается строго фиксировать схему проведения эксперимента. Принимаемая им стратегия предусматривает возможность принятия решений в зависимости от результатов, получаемых на отдельных этапах исследования. Например, исследователь, в зависимости от априорных сведений и ранее полученных результатов, прибегает последовательно к различным методам нахождения решения: линейному приближению, описанию полиномами второго, а иногда и третьего порядка и т.д. Здесь каждый последующий шаг определяется ранее полученными результатами. Планирование вычислительного эксперимента сопровождается рядом таких проблем, как «проблема объема» или проблема слишком большого количества факторов, проблема выбора плана эксперимента в соответствии с его целью, проблема многокомпонентной реакции, порождающая проблему оценки результатов имитационного моделирования. Планирование вычислительного, как и любого другого, экс­перимента заслуживает специального изучения.

Выработка решений по управлению экспериментом (этап VI) основана на оценке исходной гипотезы о поведении исследуемой системы и отладке имитационной модели и построении алгоритма (блок-схемы) организации эксперимента.

Имитационный эксперимент (этап VII) — это проведение серии имитационных расчетов в системном масштабе времени и по разработанному алгоритму. Каждая реализация модели отличается от другой только в одном изучаемом аспекте. Таким образом, в результате имитационного эксперимента образуются ряды статистических данных (выборки), обработка которых требует определенных знаний.

После того как эксперимент проведен и получены результаты, возникает задача — представить эти результаты в компактной форме, выдать рекомендации и сделать заключение (этапы VIII и IX). Основным требованием к обработке (редукции) выходных данных служит извлечение максимума информации. К основным методам обработки данных относятся методы математической статистики: дисперсионный анализ (критерий F, методы множественных сравнений упорядочения), спектральный анализ и эвристические процедуры, основанные на оценке параметров статистических распределений. Применение идей и методов математической статистики резко сокращает объем экспериментальных исследований и, что самое главное, увеличивает четкость суждений исследователя о полученных результатах в ходе эксперимента.

Каждый рассмотренный этап классического и вычислительного экспериментов — это этап исследования, требующий от исполнителя специальных знаний, больших затрат интеллектуальных и временных ресурсов.

Направление подготовки 44.03.05 «Педагогическое образование».

Профиль подготовки «Математика. Информатика».

канд. физ. мат. наук, доцент ________________________ Т. В. Кормилицына

Ни одно техническое достижение не повлияло так на интеллектуальную деятельность че­ловека, как электронно-вычислительные машины. Увеличив в десятки и сотни миллионов раз скорость выполнения арифметических и логических операций, колоссально повысив тем самым производительность интеллектуального труда человека, ЭВМ вызвали коренные изменения в об­ласти обработки информации. По существу, мы являемся свидетелями своего рода “информационной революции”, подобной той промышленной революции, которую породило в 18 веке изобретение паровой машины и связанное с ним резкое повышение производительности физического труда. В настоящее время вычислительные машины проникают во все сферы интел­лектуальной деятельности человека, становятся одним из решающих факторов ускорения темпов научно-технического прогресса.

К концу 20 века компьютеры стали настолько совершенными, что появилась реальная воз­можность использовать их в научных исследованиях, не только как большой арифмометр, но об­ратиться с его помощью к изучению таких разделов математики, которые ранее были практически не доступны для исследований. Это было осознано при решении ещё на несовершенных ЭВМ сложных математических задач ядерной физики, баллистики, прикладной небесной механики.

Классическая математика, как известно, в основном нацелена на изучение явлений, имею­щих линейный характер, то есть способна изучать ситуации где причина приблизительно пропор­циональна следствию. Изменение причины приводит к пропорциональному изменению следст­вия, то есть классические уравнения рассматривают: не градиентные среды ( они изучают малые отклонения маятника, мелкие волны и дифференциал и т.д. )

После Второй Мировой Войны наука вплотную приблизилась к изучению явлений, яв­ляющихся не линейными, где причина и следствие не соизмеримы, именно благодаря таким явле­ниям возникли: электронные лампы, транзисторы, компьютеры, лазеры, появились высокоточные приборы способные избирать нужный сигнал, в большинстве случаев такие явления очень плохо поддаются традиционным методам анализа. Описывающие такие ситуации уравнения во многих случаях являются обыкновенными дифференциальными уравнениями, которые однако не имеют решения формами записи. Такие уравнения можно изучать и исследовать с помощью компьюте­ра.

В дальнейшем, развиваясь и совершенствуясь при решении разнообразных задач, этот стиль теоретического анализа трансформировался в новую современную технологию и методоло­гию проведения теоретических исследований, которая получила название вычислительного экс­перимента. Основой вычислительного эксперимента является математическое моделирование, теоретической базой - прикладная математика, а технической - мощные электронно-вычислитель­ные машины

К началу 70-х годов были обнаружены новые явления, а точнее на них обратили внимание, новые явления, которые ранее не предполагались. Оказалось, например, что возникающая в усло­виях землетрясения или резкого взрыва уединённая волна, получившая название “Саметон”, об­ладает удивительной устойчивостью. Это было смоделировано в численном эксперименте и на­блюдалось на практике. Математическая теория этого не линейного явления не была известна. Численные исследования позволили уяснить условия возникновения, распространения и свойства этого явления, этой волны. Другое важное открытие сделанное численным ( или вычислительным ) экспериментом это хаос в детерминированных ( описанных чёткой формулой ) системах, и хотя первые наблюдения таких явлений были выполнены ещё в начале 50-х годов, долгое время они рассматривались как несовершенство компьютеров, неспособных правильно вычислять.

1 Вычислительный эксперимент

Научное исследование реального процесса можно проводить теоретически или экспери­ментально, которые проводятся независимо друг от друга. Такой путь познания истины носит од­носторонний характер. В современных условиях развития науки и техники стараются проводить комплексное исследование объекта. Этого можно добиться на основе новой, удовлетворяющей требованиям времени, методологии и технологии научных исследований.

Широкое применение ЭВМ в математическом моделировании, достаточно мощная теоре­тическая и экспериментальная база позволяют говорить о вычислительном эксперименте как о новой технологии и методологии в научных и прикладных исследованиях.

Вычислительный эксперимент - это эксперимент над математической моделью объекта на ЭВМ, который состоит в том, что по одним параметрам модели вычисляются другие её парамет­ры и на этой основе делаются выводы о свойствах явления, описываемого математической моде­лью.

В проведении вычислительного эксперимента участвует коллектив исследователей - спе­циалисты с конкретной предметной области, математики теоретики, вычислители, прикладники, программисты. Это связано с тем, что моделирование реальных объектов на ЭВМ включает в себя большой объём работ по исследованию их физической и математической моделей, вычисли­тельных алгоритмов, программированию и обработке результатов. Здесь можно заметить анало­гию с работами по проведению натурных экспериментов: составление программы экспериментов, создание экспериментальной установки, выполнение контрольных экспериментов, проведение серийных опытов, обработки экспериментальных данных и их интерпретация и т.д. Таким обра­зом, проведение крупных комплексных расчётов следует рассматривать как эксперимент, прово­димый на ЭВМ или вычислительный эксперимент.

Вычислительный эксперимент играет ту же роль, что и обыкновенный эксперимент при исследованиях новых гипотез. Современная гипотеза почти всегда имеет математическое описа­ние, над которым можно выполнять эксперименты.

При введении этого понятия следует особо выделить способность компьютера выполнять большой объем вычислений, реализующих математические исследования. Иначе говоря, компью­тер позволяет произвести замену физического, химического и т. д. эксперимента экспериментом вычислительным.

При проведении вычислительного эксперимента можно убедиться в необходимости и по­лезности последнего, особенно в случаях, когда провести натуральный эксперимент затрудни­тельно или невозможно. Вычислительный эксперимент, по сравнению с натурным, значительно дешевле и доступнее, его подготовка и проведение требует меньшего времени, его легко переде­лывать, он даёт более подробную информацию. Кроме того, в ходе вычислительного эксперимен­та выявляются границы применимости математической модели, которые позволяют прогнозиро­вать эксперимент в естественных условиях. Поэтому использование вычислительного экспери­мента ограничивается теми математическими моделями, которые участвуют в проведении иссле­дования. По этой причине вычислительный эксперимент не может заменить полностью экспери­мент натурный и выход из этого положения состоит в их разумном сочетании. В это случае в проведении сложного эксперимента используется широкий спектр математических моделей: пря­мые задачи, обратные задачи, оптимизированные задачи, задачи идентификации.

Использование вычислительного эксперимента как средства решения сложных приклад­ных проблем имеет в случае каждой конкретной задачи и каждого конкретного научного коллек­тива свои специфические особенности. И тем не менее всегда чётко просматриваются общие ха­рактерные основные черты, позволяющие говорить о единой структуре этого процесса. В на­стоящее время технологический цикл вычислительного эксперимента принято подразделять на ряд технологических этапов. И хотя такое деление в значительной степени условно, тем не менее оно позволяет лучше понять существо этого метода проведения теоретических исследований. Те­перь давайте рассмотрим основные этапы вычислительного эксперимента.

Компьютерное моделирование как новый метод научных исследований основывается на:

  1. построении математических моделей для описания изучаемых процессов;
  2. использовании новейших вычислительных машин, обладающих высоким быстродействием (миллионы операций в секунду) и способных вести диалог с человеком.

Суть компьютерного моделирования состоит в следующем: на основе математической модели с помощью ЭВМ проводится серия вычислительных экспериментов, т.е. исследуются свойства объектов или процессов, находятся их оптимальные параметры и режимы работы, уточняется модель. Например, располагая уравнением, описывающим протекание того или иного процесса, можно изменяя его коэффициенты , начальные и граничные условия, исследовать, как при этом будет вести себя объект . Более того, можно спрогнозировать поведение объекта в различных условиях.

Вычислительный эксперимент позволяет заменить дорогостоящий натурный эксперимент расчетами на ЭВМ. Он позволяет в короткие сроки и без значительных материальных затрат осуществить исследование большого числа вариантов проектируемого объекта или процесса для различных режимов его эксплуатации, что значительно сокращает сроки разработки сложных систем и их внедрение в производство.

Компьютерное моделирование и вычислительный эксперимент как новый метод научного исследования заставляет совершенствовать математический аппарат, используемый при построении математических моделей, позволяет, используя математические методы, уточнять, усложнять математические модели. Наиболее перспективным для проведения вычислительного эксперимента является его использование для решения крупных научно-технических и социально-экономических проблем современности (проектирование реакторов для атомных электростанций, проектирование плотин и гидроэлектростанций, магнитогидродинамических преобразователей энергии, и в области экономики – составление сбалансированного плана для отрасли, региона, для страны и др.).

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем.

В заключение подчеркнем еще раз, что компьютерное моделирование и вычислительный эксперимент позволяют свести исследование "нематематического" объекта к решению математической задачи. Этим самым открывается возможность использования для его изучения хорошо разработанного математического аппарата в сочетании с мощной вычислительной техникой. На этом основано применение математики и ЭВМ для познания законов реального мира и их использования на практике.

В задачах проектирования или исследования поведения реальных объектов, процессов или систем математические модели, как правило, нелинейны, т.к. они должны отражать реальные физические нелинейные процессы, протекающие в них. При этом параметры (переменные) этих процессов связаны между собой физическими нелинейными законами. Поэтому в задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА.

Согласно классификации приведенной в "лекции 1" :

Д – модель детерминированная, отсутствует (точнее не учитывается) влияние случайных процессов.

Н – модель непрерывная, информация и параметры непрерывны.

А – модель аналитическая, функционирование модели описывается в виде уравнений (линейных, нелинейных, систем уравнений, дифференциальных и интегральных уравнений).

Итак, мы построили математическую модель рассматриваемого объекта, процесса или системы, т.е. представили прикладную задачу как математическую. После этого наступает второй этап решения прикладной задачи – поиск или разработка метода решения сформулированной математической задачи. Метод должен быть удобным для его реализации на ЭВМ, обеспечивать необходимое качество решения.

Все методы решения математических задач можно разделить на 2 группы:

  1. точные методы решения задач;
  2. численные методы решения задач.

В точных методах решения математических задач ответ удается получить в виде формул.

Например, вычисление корней квадратного уравнения:

ax^2 + bx +c = 0,

x_1,2 = \frac<-b \pm \sqrt <b^2-4ac></p>
>

или, например, вычисление производных функций:

y & =\sin(x), & y

или вычисление определенного интеграла:

\int_b^a \cos(x) dx = \sin(b) - \sin(a);

Однако, подставляя числа в формулу в виде конечных десятичных дробей, мы все равно получаем приближенные значения результата.

Для большинства задач, встречающихся на практике, точные методы решения или неизвестны, или дают очень громоздкие формулы. Однако, они не всегда являются необходимыми. Прикладную задачу можно считать практически решенной, если мы сумеем ее решить с нужной степенью точности.

Для решения таких задач разработаны численные методы, в которых решение сложных математических задач сводится к последовательному выполнению большого числа простых арифметических операций. Непосредственная разработка численных методов относится к вычислительной математике.

Примером численного метода является метод прямоугольников для приближенного интегрирования, не требующий вычисления первообразной для подынтегральной функции. Вместо интеграла вычисляется конечная квадратурная сумма:

\int_b^a f(x) dx \approx \sum_<i=1></p>
^ f(x_i) \Delta x_i;

x1=a – нижний предел интегрирования;

xn+1=b – верхний предел интегрирования;

n – число отрезков, на которые разбит интервал интегрирования (a,b) ;

\Delta x_i

– длина элементарного отрезка;

f(xi) – значение подынтегральной функции на концах элементарных отрезков интегрирования.

Чем больше число отрезков n, на которые разбит интервал интегрирования, тем ближе приближенное решение к истинному, т.е. тем точнее результат.

Таким образом, в прикладных задачах и при применении точных методов решения, и при применении численных методов решения результаты вычислений носят приближенный характер. Важно только добиться того, чтобы ошибки укладывались в рамки требуемой точности.

Численные методы решения математических задач известны давно, еще до появления ЭВМ, но ими пользовались редко и только в сравнительно простых случаях в силу чрезвычайной трудоемкости вычислений. Широкое применение численных методов стало возможным благодаря ЭВМ.


Эксперимент - двигатель многих отраслей науки. Нам привычны натурные, лабораторные опыты. Но что такое вычислительный эксперимент? В этой статье мы предлагаем вам разобраться с данным явлением, его этапами, отличительными чертами.

Что это?

Для начала приведем актуальные для научного мира определения вычислительного эксперимента:

  • Специфическая организация исследований, при которой свойства явлений и предметов изучаются на основе математических моделей. Проигрывается поведение объектов в различных условиях, на основе чего ученые выбирают оптимальный для них режим (Самарский А. А.).
  • Переход от изучения какого-либо реального предмета к изучению его математической модели. Последней предстают одно или несколько уравнений.
  • Технология изучения математических моделей, основанная на их построении и последующем анализе с помощью вычислительных электронных устройств.
  • Имитация некоторой реальности.

Использование вычислительных экспериментов связано с изучением таких процессов, лабораторное или натурное исследование которых было затруднено или вовсе невозможно. Например, в 40-50-е годы прошлого века советский академик Келдыш М. В. разработал математическое описание полетов в космос.

проведение вычислительного эксперимента

Отличительные характеристики метода

Основой вычислительного эксперимента выступает математическое моделирование. Его теоретическая база - прикладная математика, а технологическая - современные мощные ЭВМ. Кроме того, для проведения подобных исследований необходимы обширные знания по многим разделам механики, математики, физики, экологии, химии и экономики.

Вычислительный эксперимент - это работа с тремя моделями:

  • Система, реальный объект.
  • Имитационная модель реального объекта.
  • Информационно-вычислительная система.

Вычислительные эксперименты позволяют узнать то, что не подвластно классическим (лабораторной и натурной) методикам:

  • Внутренние взаимодействия различных подсистем, элементов, воздействие на их деятельность изменений внешней среды.
  • Обнаружить важные особенности функционирования системы, разработать план ее совершенствования.
  • Получить новые знания, располагая даже неполными сведениями о системе.
  • Проработать различные методики действий и стратегий.

методы вычислительного эксперимента

Лабораторный и натурный эксперименты

Модели вычислительного эксперимента - "младшие братья" других существовавших испокон веков исследований: натурного и лабораторного. Когда-то ученые обходились только этими способами для проверки своих гипотез, научных идей, технических решений, новых конструкций и устройств.

Чем же они отличны от моделирования, вычислительного эксперимента? Разницу можно осознать, ознакомившись с определениями:

  • Натурный эксперимент - различные испытания, которым подвергались новые устройства и аппараты. Целью было установление их характеристик, проверка возможностей и заявленных свойств. Подобные исследования более всего характерны для технической сферы.
  • Лабораторный эксперимент - создание экспериментальных установок, разработка измерительных устройств, а также методов проведения эксперимента. Подобные исследования характерны для химии, физики.

Ключевые преимущества метода

Перечислим главные достоинства вычислительного эксперимента перед другими методиками:

  • Интересующий объект можно исследовать без создания реальной модели аппарата, установки.
  • Возможность изучения каждого из факторов по отдельности, в то время как они действуют одновременно в реальности.
  • Возможность исследования тех процессов и явлений, которые не могут существовать в настоящем мире.

компьютерный вычислительный эксперимент

Методы эксперимента

Перечислим основные методы вычислительного эксперимента:

  • Распределенное и параллельное программирование.
  • Создание релятивистских плазменных и электронных сгустков, последующее управление их передвижением.
  • Метод частиц в ячейке (для трехмерных и двумерных плазменных процессов).
  • Электромагнитное одномерное моделирование.
  • Моделирование одномерных электромагнитных процессов.
  • Моделирование плазменных одномерных систем.
  • Модели плазмы, построенные по уравнению Власова.
  • Моделирование физических систем, которые состоят из большого множества взаимодействующих частиц.

Этапы

"Проведите вычислительный эксперимент" - это задание значит, что исследователь в своей работе должен пройти несколько этапов:

  1. Качественный всесторонний анализ интересующего предмета. Построение его математической модели.
  2. Разработка вычислительных алгоритмов.
  3. Создание программы, способной реализовать созданный вычислительный алгоритм.
  4. Проведение необходимых расчетов на электронно-вычислительных машинах.
  5. Обработка полученных результатов, анализ исследования, формирование выводов.

Проведение вычислительного эксперимента, как и любого другого исследования, начинается с постановки целей последующей работы:

  • Рабочие гипотезы, нуждающиеся в проверке.
  • Вопросы, нуждающиеся в ответах.
  • Управляющие действия, нуждающиеся в ответах.

А теперь предлагаем вам подробно разобрать каждый из этапов исследования.

проведите вычислительный эксперимент

Первый этап

Здесь первой главной задачей для ученого становится выбор из всего многообразия свойств объекта исследования тех, которые действительно необходимо изучить во время проведения эксперимента.

Далее для исследуемого процесса обязательно строится вычислительная (математическая) модель. Она создается так, что способна разделять все факторы, влияющие на объект эксперимента, на две группы:

  • Главные. Обязательно учитываются.
  • Второстепенные. Те, которые можно отбросить.

Затем обязательно сформировать рамки применимости модели, до которых считаются справедливыми полученные результаты.

Второй этап

На следующем этапе вычислительного эксперимента разрабатывается метод расчета сформированной исследователем математической задачи. В данном случае - вычислительного алгоритма. По факту он будет представлять из себя некую совокупность алгебраических формул (по ним будут вестись расчеты) и логических условий (они будут помогать установить нужную последовательность применения формул).

моделирование вычислительный эксперимент

Третий этап

На этом шаге компьютерного вычислительного эксперимента создается программа, позволяющая реализовать составленный алгоритм. Это этап программирования для электронно-вычислительных устройств.

Фактически здесь создается проект подготовки кода, составленного на языке высокого уровня. Он будет реализацией алгоритма численного решения задач.

Здесь перед учеными возникают следующие проблемные вопросы:

  • Оправдание сложности вычислительной модели. Желательны такие математические модели, которые могли бы дать наиболее полное представление о функционировании системы, но в то же время не требовали бы сложных вычислений, программирования.
  • Продолжительность проведения вычислений на компьютере. Эксперимент должен занимать разумный промежуток времени.
  • Адекватность созданной модели имитационной реальности. Насколько ценна составленная модель? Насколько полезен имитационный эксперимент?

вычислительный эксперимент модель

Четвертый этап

На этой ступени проводятся расчеты непосредственно на ЭВМ. Надо сказать, данный этап во многом напоминает осуществление лабораторного эксперимента. Различие лишь одно: если в лаборатории ученые с помощью специально созданной установки задают свои вопросы природе, то здесь при помощи ЭВМ вопросы задаются уже математической модели.

Пятый этап

Вот мы и подошли к завершению вычислительного эксперимента. Здесь важно получить результаты расчета, представленные некоторой цифровой информацией, которая в дальнейшем нуждается в расшифровке.

Ученые переходят к проведению расчетов и анализу полученных результатов. Это требует не только значительных интеллектуальных усилий, но и достаточных навыков по представлению, обработке и переосмыслению имеющихся выводов:

  • Управляем ли исследуемый фактор?
  • Наблюдаемы ли его значения?
  • Является ли влияние фактора предметом для изучения?
  • Уровни фактора по своей природе являются качественными или количественными?
  • Выявленный фактор случайный или фиксированный?

вычислительный эксперимент

На этом мы закончим знакомство с новейшим видом эксперимента - вычислительным. Его главное отличие от натурного и лабораторного в том, что ученые здесь занимаются изучением не самой реальности, а ее математической модели, имитации. Этот эксперимент также имеет собственные методики, специфический алгоритм проведения исследований в пять основных шагов. Возможно, в будущем он обретет более инновационного преемника.

Читайте также: