Магистрально модульный принцип построения компьютера джон фон нейман

Обновлено: 05.07.2024

1. Кто был основоположником магистрально-модульного принципа современной архитектуры ПК.

2. Архитектура компьютера – это…

3. Перечислите основные принципы положенные в основу магистрально-модульного построения архитектуры ПК.

4. Из каких частей состоит магистраль?

5. Для чего нужен интерфейс устройств?

6. Что используется для согласования интерфейсов? По какой схеме работает данное согласование (зарисуйте схему)?

7. Как происходит обработка данных на компьютере?

8. Изобразите схематично магистрально-модульный принцип ПК.

10. Для чего служат шина управления, шина адреса, шина данных?

11. По какой формуле можно рассчитать количество адресуемых ячеек памяти в шине адреса?

12. Что позволяет модульный принцип пользователю ПК? Перечислите основные достоинства модульно-магистрального принципа.

Д/з. Ответить на вопросы, подготовиться к ответу по учебному тексту.

Учебный текст

Магистрально-модульный принцип построения компьютера

Вспомним информацию, полученную на предыдущих занятиях:

Компьютер – это электронное устройство, предназначенное для работы с информацией, а именно введение, обработку, хранение, вывод и передачу информации. Кроме того, ПК представляет собой единое двух сущностей – аппаратной и программной частей.

Архитектура компьютера - это описание его логической организации, ресурсов и принципов функционирования его структурных элементов. Включает основные устройства ЭВМ и структуру связей между ними.

Обычно, описывая архитектуру ЭВМ, особое внимание уделяют тем принципам ее организации, которые характерны для большинства машин, относящихся к описываемому семейству, а также оказывающие влияние на возможности программирования.

В основу архитектуры современных компьютеров положены принципы Джона фон Неймана и магистрально-модульный принцип.

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня.

По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новое.

Принципы фон Неймана

1. Использование двоичной системы счисления в вычислительных машинах. Преимущество перед десятичной системой счисления заключается в том, что устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.

2. Программное управление ЭВМ. Работа ЭВМ контролируется программой, состоящей из набора команд. Команды выполняются последовательно друг за другом. Созданием машины с хранимой в памяти программой было положено начало тому, что мы сегодня называем программированием.

3. Память компьютера используется не только для хранения данных, но и программ. При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.

4. Ячейки памяти ЭВМ имеют адреса, которые последовательно пронумерованы. В любой момент можно обратиться к любой ячейке памяти по ее адресу. Этот принцип открыл возможность использовать переменные в программировании.

5. Возможность условного перехода в процессе выполнения программы. Не смотря на то, что команды выполняются последовательно, в программах можно реализовать возможность перехода к любому участку кода.

6. Наличие устройств ввода и вывода информации. Именно эти устройства являются базовыми и достаточными для работы компьютера на пользовательском уровне.

7. Принцип открытой архитектуры – правила построения компьютера, в соответствии с которыми каждый новый блок должен быть совместим со старым и легко устанавливаться в том же месте в компьютере. В компьютере столь же легко можно заменить старые блоки на новые, где бы они ни располагались, в результате чего работа компьютера не только не нарушается, но и становится более производительной. Этот принцип позволяет не выбрасывать, а модернизировать ранее купленный компьютер, легко заменяя в нем устаревшие блоки на более совершенные и удобные, а также приобретать и устанавливать новые блоки. Причем во всех разъемы для их подключения являются стандартными и не требуют никаких изменений в самой конструкции компьютера.




Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой.

Компьютер не является неделимым, цельным объектом. Он состоит из некоторого количества устройств – модулей. (Комплектовать свой компьютер из этих модулей пользователь может по собственному желанию). Для каждого устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером. некоторые контроллеры могут управлять сразу несколькими устройствами. Все контроллеры и адаптеры взаимодействуют с процессором и оперативной памятью через системную магистраль (набор электронных линий. Шина - это кабель, состоящий из множества проводов.

Магистраль обеспечивает обмен данными между устройствами компьютера.

Магистраль состоит из трех частей:

1. Шина адреса, на которой устанавливается адрес требуемой ячейки памяти или устройства, с которым будет происходить обмен информацией.

2. Шина данных, по которой будет передаваться необходимая информация.

3. Шина управления, регулирующая этот процесс. (по шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Эти сигналы показывают – какую операцию следует производить).

Для того, чтобы компьютер функционировал правильно, необходимо, чтобы все его устройства работали дружно, «понимали» друг друга и «не конфликтовали». Это обеспечивается благодаря одинаковому интерфейсу, который имеют все устройства компьютера.
Интерфейс – это средство сопряжения двух устройств, в котором все физические и логические параметры согласуются между собой.

Так как обмен данными между устройствами происходит через магистраль, то для согласования интерфейсов все внешние устройства подключаются в шине не напрямую, а через свои контроллеры (адаптеры) и порты.



Порты бывают последовательные и параллельные. К последовательным портам присоединяют медленно действующие или удаленные устройства (мышь, модем), а к параллельным более быстрые (сканер, принтер). Клавиатура и монитор подсоединяется к специализированным портам.

Для того, чтобы по ошибке или незнанию не подключить устройство к чужому порту, каждое устройство имеет индивидуальную форму штекера, не подходящую к «чужому» разъему.

Информация, представленная в цифровой форме и обрабатываемая на компьютере, называется данными.

Последовательность команд, которую выполняет компьютер в процессе обработки данных, называется программой.

Обработка данных на компьютере:

1. Пользователь запускает программу, хранящуюся в долговременной памяти, она загружается в оперативную и начинает выполняться.

2. Выполнение: процессор считывает команды и выполняет их. Необходимые данные загружаются в оперативную память из долговременной памяти или вводятся с помощью устройств ввода.

3. Выходные (полученные) данные записываются процессором в оперативную или долговременную память, а также предоставляются пользователю с помощью устройств вывода информации.

Для обеспечения информационного обмена между различными устройствами должна быть предусмотрена какая-то магистраль для перемещения потоков информации.


Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления, которые представляют собой многопроводные линии. К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода.

Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники.

Шина адреса.Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса.

Количество адресуемых ячеек памяти можно рассчитать по формуле:

N=2 I , где I – разрядность шины адреса.

Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

2 16 = 64 Кб

2 24 = 16 Мб

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Каждая отдельная функция компьютера реализуется одним или несколькими модулями – конструктивно и функционально законченных электронных блоков в стандартном исполнении. Организация структуры компьютера на модульной основе аналогична строительству блочного дома.

Магистрально-модульный принцип имеет ряд достоинств:

1. для работы с внешними устройствами используются те же команды процессора, что и для работы с памятью.

2. подключение к магистрали дополнительных устройств не требует изменений в уже существующих устройствах, процессоре, памяти.

3. меняя состав модулей можно изменять мощность и назначение компьютера в процессе его эксплуатации.

Человек, сформулировавший знаменитые принципы фон Неймана, родился в 1903 г. в Будапеште. Выходец из еврейской семьи, Янош Лайош Нейман, с детства проявлял задатки будущего математика, физика, химика.

В 30-х годах преподавал в Германии под именем Иоганна фон Неймана. Расцветающий нацизм и приглашение от американцев подтолкнули молодого ученого к решению перебраться в США. Там он окончательно стал Джоном.

Джон фон Нейман

Работал в Принстоне, в университете и Институте перспективных исследований. Одно время там же работал по близкой тематике Алан Тьюринг. Один из создателей информатики в современном виде. Повлияли ли на Джона работы последнего, достоверно неизвестно.

Участвовал в разработке ядерного оружия. Возможно, что полученное во время работы над проектом радиационное облучение стало причиной ранней смерти ученого. Умер фон Нейман в 1957 г. от рака. Ему было 53 года.

Принципы Джона фон Неймана

Ученый был специалистом широкого профиля, но в историю вошел как создатель новационной архитектуры компьютера. Радикально нового с тех пор не придумали.

Принципы Джона фон Неймана

Понятие «архитектура» означает необходимую организацию «железа» и программ для оптимального решения задач. При этом учитываются финансовые затраты, область приложения, функционал, комфортность в работе.

Не стоит путать со «структурой». Последняя не столь глобально описывают внутренние связи. Уточняет взаимодействие деталей устройства.

Идея возникла, когда фон Нейман занялся анализом недостатков первой электронной машины ENIAC (1944 г.). Сделанные ранее в Германии образцы были электромеханическими, на реле.

Таблица двоичной системы

Концепция создания усовершенствованной ЭВМ EDVAC была представлена в 1946 г. Новшество заключалось в следующем:

Утверждается двоичная система счисления как наиболее логичная и простая для реализации в компьютере. В дальнейшем нововведение дало возможность работать не только с цифрами, но и с текстами, графикой, видео / звуком.

Для проведения операций используется программа, включающая выполняемые одна за другой команды. Последняя в последовательности сигнализирует об окончании процесса. В нашем понимании – это программирование.

Программы и данные размещаются в памяти ЭВМ, преобразовываясь в двоичный код (см. п. 1). Производимые над ними операции схожи, соблюдается однородность. Машина самостоятельно корректировала программу сообразно запрошенным операциям.

Ячейкам памяти присваиваются конкретные адреса. Таким образом вводятся переменные.

Команды могут исполняться не только последовательно, но допускается переход с соблюдением условия. Так, например, может запускаться циклическая обработка данных.

Качественным улучшением по сравнению с ЭНИАКом стала легкость загрузки программ. Последние больше не являлись компонентом устройства и без труда менялись.

Принцип построения и работы ЭВМ фон Неймана

Архитектура ЭВМ

Заносимые в память команды (программа) содержат информацию о необходимом действии и адреса требуемых данных. Также вводятся идентификатор ячейки для введения память результата (если нужно).

АЛУ отвечает за исполнение команды. Итог операции отправляется в память или на вывод. ВЗУ сходно с устройством вывода тем, что используется для недолгого хранения параметров. Только содержит информацию в непонятном для оператора формате. Исключительно для машины.

Если кратко, основной функцией АЛУ является поддержка незатейливых действий: арифметических, логических, перемещением данных. Еще анализируется результат. Решения по анализу принимаются УУ.

УУ предназначено для отправки указаний непосредственно отдельным деталям и получения от них подтверждений. Следит за очередностью выполнения команд и за их исполнением вообще.


Заключение

Схема вычислительной машины фон Неймана

Фон Нейман привнес неоценимые новшества в создание машин электронного класса. Благодаря придуманной им схеме, улучшенный калькулятор (каковым являлся ЭНИАК) превратился со временем в инструмент обработки любой информации. При этом их «железный» состав изменился слабо. Электронные лампы, например, заменили на полупроводники.

УУ и АЛУ скомпоновали в моноблочный центральный процессор. Значительные качественные изменения претерпело ОЗУ. Возрос объем. Гораздо удобней стали аппараты ввода и вывода. Но принципиальных подвижек пока нет.

С другой стороны, заслуги представляются несколько преувеличенными. Основы «принципов» рождались в результате дискуссий с коллегами. Но в опубликованных итогах оказалась одна фамилия. Но безусловна роль фон Неймана как систематизатора. А на титул первооткрывателя он и не претендовал.



Знакомство с архитектурой ЭВМ: открытая и закрытая архитектура. Принципы Джона Фон Неймана, магистрально-модульный принцип построения компьютера.

Содержимое разработки

Открытый урок по информатике в 8 классе

Тема урока: «Что такое архитектура компьютера. Начальные сведения об архитектуре компьютера. Магистрально-модульный принцип построения архитектуры»

Цель урока: знакомство с архитектурой ЭВМ, открытая и закрытая архитектура. Принципы Джона Фон Неймана, магистрально-модульный принцип построения компьютера.

Задачи урока:

Образовательная – познакомить учащихся с архитектурой ЭВМ, открытая и закрытая архитектура. Принципы Джона Фон Неймана, магистрально-модульный принцип построения компьютера.

Воспитательная – воспитание информационной культуры учащихся, внимательности, аккуратности, дисциплинированности, усидчивости, привитие навыков самостоятельной работы, обеспечение сознательного усвоения учебного материала.

Развивающая – развивать познавательный интерес, прививать исследовательские навыки.

Тип урока: комбинированный.

Вид урока: урок изучения нового материала

Наглядность и оборудование:

Компьютер с проектором;

Видеоролик из мультфильма «Почемучки. Архитектура компьютера.

Карточки с ребусами.

Презентация ««Что такое архитектура компьютера. Начальные сведения об архитектуре компьютера.

Структура урока:

Актуализация усвоения изученного ранее материала

Объяснение нового материала.

Закрепление материала, выполнение работы на тренажере «Устройство компьютера».

С этого урока мы начинаем знакомство с компьютером.
Сначала речь пойдет о техническом устройстве компьютера. В информатике есть такое понятие: «архитектура ЭВМ». Под архитектурой ЭВМ понимают описание устройства и принципов работы компьютера, достаточное для пользователя и программиста. Архитектура не включает в себя конструктивных подробностей устройства машины, электронных схем. Эти сведения нужны конструкторам, специалистам по наладке и ремонту ЭВМ.

С давних времен люди стремились облегчить свой труд. С этой целью создавались различные машины и механизмы, усиливающие физические возможности человека. Компьютер был изобретен в середине XX века для усиления возможностей интеллектуальной работы человека, т.е. работы с информацией.

Из истории науки и техники известно, что идеи многих изобретений человек подглядел в природе. Например, еще в XV веке великий итальянский ученый и художник Леонардо да Винчи изучал строение тел птиц и использовал эти знания для конструирования летательных аппаратов. Русский ученый Н.Е. Жуковский, основоположник науки аэродинамики, также исследовал механизм полета птиц.

Сегодня на уроке нам предстоит ответить на вопросы:

С кого списан компьютер?

Как устроен персональный компьютер?

Основные принципы совместного хранения программ и данных? (Принципы фон Неймана)

Какие существуют типы архитектуры? Каковы их преимущества.

На что влияет архитектура компьютера?

Что относится к устройствам ввода?

Что относится к устройствам вывода?

Что находится внутри системного блока?

Какие устройства являются внутренними, какие внешними?(Слайд4)

А с кого списали компьютер? С самого себя. Только человек постарался передать компьютеру не свои физические, а свои интеллектуальные способности, т.е. возможность работы с информацией.

По своему назначению компьютер — это универсальное техническое средство для работы с информацией.
По принципам своего устройства компьютер — это модель человека, работающего с информацией.

Четыре основных компонента информационной функции человека: (слайд 5)

речь, двигательная система

Ответим на вопрос Что такое АРХИТЕКТУРА компьютера?

Просмотр мультфильм «Почемучки. Архитектура по Нейману»

Отвечаем на вопросы:

Что определяет архитектура компьютера?

По какому принципу в компьютере обрабатывается информация Софт (программного обеспечения) и Железо (оборудование, из которого состоит компьютер)

Эти принципы и заложил Джон фон Нейман

А кем же он был?

Джон фон Нейман (1903—1957)

Американский математик и физик Джон фон Нейман был родом из Будапешта. Своими необычайными способностями этот человек стал выделяться очень рано: в шесть лет он разговаривал на древнегреческом языке, а в восемь освоил основы высшей математики.

До 1930-х годов работал в Германии. Он выполнял фундаментальные исследования, связанные с математической логикой, теорией групп, алгеброй операторов, квантовой механикой, статистической физикой, развил теорию игр и теорию автоматов.

В 1945 году был опубликован доклад фон Неймана, в котором он наметил основные принципы построения и компоненты современного компьютера.

Идеи, отраженные в докладе, развивались, и примерно через год появилась статья “Предварительное рассмотрение логической конструкции электронного вычислительного устройства”.

Здесь важно, что авторы, отвлекшись от электронных ламп и электрических схем, сумели обрисовать формальную организацию компьютера.

Джон фон Нейман был удостоен высших академических почестей. Он был избран членом Академии точных наук (Лима, Перу), Американской академии искусств и наук, Американского философского общества, Ломбардского института наук и литературы, Нидерландской королевской академии наук и искусств, Национальной академии США, почетным доктором многих университетов США и других стран.

Архитектурные принципы организации ЭВМ, указанные Джоном фон Нейманом, долгое время оставались почти неизменными, и лишь в конце 1970-х годов в архитектуре суперЭВМ и матричных процессоров появились отклонения от этих принципов.

Джон фон Нейман умер 8 февраля 1957 года.

Архитектура фон Неймана — широко известный принцип совместного хранения программ и данных в памяти компьютера. (компоновка основных деталей компьютера)

Сформулируем основные принципы

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Принцип адресуемости памяти. Основная память структурно состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

Принцип последовательного программного управления. Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Физкультминутка

Разгадаем ребусы и соберём компьютер на основе магистрально-модульного принципа. (один ребус 1 балл) Каждый получает по 3 ребуса для разгадывания.


Знакомство с архитектурой ЭВМ: открытая и закрытая архитектура. Принципы Джона Фон Неймана, магистрально-модульный принцип построения компьютера.

Содержимое разработки

Открытый урок по информатике в 8 классе

Тема урока: «Что такое архитектура компьютера. Начальные сведения об архитектуре компьютера. Магистрально-модульный принцип построения архитектуры»

Цель урока: знакомство с архитектурой ЭВМ, открытая и закрытая архитектура. Принципы Джона Фон Неймана, магистрально-модульный принцип построения компьютера.

Задачи урока:

Образовательная – познакомить учащихся с архитектурой ЭВМ, открытая и закрытая архитектура. Принципы Джона Фон Неймана, магистрально-модульный принцип построения компьютера.

Воспитательная – воспитание информационной культуры учащихся, внимательности, аккуратности, дисциплинированности, усидчивости, привитие навыков самостоятельной работы, обеспечение сознательного усвоения учебного материала.

Развивающая – развивать познавательный интерес, прививать исследовательские навыки.

Тип урока: комбинированный.

Вид урока: урок изучения нового материала

Наглядность и оборудование:

Компьютер с проектором;

Видеоролик из мультфильма «Почемучки. Архитектура компьютера.

Карточки с ребусами.

Презентация ««Что такое архитектура компьютера. Начальные сведения об архитектуре компьютера.

Структура урока:

Актуализация усвоения изученного ранее материала

Объяснение нового материала.

Закрепление материала, выполнение работы на тренажере «Устройство компьютера».

С этого урока мы начинаем знакомство с компьютером.
Сначала речь пойдет о техническом устройстве компьютера. В информатике есть такое понятие: «архитектура ЭВМ». Под архитектурой ЭВМ понимают описание устройства и принципов работы компьютера, достаточное для пользователя и программиста. Архитектура не включает в себя конструктивных подробностей устройства машины, электронных схем. Эти сведения нужны конструкторам, специалистам по наладке и ремонту ЭВМ.

С давних времен люди стремились облегчить свой труд. С этой целью создавались различные машины и механизмы, усиливающие физические возможности человека. Компьютер был изобретен в середине XX века для усиления возможностей интеллектуальной работы человека, т.е. работы с информацией.

Из истории науки и техники известно, что идеи многих изобретений человек подглядел в природе. Например, еще в XV веке великий итальянский ученый и художник Леонардо да Винчи изучал строение тел птиц и использовал эти знания для конструирования летательных аппаратов. Русский ученый Н.Е. Жуковский, основоположник науки аэродинамики, также исследовал механизм полета птиц.

Сегодня на уроке нам предстоит ответить на вопросы:

С кого списан компьютер?

Как устроен персональный компьютер?

Основные принципы совместного хранения программ и данных? (Принципы фон Неймана)

Какие существуют типы архитектуры? Каковы их преимущества.

На что влияет архитектура компьютера?

Что относится к устройствам ввода?

Что относится к устройствам вывода?

Что находится внутри системного блока?

Какие устройства являются внутренними, какие внешними?(Слайд4)

А с кого списали компьютер? С самого себя. Только человек постарался передать компьютеру не свои физические, а свои интеллектуальные способности, т.е. возможность работы с информацией.

По своему назначению компьютер — это универсальное техническое средство для работы с информацией.
По принципам своего устройства компьютер — это модель человека, работающего с информацией.

Четыре основных компонента информационной функции человека: (слайд 5)

речь, двигательная система

Ответим на вопрос Что такое АРХИТЕКТУРА компьютера?

Просмотр мультфильм «Почемучки. Архитектура по Нейману»

Отвечаем на вопросы:

Что определяет архитектура компьютера?

По какому принципу в компьютере обрабатывается информация Софт (программного обеспечения) и Железо (оборудование, из которого состоит компьютер)

Эти принципы и заложил Джон фон Нейман

А кем же он был?

Джон фон Нейман (1903—1957)

Американский математик и физик Джон фон Нейман был родом из Будапешта. Своими необычайными способностями этот человек стал выделяться очень рано: в шесть лет он разговаривал на древнегреческом языке, а в восемь освоил основы высшей математики.

До 1930-х годов работал в Германии. Он выполнял фундаментальные исследования, связанные с математической логикой, теорией групп, алгеброй операторов, квантовой механикой, статистической физикой, развил теорию игр и теорию автоматов.

В 1945 году был опубликован доклад фон Неймана, в котором он наметил основные принципы построения и компоненты современного компьютера.

Идеи, отраженные в докладе, развивались, и примерно через год появилась статья “Предварительное рассмотрение логической конструкции электронного вычислительного устройства”.

Здесь важно, что авторы, отвлекшись от электронных ламп и электрических схем, сумели обрисовать формальную организацию компьютера.

Джон фон Нейман был удостоен высших академических почестей. Он был избран членом Академии точных наук (Лима, Перу), Американской академии искусств и наук, Американского философского общества, Ломбардского института наук и литературы, Нидерландской королевской академии наук и искусств, Национальной академии США, почетным доктором многих университетов США и других стран.

Архитектурные принципы организации ЭВМ, указанные Джоном фон Нейманом, долгое время оставались почти неизменными, и лишь в конце 1970-х годов в архитектуре суперЭВМ и матричных процессоров появились отклонения от этих принципов.

Джон фон Нейман умер 8 февраля 1957 года.

Архитектура фон Неймана — широко известный принцип совместного хранения программ и данных в памяти компьютера. (компоновка основных деталей компьютера)

Сформулируем основные принципы

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

Принцип адресуемости памяти. Основная память структурно состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

Принцип последовательного программного управления. Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Физкультминутка

Разгадаем ребусы и соберём компьютер на основе магистрально-модульного принципа. (один ребус 1 балл) Каждый получает по 3 ребуса для разгадывания.

Читайте также: