Кто сформулировал принципы легшие в основу построения современных компьютеров

Обновлено: 06.07.2024

Архитектурой компьютера считается его представление на неко­тором общем уровне, включающее описание пользовательских воз­можностей программирования, системы команд, системы адреса­ции, организации памяти и т. д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного запоминаю­щего устройства (ОЗУ, ОП), внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их со­вместимость с точки зрения пользователя.

Структура компьютера — это совокупность его функциональ­ных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представля­ется в виде структурных схем, с помощью которых можно дать опи­сание компьютера на любом уровне детализации

Принципы (архитектура) фон Неймана

В основу построения большинства компьютеров положены сле­дующие общие принципы, сформулированные в 1945 г. американ­ским ученым Джоном фон Нейманом.

1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увели­чивает хранимый в нем адрес очередной команды на длину коман­ды. Так как команды программы расположены в памяти друг за дру­гом, то тем самым организуется выборка цепочки команд из после­довательно расположенных ячеек памяти.

Если после выполнения команды следует перейти не к следую­щей, а к какой-то другой, используются команды условного или без­условного переходов (ветвления), которые заносят в счетчик командномер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп».

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработ­ке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы мо- -гут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе
выполнения программ с использованием присвоенных имен.


Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Существуют и другие классы компьюте­ров, принципиально отличающиеся от фон-неймановских. Здесь, например, может не выполняться принцип программного управле­ния, т. е. они могут работать без счетчика (регистра адреса) команд, указывающего на выполняемую команду программы. Для обраще­ния к какой-либо переменной, хранящейся в памяти, этим компью­терам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими.

Логические узлы (агрегаты) ЭВМ, простейшие типы архитектур

Центральное устройство. ЦУ представляет основную ком­поненту ЭВМ и, в свою очередь, включает ЦП — центральный про­цессор (central processing unit - CPU) и ОП - оперативную (главную) память (main storage, core storage, random access memory - RAM).

Процессор непосредственно реализует операции обработки ин­формации и управления вычислительным процессом, осуществляя выборку машинных команд и данных из оперативной памяти и за­пись в ОП, включение и отключение ВУ. Основными блоками про­цессора являются:

устройство управления (УУ) с интерфейсом процессора (сис­темой сопряжения и связи процессора с другими узлами ма-' шины);

Оперативная память предназначена для временного хранения данных и программ в процессе выполнения вычислительных и ло­гических операций.

ЦУ описывается следующими характеристиками:

быстродействие (тактовая частота процессора, цикл запи­си/считывания ОП).

Внешние устройства (ВУ). ВУ обеспечивают эффектив­ное взаимодействие компьютера с окружающей средой — пользова­телями, объектами управления, другими машинами. ВУ разделяются на следующие группы:интерактивные устройства (ввода/вывода); устройства хранения (массовые накопители); устройства массового ввода информации, устройства массового вывода информации.

В специализированных управляющих ЭВМ (технологические про­цессы, связь, ракеты и пр.) внешними устройствами ввода являются датчики (температуры, давления, расстояния и пр.), вывода — мани­пуляторы (гидро-, пневмо-, сервоприводы рулей, вентилей и др.).

В универсальных ЭВМ (человеко-машинная обработка инфор­мации) в качестве ВУ выступают терминалы, принтеры и др. уст­ройства.

Каналы связи (внутримашинный интерфейс) служат для сопряжения центральных узлов машины с ее внешними устрой­ствами.

Однотипные ЦУ и устройства хранения данных могут использо­ваться в различных типах машин. Известны примеры того, как фир­мы, начавшие свою деятельность с производства управляющих ма­шин, совершенствуя свою продукцию, перешли к выпуску систем, которые в зависимости от конфигурации ВУ могут исполнять как роль универсальных, так и управляющих машин (Hewlett-Packard и Digital Equipment Corporation).

Если абстрагироваться от подробностей, то основные классиче­ские типы архитектур можно определить как следующие: «звезда», иерархическая, магистральная Архитектура «звезда». Здесь ЦУ (рис. 2.1, а) соединено непо­средственно с ВУ и управляет их работой (ранние модели машин).

Классическая архитектура (фон Неймана) - одно арифмети­ко-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое прохо­дит поток команд — программа (рис. 2.2). Это однопроцессорный компьютер.

Вычислительная машина включает пять базовых компонент и состоит из следующих типов устройств:

запоминающие устройства — память, в том числе оперативная (ОП) и внешние ЗУ; устройства ввода и устройства вывода информации — внеш­ние (периферийные) устройства (ВУ).

Иерархическая архитектура — ЦУ соедине­но с периферийными процессорами (вспомогательными процессо­рами, каналами и пр.), управляющими в свою очередь контроллера­ми, к которым подключены группы ВУ (системы IBM 360—375);

Магистральная структура (общая шина - unibas) — процессор (процессоры) и блоки памяти (ОП) взаимо­действуют между собой и с ВУ (контроллерами ВУ) через внутрен­ний канал, общий для всех устройств (машины DEC, ПЭВМ IBM PC-совместимые).

К этому типу архитектуры относится также архитектура персо­нального компьютера: функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью.

Физически магистраль представляет собой многопроводную ли­нию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адре­са, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к ап­паратуре компьютера через специальные контроллеры — устройства управления периферийными устройствами.

Контроллер — устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, осво­бождая процессор от непосредственного управления функциониро­ванием данного оборудования.

1 .Использование двоичной системы счисления. Ее преимущество перед традиционной десятичной системой состоит в том, что над числами в двоичной записи намного легче проводить арифметические операции. Справедливости ради стоит заметить, что этот принцип не был изобретен лично фон Нейманом. Уже в немецких моделях вычислительных машин Z1−Z4, которые разрабатывались начиная с 1938 года, использовалась двоичная система.

2.Принцип линейности и однородности памяти. Память в машине фон Неймана - это линейная последовательность элементов (ячеек). Ячейки памяти имеют адреса. Другие устройства компьютера могут записывать информацию в любую ячейку и считывать информацию из любой ячейки, обращаясь к ячейке по ее адресу. Этот принцип определил возможность работать с переменными.

3.Принцип программного управления. Работа вычислительной машиной управляется без участия человека программой, которая хранится в памяти. (Исключения составляют случаи, когда это участие предусмотрено самой программой. Например, человек вводит данные.) В качестве примера устройства, которое выполняет команды, но исключительно с участием человека, можно назвать калькулятор. Программа состоит из команд, которые выполняются друг за другом. При этом каждая команда либо сама указывает на следующую за ней команду, либо следующей будет выполняться команда из соседней ячейки памяти. Этот процесс длится, пока не выполнится команда конца программы.

4.Принцип совместного использования памяти. Память компьютера хранит одинаковым образом и данные, и команды. Компьютер не может определить, что хранится в данной ячейке памяти – данные или команда. Поэтому над командами можно выполнять те же действия, что и над данными. Следовательно, команды одной программы могут быть получены в качестве результата, возвращенного другой программой. Самым важным следствием этого принципа является принцип хранимости программы в памяти вместе с данными. Это предопределило возможность относительно легко менять программу. Для вычислительных машин, созданных до принципов фон Неймана (немецкие модели Z1−Z4) перепрограммирование было либо вообще невозможно, либо требовало переключения специальных перемычек на панели, которое занимало несколько дней.

5.Условный переход. Несмотря на последовательность выполнения команд, можно реализовать переход к любому участку кода.

Во второй половине XX века два крупнейших ученых независимо друг от друга сформулировали основные принципы построения компьютера.

К основополагающим принципам Неймана-Лебедева можно отнести следующие:

1. Состав основных компонентов вычислительной машины.

2. Принцип двоичного кодирования.

3. Принцип однородности памяти.

4. Принцип адресности памяти.

5. Принцип иерархической организации памяти.

6. Принцип программного управления.

Рассмотрим подробно каждый из принципов Неймана-Лебедева. Любое устройство, предназначенное для автоматических вычислений, должно содержать определённый состав основных компонентов: блок обработки данных, блок управления, блок памяти и блоки ввода/вывода информации.

Перечисленные в функциональной схеме блоки есть и у современных компьютеров. К ним относятся:

  1. Арифметико-логическое устройство — АЛУ, в котором происходит обработка данных.
  2. Устройство управления (УУ) отвечает за выполнение программы и согласование взаимодействий всех узлов компьютера. В современных компьютерах АЛУ и УУ изготавливаются в виде единой интегральной схемы — микропроцессора.
  3. Память — устройство, где хранятся программы и данные. Различают внутреннюю и внешнюю память. Основная часть внутренней памяти предназначена для оперативного хранения программ и данных, её принято называть оперативным запоминающим устройством — ОЗУ. К внутренней памяти относится и ПЗУ (постоянное запоминающее устройство, англ. ROM — Read Only Memory для диктора рид онли мемори), в нём содержится программа начальной загрузки компьютера. Основное отличие ПЗУ от ОЗУ заключается в том, что при решении задач пользователя содержимое ПЗУ не может быть изменено. Внешняя память, называемая ещё долговременной, используется для длительного хранения программ и данных.
  4. Устройства ввода используются для преобразования данных в удобную для обработки компьютером форму.
  5. Устройства вывода преобразуют работу ЭВМ в удобную для восприятия человеком форму.

Отличительной особенностью функциональной схемы компьютеров первых поколений от являлось то, что программное управление всеми процессами ввода-вывода происходило от процессора.

Рассмотрим принцип двоичного кодирования информации. Он заключается в том, что в ЭВМ используется двоичная система счисления. Это означает, что любая информация, предназначенная для обработки на компьютере, а также и программы, представляются в виде двоичного кода, т. е. последовательности нулей и единиц.

Благодаря использованию двоичного кодирования для представления не только данных, но и программ, форма их представления становится одинаковой, а это означает, что их можно хранить в единой памяти, поскольку нет принципиальной разницы между двоичным представлением машинной команды, числа, символа и др. В этом заключается принцип однородности памяти.

Оперативная память компьютера представляет собой набор битов — однородных элементов с двумя устойчивыми состояниями, одно из которых соответствует нулю, другое — единице. Группы соседних битов объединяются в ячейки памяти, которые пронумерованы, т. е. имеют свой адрес. Это соответствует принципу адресности памяти.

На современных компьютерах может одновременно извлекаться из памяти и обрабатываться до 64 разрядов, т. е. восьми байтовых ячеек. Это стало возможным при реализации принципа параллельной обработки данных.

С позиции пользователя существуют два противоречивых требования, предъявляемых к памяти компьютера: память должна быть как можно больше, а скорость работы — как можно быстрее.

Противоречие заключается в том, что при увеличении объёма памяти неизбежно уменьшается скорость работы, поскольку увеличивается время на поиск данных. С другой стороны, более быстрая память является и более дорогой, что увеличивает общую стоимость компьютера.

Преодолением противоречия между объёмом памяти и её быстродействием стало использование нескольких различных видов памяти, связанных друг с другом. В этом состоит принцип иерархической организации памяти.

Основным отличием компьютеров от любых других технических устройств является программное управление их работой.

Важным элементом устройства управления является счётчик адреса команд, где в любой момент времени хранится адрес следующей по порядку выполнения команды. Используя значение из счётчика, процессор поочередно считывает из памяти команду программы, расшифровывает её и выполняет. Действия выполняются до завершения работы программы.

Современные персональные компьютеры разнообразны — это и настольные, и переносные, и планшетные устройства. Они различаются по размерам, назначению, но фунциональное устройство у них одинаковое.

Оно определяется архитектурой персонального компьютера.

Архитектура — это наиболее общие принципы построения компьютера, отражающие программное управление работой и взаимодействием его основных функциональных узлов.

Для рассмотрения взаимодействие основных функциональных узлов обратимся к функциональной схеме компьютера.

На ней представлены основные узлы современного компьютера, к которым, как вам уже известно, относятся процессор, внутренняя память, устройства ввода, устройства вывода и внешняя память.

В компьютерах с классической фон-неймановской архитектурой все процессы ввода-вывода находились под управлением процессора. Поскольку процессор является самым быстрым устройством, то любое обращение к устройствам ввода-вывода и ожидание отклика от них замедляло общее время работы.

В современных компьютерах эту проблему решают специальные электронные схемы, которые обеспечивают обмен данных между процессором и внешними устройствами. Они называются контрОллерами, а на функциональной схеме они обозначены буквой К.

При наличии контроллеров данные могут передаваться по магистрали между внешними устройствами и внутренней памятью без использования процессора.

Это существенно снижает нагрузку на работу центрального процессора, а значит приводит к повышению эффективности работы всей вычислительной системы.

Обмен данными между устройствами осуществляется с помощью магистрали.

Магистраль (шина) — устройство для обмена данными между устройствами компьютера.

Магистраль включает в себя шину адреса, шину данных и шину управления.

Шина адреса используется для указания физического адреса устройства;

Шина данных используется для передачи данных между узлами компьютера;

Шина управления организует сам процесс обмена (сигналы чтение/запись, данные готовы/не готовы, обращение к внутренней/внешней памяти и др.)

В современных компьютерах применяется магистрально-модульная архитектура, главное достоинство которой лежит в гибкости конфигурации, т. е. возможности изменить конфигурацию компьютера путём подключения к шине новых внешних устройств, а также замене старых внешних устройств.

Если спецификация на шину опубликована производителем, т. е. является открытой, то говорят о принципе открытой архитектуры. В этом случае пользователь самостоятельно может выбрать дополнительные устройства для формирования компьютерной системы, учитывающей именно его предпочтения.

Мир современных компьютеров широк и многообразен. Персональные компьютеры давно стали многоядерными. Это относится в том числе к смартфонам и планшетным компьютерам.

Однако, существуют не только персональные компьютеры, но и значительно более нагруженные вычислительные системы. Мы начали урок с путешествия в один из дата-центров Яндекса и вы видели огромное количество серверов, которые позволяет обеспечивать пользователей качественными сервисами в режиме 24х7 с высокой скоростью доступа.

Существуют сегодня и суперкомпьютеры, способные решать научные задачи, производить вычисления, связанные с космическими телами, исследованиями микромира и др.

Технические характеристики электронной техники находятся вблизи предельных значений, а это означает необходимость новых технологических решений. Сегодня ведутся исследования в области нанотехнологий, квантовых и биологических компьютеров. Одна из задач вашего поколения — найти новые технологические решения для увеличения мощности компьютеров будущего.

В каждой области науки и техники существуют фундаментальные идеи или принципы, определяющие на многие годы вперёд её содержание и направление развития. В компьютерных науках роль таких фундаментальных идей сыграли принципы, сформулированные независимо друг от друга двумя крупнейшими учёными XX века — Джоном фон Нейманом и Сергеем Алексеевичем Лебедевым.

Архитектура компьютера – это его устройство и принципы взаимодействия его основных элементов – логических узлов, среди которых основными являются процессор, внутренняя память (основная и оперативная), внешняя память и устройства ввода-вывода информации (периферийные).

Архитектура фон Неймана (модель фон Неймана, Принстонская архитектура) — широко известный принцип совместного хранения команд и данных в памяти компьютера.

Вычислительные машины такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти.

Принцип — основное, исходное положение какой-нибудь теории, учения, науки и пр.

Основы учения об архитектуре вычислительных машин, которые рассматриваются на уроке, были заложены Джоном фон Нейманом. Более подробно о логических узлах, а также о магистрально-модульном принципе архитектуры современных персональных компьютеров можно будет узнать на этом уроке.

Принципы Неймана-Лебедева — базовые принципы построения ЭВМ, сформулированные в середине прошлого века, не утратили свою актуальность и в наши дни.

Рассмотрим сущность основных принципов Неймана-Лебедева:

1) состав основных компонентов вычислительной машины;
2) принцип двоичного кодирования;
3) принцип однородности памяти;
4) принцип адресности памяти;
5) принцип иерархической организации памяти;
6) принцип программного управления.

Первый принцип определяет состав основных компонентов вычислительной машины.

Любое устройство, способное производить автоматические вычисления, должно иметь определённый набор компонентов: блок обработки данных, блок управления, блок памяти и блоки ввода/вывода информации.

Его информационным центром является процессор:

• все информационные потоки (тонкие стрелки на рисунке) проходят через процессор;
• управление всеми процессами (толстые стрелки на рисунке) также осуществляется процессором.

Такие блоки есть и у современных компьютеров. Это:

• процессор, состоящий из арифметико-логического устройства (АЛУ), выполняющего обработку данных, и устройства управления (УУ), обеспечивающего выполнение программы и организующего согласованное взаимодействие всех узлов компьютера;
• память, предназначенная для хранения исходных данных, промежуточных величин и результатов обработки информации, а также самой программы обработки информации. Различают память внутреннюю и внешнюю. Основная часть внутренней памяти используется для временного хранения программ и данных в процессе обработки. Такой вид памяти принято называть оперативным запоминающим устройством (ОЗУ). Ещё одним видом внутренней памяти является постоянное запоминающее устройство (ПЗУ), содержащее программу начальной загрузки компьютера. Внешняя или долговременная память предназначена для длительного хранения программ и данных в периоды между сеансами обработки;
• устройства ввода, преобразующие входную информацию в форму, доступную компьютеру;
• устройства вывода, преобразующие результаты работы компьютера в форму, доступную для восприятия человеком.

Вместе с тем в архитектуре современных компьютеров и компьютеров первых поколений есть существенные отличия.

Второй принцип

Рассмотрим суть принципа двоичного кодирования информации.

Вся информация, предназначенная для обработки на компьютере (числа, тексты, звуки, графика, видео), а также программы её обработки представляются в виде двоичного кода — последовательностей 0 и 1.

Все современные компьютеры хранят и обрабатывают информацию в двоичном коде. Выбор двоичной системы счисления обусловлен рядом важных обстоятельств: простотой выполнения арифметических операций в двоичной системе счисления, её «согласованностью» с булевой логикой, простотой технической реализации двоичного элемента памяти (триггера).

Итак, благодаря двоичному кодированию, данные и программы по форме представления становятся одинаковыми, а следовательно, их можно хранить в единой памяти.

Несмотря на всеобщее признание, использование в компьютерной технике классической двоичной системы счисления не лишено недостатков. В первую очередь это проблема представления отрицательных чисел, а также нулевая избыточность (т. е. отсутствие избыточности) двоичного представления. Пути преодоления указанных проблем были найдены уже на этапе зарождения компьютерной техники.

В 1958 г. в Московском государственном университете им. М. В. Ломоносова под руководством И. П. Брусенцова был создан троичный компьютер «Сетунь» (рис. 1). В нём применялась уравновешенная троичная система счисления, использование которой впервые в истории позволило представлять одинаково просто как положительные, так и отрицательные числа.


«Сетунь» представляет собой малую ЭВМ, построенную на принципах троичной логики, другими словами это троичный компьютер. Она была разработана в 1959 году в стенах вычислительного центра Московского государственного университета. Этот уникальный троичный компьютер, практически не имеет аналогов не только в данный момент времени, но и вообще в истории вычислительной техники.

Для начала разберёмся, что же такое троичный компьютер, коим, как уже было сказано, является рассматриваемая модель «Сетунь». Такое название получил специализированный компьютер, который построен на логических элементах и узлах двух типов – как на классических двоичных, так и уникальных в своём роде троичных. Понятно, что он использует в своей работе соответственные системы счисления, логики и алгоритмы работы – двоичные и троичные.

Принцип однородности памяти

Принцип адресности

Согласно принципу адресности основная память структурно состоит из пронумерованных ячеек, причем процессору в произвольный момент доступна любая ячейка.

Принцип иерархической организации памяти

Иерархия компьютерной памяти — концепция построения взаимосвязи классов разных уровней компьютерной памяти на основе иерархической структуры.

Сущность необходимости построения иерархической памяти — необходимость обеспечения вычислительной системы (отдельного компьютера или кластера) достаточным объёмом памяти, как оперативной, так и постоянной.

Учитывая неоднородность периодичности обращения к конкретным записям (внутренним регистрам процессора, кэш-памяти, страницам и файлам) применяются различные технические решения, имеющие отличные характеристики, как технические так ценовые и массо-габаритные. Долговременное хранение в дорогой сверхоперативной и даже оперативной памяти, как правило, не выгодно, поэтому данные такого рода хранятся на накопителях — дисковых, ленточных, флеш и т.д.

Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий компьютера.

Узкое место архитектуры фон Неймана

Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию.

Совместное использование шины для памяти программ и памяти данных приводит к узкому месту архитектуры фон Неймана, а именно ограничению пропускной способности между процессором и памятью по сравнению с объёмом памяти.

Из-за того, что память программ и память данных не могут быть доступны в одно и то же время, пропускная способность канала «процессор-память» и скорость работы памяти существенно ограничивают скорость работы процессора — гораздо сильнее, чем если бы программы и данные хранились в разных местах. Так как скорость процессора и объём памяти увеличивались гораздо быстрее, чем пропускная способность между ними, узкое место стало большой проблемой, серьёзность которой возрастает с каждым новым поколением процессоров.

Этот эффект называется узким горлышком фон Неймана.

Современную обработку информации невозможно представить без такого устройства, как компьютер. Его следует рассматривать, как совокупность двух составляющих:

Компьютеры, построенные на принципах фон Неймана, имеют классическую архитектуру, но, кроме нее, существуют другие типы архитектуры. Например, Гарвардская. Ее отличительными признаками являются:

  • хранилище инструкций и хранилище данных представляют собой разные физические устройства;
  • канал инструкций и канал данных также физически разделены.

Перспективы развития ЭВМ

Согласно сегодняшней тенденции, уровень глобальных сетей будет увеличиваться, в связи с этим будут разрабатываться новые методы хранения, обработки, представления информации. Будут совершенствоваться способы передачи информации с учетом скорости, безопасности и качества.

Виртуальная реальность остаётся одним из самых интересных и загадочных понятий компьютерной индустрии.

Виртуальная реальность — это образ искусственного мира, моделируемый техническими средствами и передаваемый человеку через ощущения. В данный момент технологии виртуальной реальности широко применяются в различных областях человеческой деятельности.

По словам учёных и исследователей, в ближайшем будущем персональные компьютеры кардинально изменятся. Примерно в 2020-2025 годах должны появиться молекулярные компьютеры, квантовые компьютеры, биокомпьютеры и оптические компьютеры. Компьютер будущего должен облегчить и упростить жизнь человека ещё в десятки раз!

Одна из указанных вероятностных альтернатив замены современных компьютеров является создание оптических ЭВМ, носителем информации в которых будет световой сгусток. Проникновение оптических способов в вычислительную технику ведется по трем фронтам. Первое основано на использовании аналоговых интерференционных оптических вычислений для решения отдельных особых задач, связанных с необходимостью быстрого выполнения интегральных преобразований. Второе направление связно с созданием чисто оптических или гибридных соединений, обладающих большей надежностью, чем электрические. И третье направление – создание компьютера, полностью состоящего из оптических устройств обработки информации.

Другие виды компьютеров – молекулярные.

Молекулярные компьютеры – это ЭВМ, использующие вычислительные возможности молекул преимущественно биологических, также используется идея вычислительных возможностей расположения атомов в пространстве.

Квантовый компьютер – ЭВМ, которое путем выполнения квантовых алгоритмов существенно использует при работе эффекты, такие как квантовый параллелизм и квантовая запутанность.

Нанокомпьютеры – вычислительные устройства на основе электронных технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер также имеет микроскопические размеры. Другое направление связано с разработками биокомпьютеров – клеточные и ДНК-компьютеры.

Однако квантовые компьютеры, биокомпьютеры, нанокомпьютеры и другие направления – все это на сегодняшний момент всего лишь гипотетические вычислительные устройства, которые под собой не имеют логических решений.

Высокие технологии – это будущее и это успех всего человечества. Ежедневно выпускаются новые и более совершенны модели ЭВМ. И на этом процесс развития не остановлен.

Читайте также: