Механические волны в упругой среде частотой свыше 1 ггц это

Обновлено: 06.07.2024

Темы кодификатора ЕГЭ: механические волны, длина волны, звук.

Механические волны - это процесс распространения в пространстве колебаний частиц упругой среды (твёрдой, жидкой или газообразной).

Наличие у среды упругих свойств является необходимым условием распространения волн: деформация, возникающая в каком-либо месте, благодаря взаимодействию соседних частиц последовательно передаётся от одной точки среды к другой. Различным типам деформаций будут соответствовать разные типы волн.

Продольные и поперечные волны.

Волна называется продольной, если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис. 1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е. перпендикулярно слоям).


Рис. 1. Продольная волна

Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.


Рис. 2. Поперечная волна

Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.

Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.

Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества.

Наиболее просты для изучения гармонические волны. Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.

Рассмотрим процесс распространения волны более подробно. Допустим, что некоторая частица среды (частица ) начала совершать колебания с периодом . Действуя на соседнюю частицу она потянет её за собой. Частица в свою очередь, потянет за собой частицу и т. д. Так возникнет волна, в которой все частицы будут совершать колебания с периодом .

Однако частицы имеют массу, т. е. обладают инертностью. На изменение их скорости требуется некоторое время. Следовательно, частица в своём движении будет несколько отставать от частицы , частица будет отставать от частицы и т. д. Когда частица пустя время завершит первое колебание и начнёт второе, своё первое колебание начнёт частица , находящаяся от частицы на некотором расстоянии .

Итак, за время, равное периоду колебаний частиц, возмущение среды распространяется на расстояние . Это расстояние называется длиной волны. Колебания частицы будут идентичны колебаниям частицы колебания следующей частицы будут идентичны колебаниям частицы и т. д. Колебания как бы воспроизводят себя на расстоянии можно назвать пространственным периодом колебаний; наряду с временным периодом она является важнейшей характеристикой волнового процесса. В продольной волне длина волны равна расстоянию между соседними сжатиями или разрежениями (рис. 1 ). В поперечной - расстоянию между соседними горбами или впадинами (рис. 2 ). Вообще, длина волны равна расстоянию (вдоль направления распространения волны) между двумя ближайшими частицами среды, колеблющимися одинаково (т. е. с разностью фаз, равной ).

Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:

Частотой волны называется частота колебаний частиц:

Отсюда получаем связь скорости волны, длины волны и частоты:

На поверхности жидкости могут существовать волны особого типа, похожие на поперечные - так называемые поверхностные волны. Они возникают под действием силы тяжести и силы поверхностного натяжения.

Звуковыми волнами в широком смысле называются всякие волны, распространяющиеся в упругой среде. В узком смысле звуком называют звуковые волны в диапазоне частот от 16 Гц до 20 кГц, воспринимаемые человеческим ухом. Ниже этого диапазона лежит область инфразвука, выше - область ультразвука.

К основным характеристикам звука относятся громкость и высота.
Громкость звука определяется амплитудой колебаний давления в звуковой волне и измеряется в специальных единицах -децибелах (дБ). Так, громкость 0 дБ является порогом слышимости, 10 дБ - тиканье часов, 50 дБ - обычный разговор, 80 дБ - крик, 130 дБ - верхняя граница слышимости (так называемый болевой порог).

Тон - это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.

Скорость звука в разных средах различна: чем более упругой является среда, тем быстрее в ней распространяется звук. В жидкостях скорость звука больше, чем в газах, а в твёрдых телах - больше, чем в жидкостях.
Например, скорость звука в воздухе при равна примерно 340 м/с (её удобно запомнить как "треть километра в секунду")*. В воде звук распространяется со скоростью около 1500 м/с, а в стали - около 5000 м/с.
Заметим, что частота звука от данного источника во всех средах одна и та же: частицы среды совершают вынужденные колебания с частотой источника звука. Согласно формуле (1) заключаем тогда, что при переходе из одной среды в другую наряду со скоростью звука изменяется длина звуковой волны.

Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде называется волновым процессом или волной. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение. Они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества .

В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны.

Упругая волна называется продольной , если колебания частиц среды происходят в направлении распространения волны. Продольные волны связаны с объемной деформацией растяжения − сжатия среды, поэтому они могут распространяться как в твердых телах, так и в жидкостях и газообразных средах.


Упругая волна называется поперечной , если колебания частиц среды происходят в плоскостях, перпендикулярных к направлению распространения волны Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Этим свойством обладают только твердые тела.

На рис. 6.1.1 представлена гармоническая поперечная волна, распространяющаяся вдоль оси 0х . График волны дает зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны . Длина волны также равна тому расстоянию, на которое распространяется определенная фаза колебания за период колебаний


Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометрическое место точек, до которых доходят колебания к моменту времени t , называется фронтом волны . Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, а в сферической − множество концентрических сфер.

6.2. Уравнение плоской волны

Уравнением плоской волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат x , y , z и времени t


Эта функция должна быть периодической как относительно времени t , так и относительно координат x , y , z . Периодичность по времени вытекает из того, что смещение S описывает колебания частицы с координатами x , y , z , а периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Предположим, что колебания носят гармонический характер, а ось 0х совпадает с направлением распространения волны. Тогда волновые поверхности будут перпендикулярны оси 0х и, поскольку все точки волновой поверхности колеблются одинаково, смещение S будет зависеть только от координаты х и времени t


Рассмотрим некоторую частицу среды, находящуюся от источника колебаний О на расстоянии х . Пусть колебания точек, лежащих в плоскости х = 0 имеют вид


Найдем вид колебания точек в плоскости, соответствующей произвольному значению х . Для того, чтобы пройти путь от плоскости х = 0 до плоскости х , волне требуется время τ = x/υ . Следовательно, колебания частиц, лежащих в плоскости х , будут отставать по времени на τ от колебаний частиц в плоскости х = 0 и описываться уравнением


где А − амплитуда волны; ϕ0 − начальная фаза волны (определяется выбором начал отсчета х и t ).

Зафиксируем какое-либо значение фазы ω(t-x/υ)+ϕ0=const. Это выражение определяет связь между временем t и тем местом х , в котором фаза имеет фиксированное значение. Продифференцировав данное выражение, получим


Таким образом, скорость распространения волны есть скорость перемещения фазы, и называется фазовой скоростью .

При υ > 0 волна распространяется в сторону возрастания х . Волна, распространяющаяся в противоположном направлении, описывается уравнением



Придадим уравнению плоской волны симметричный относительно х и t вид. Для этого введем величину $$k = $$ , которая называется волновым числом , которое можно представить в виде

Тогда уравнение плоской волны будет иметь вид


Мы предполагали, что амплитуда колебаний не зависит от х . Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается, т. е. наблюдается затухание волны. В однородной среде такое затухание происходит по экспоненциальному закону A=A0e −βx . Тогда уравнение плоской волны для поглощающей среды имеет вид


6.3. Волновое уравнение


Уравнение плоской волны, распространяющейся в произвольном направлении, будет иметь вид

где r − радиус-вектор, точки волны; r =k× n − волновой вектор ; n − единичный вектор нормали к волновой поверхности

Волновой вектор − это вектор, равный по модулю волновому числу k и имеющий направление нормали к волновой поверхности называется.


Перейдем от радиус-вектора точки к ее координатам x , y , z Тогда уравнение (6.3.2) примет вид


Установим вид волнового уравнения. Для этого найдем вторые частные производные по координатам и времени выражение (6.3.3)


Сложив производные по координатам, и с учетом производной по времени, получим


6.4. Скорость распространения волн в различных средах


Для определения скорости упругих волн в упругой среде рассмотрим продольную плоскую волну, распространяющуюся в направлении оси 0х . Выделим в среде цилиндрический объем с площадью основания S0 и высотой dx . Смещения S частиц с разными х в каждый момент времени оказываются различными. Если основание цилиндра с координатой х имеет в некоторый момент времени смещение S , то смещение основания с координатой x+dx будет S+dS . Тогда, рассматриваемый объем деформируется и получает удлинение dS или относительную деформацию ε=∂S/∂x (деформации растяжения). Наличие деформации свидетельствует о существовании нормального напряжения σ , которое при малых деформациях пропорционального величине деформации. По закону Гука для деформации растяжения − сжатия

где Е − модуль Юнга среды.

Из зависимости смещения от координаты x видно, что относительная деформация ∂S/∂x , а также, и напряжение σ в фиксированный момент времени зависят от х . В соответствии с этим, продольная волна состоит из чередующихся разрежений и сжатий среды.


Теперь для цилиндрического объема запишем уравнение движения. Масса этого объема

где ρ − плотность недеформированной среды.

Ввиду малости dx можно считать ускорение всех точек цилиндра одинаковым и равным


Тогда этот участок объема будет растянут под влиянием сил F1 и F2 , приложенных к основаниям цилиндра в данный момент времени. Силы, действующие на левое и правое основание цилиндра равны, соответственно


После разложения силы F2 в ряд, получим


и результирующая F1 , F2 сил, действующая на элемент объема равна



Используя основное уравнение динамики поступательного движения (2.1.2) и, подставив значения массы, ускорения и силы, получим


Из сравнения этого уравнения с волновым уравнением для плоской волны (6.3.6) $$=$$ , получим

где Е − модуль Юнга.

Полученное уравнение определяет фазовую скорость продольных упругих волн.


Если проделать аналогичные преобразования для поперечных упругих волн, то фазовая скорость поперечных упругих волн будет иметь следующий вид


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Механические волны и их основные характеристики"

Данная тема посвящена механическим волнам и их основным характеристикам.

Ранее говорилось о колебаниях и колебательных системах. Колебательная система — это физическая система, в которой при отклонении от положения равновесия возникают и существуют колебания.

Реальные колебательные системы практически всегда расположены в какой-либо среде. Поэтому колебательная система может отдавать энергию частицам среды, непосредственно прилегающим к ней, вызывая их вынужденные колебания. Например, движение качелей происходит в воздухе, и, стоя возле них, можно ощущать движение воздуха.

Между молекулами вещества существуют силы взаимодействия, которые определяют его упругие свойства.


Если какие-то частицы в упругой среде выводятся из положения равновесия, то силы взаимодействия со стороны соседних частиц препятствуют этому и одновременно сами смещают соседние частицы. Вследствие взаимодействия между частицами колебательное движение передается от одной частицы к другой, и колебательный процесс распространяется в среде.


Процесс распространения колебаний в упругой среде, называется механической волной.

А тела, которые вызывают распространяющиеся в среде упругие механические волны, называются источниками волн или вибраторами.

В качестве модели возникновения и распространения механической волны можно рассмотреть движение двух поплавков на поверхности воды. Погрузим один из них в воду так, чтобы поплавок начал колебаться вверх-вниз. Вместе с поплавком смещаются соприкасающиеся с ним частицы воды, которые вовлекают в движение ближайшие к ним другие частицы, и от поплавка по всем направлениям распространяются волны. Эти волны вовлекают в колебательное движение второй поплавок, и от него появляются такие же волны.


Обратите внимание на то, что оба поплавка только колеблются возле положения равновесия, а волны распространяются от них во всех направлениях.

Рассмотрим модель еще более простой механической волны, которая распространяется только в одном направлении. Для этого возьмем резиновый шнур с нанизанными на него бусинами, один конец закрепим, а второй конец будем периодически двигать вверх-вниз возле положения равновесия


В качестве источника колебаний выступает рука, и пусть ее колебания, а, следовательно, колебания ближайшей от нее бусины, происходят вдоль оси Oy по закону синуса.


В записанном уравнении A — это амплитуда колебания бусины, которая подвержена нашим воздействиям, аргумент синуса — это фаза колебания, а T — период колебаний.

На рисунке видны положения бусин на шнуре через определенную часть периода колебаний.


Из рисунка видно, что при распространении волны, во-первых, смещение каждой точки шнура от положения равновесия происходит с течением времени периодически; а во-вторых, смещения всех точек шнура в каждый момент времени периодически изменяются от точки к точке, то есть являются периодической функцией координат.

Иногда говорят, что при распространении волны происходит перемещение фазы колебания от точки к точке с определенной скоростью.

Фазовой скоростью называется скорость распространения какой-либо фазы от одной точки среды к другой.

Геометрическое место точек среды, колеблющихся в одинаковых фазах, образуют волновую поверхность.


А волновая поверхность, отделяющая колеблющиеся частицы среды от частиц, которые еще не начали колебаться, называют фронтом волны.

В зависимости от формы фронта волны, различают волны плоские, сферические и так далее.

В плоской волне волновые поверхности представляют собой плоскости, перпендикулярные к направлению распространения волны.

А в сферической волне волновые поверхности представляют собой концентрические сферы. Такая волна распространяется с одинаковой скоростью по всем направлениям.


Распространение колебательного движения в среде с определенной скоростью называется бегущей волной.

Рассмотрим ее более подробно. Пусть волна вдоль шнура распространилась до точки с координатой х. Бусина в этой точке имеет такую же фазу колебаний, как и первая, но в более поздний момент времени распространения волны, то есть отстает во времени на x/v.


Следовательно, уравнение колебаний бусины вдоль оси Oy около положения ее равновесия, имеющего координату x, будет повторять уравнение колебаний первой бусины, но с соответствующим отставанием по фазе.


Это уравнение называют уравнением плоской бегущей монохроматической волны, при этом полагают, что затуханием волны в процессе ее распространения можно пренебречь.

Важно понимать, что при распространении бегущей механической волны частицы среды не перемещаются вместе с волной, а только совершают колебания около своих положений устойчивого равновесия. Поэтому бегущая волна не переносит вещество, а переносит энергию колебательного движения.

В зависимости от направления колебаний частиц среды относительно направления распространения волны, различают поперечные и продольные волны.

Поперечной волной называется распространение колебательного процесса в среде, при котором частицы среды колеблются перпендикулярно направлению распространения волны. Рассмотренный пример колебаний шнура является моделью возникновения и распространения поперечной волны.

Продольной волной называется распространение колебательного процесса в среде, при котором частицы среды колеблются вдоль направления распространения волны. Примером продольных волн может служить распространение колебательного процесса вдоль ряда шариков, которые скреплены друг с другом одинаковыми пружинками.


Вид волны зависит от вида деформации среды. Продольные волны обусловлены деформацией растяжения и сжатия, поперечные — деформацией сдвига. Поэтому в газах и жидкостях, в которых упругие силы возникают только при сжатии, распространение поперечных волн невозможно. А продольные волны могут возникать и распространяться в веществе, находящимся в любом состоянии: твердом, жидком и газообразном.


Необходимо отметить, что распространение механических волн определяется передачей энергии колебательного движения от одной частицы к другой. Эта переносимая волной энергия равна сумме кинетических энергий колеблющихся частиц и потенциальной энергии упругой деформации среды.


И так, механическая волна — это процесс распространения колебательного движения в среде от частицы к частице, обусловленный взаимодействием между ними. Следовательно, скорость распространения механических волн в среде должна зависеть от сил взаимодействия между частицами среды.

При рассмотрении механических деформаций говорилось, что силы взаимодействия в веществе зависят от свойств молекул или атомов и расстояний, на которых они находятся. А опыты по изучению механических волн показывают, что скорость их распространения в однородной среде тем больше, чем меньше плотность вещества и чем более упругим оно является.

Так как различные виды упругой деформации характеризуются количественно отличающимися коэффициентами, то поэтому, например, в твердых телах продольные волны распространяются быстрее, чем поперечные.

Волне присущи все характеристики, которые соответствуют колебательному движению: амплитуда, период колебания и частота.

Амплитуда — это максимальное смещение тела от положения равновесия.

Промежуток времени, в течение которого тело совершает одно полное колебание — это период.

А число колебаний в единицу времени называется частотой колебаний.

Также для характеристики волн применяют понятие «длина волны», которое можно ввести двумя способами:

И так, длиной волны называется расстояние, на которое распространяется колебательный процесс в среде за время, равное периоду колебаний ее частиц;

Или длина волны — это расстояние между двумя ближайшими точками бегущей волны, которые колеблются в одинаковой фазе.

В том, что эти два варианта определения длины волны равноправны, легко убедиться, проанализировав развитие волнового процесса, представленного на рисунке.


Если известны период и скорость распространения волны, то, согласно первому варианту определения, длины волны равна произведению ее скорости и периода.


Период волны определяется источником колебаний, а скорость обусловлена свойствами среды, поэтому при распространении колебательного процесса из одной среды в другую изменяются и скорость, и длина волны, а вот частота и период не изменяются.


Также механическим волнам присущи явления интерференции и дифракции, которые являются характерными признаками волновых процессов любой природы.

Интерференция представляет собой явление увеличения или уменьшения амплитуды результирующей волны в результате сложения двух или нескольких волн с одинаковыми периодами колебаний.

Для наблюдения интерференционного максимума, то есть увеличения амплитуды, необходимо, чтобы разность хода волн равнялась целому числу длин волн.


А для наблюдения минимума, разность хода должна равняться нечетному числу длин полуволн.


При этом необходимым условием интерференции является когерентность двух источников, то есть они должны испускать волны одинаковой частоты с постоянной разностью фаз.

Дифракция представляет собой явление отклонения волн от прямолинейного распространения и огибание ими препятствий. При этом следует помнить, что явление дифракции проявляется только тогда, когда размеры препятствий соизмеримы с длиной волны.

Волны, как и колебания, не могут существовать бесконечно долго. В окружающем мире мы часто наблюдаем возникновение и исчезновение (затухание) волн. Затуханием волны называется уменьшение ее амплитуды в процессе распространения. Колебательному движению частиц среды препятствуют силы сопротивления, в результате этого энергия колебательного движения частиц переходит во внутреннюю энергию вещества, и волны затухают.

Основные выводы:

Вспомнили, что называют механической волной. Рассмотрели особенности распространения волн. А также повторили виды волн и их основные характеристики.


Давайте сначала разберемся, что такое волна.

Волна — это распространение колебания в пространстве.

Волны бывают механическими и электромагнитными.

Главные герои этой статьи — электромагнитные волны. Немного удовлетворим ваше любопытство и скажем, что это те волны, которые мы потрогать не можем. Но все остальное чуть позже. Главное — терпение.

Механические волны — это те волны, колебания которых можно почувствовать физически, потому что они распространяются в упругой среде.

  • Например, звук. Когда звук распространяется внутри какого-либо вещества, мы можем ощутить его прикосновением.

Представьте, что вы стоите на железнодорожных путях. Нет, вы не Анна Каренина, вы — экспериментатор.

Если к вам приближается поезд, вы рано или поздно его услышите. Вернее, услышите, как только звуковая волна со скоростью 𝑣 = 330 м/с достигнет ваших ушей.

Если приложить ухо к рельсу, то это произойдет значительно быстрее, потому что скорость звука в твердом теле больше, чем в воздухе. Кстати, под водой скорость звука больше, чем в воздухе, но меньше, чем в твердых телах.

Если вы когда-нибудь трогали музыкальную колонку, то знаете, что звук чувствуется и на ощупь.

Волны также принято делить на продольные и поперечные:


продольные и поперечные волны

Продольные — это те волны, у которых колебание происходит вдоль направления распространения волны.

  • Дрожание окон во время грома или сейсмические волны (землетрясения) — это пример продольных волн.

Поперечные — волны, у которых колебание происходит поперек направления распространения волны.

  • Представьте, что вы запустили волну из людей на стадионе — она будет поперечной.
  • Видимый свет и дрожание гитарной струны — тоже поперечные волны.

Морская волна — продольная или поперечная?

На самом деле в ней есть и продольная, и поперечная составляющие, поэтому ее нельзя отнести к конкретному типу.

Электромагнитные волны

Увы, мы не можем потрогать руками электромагнитные волны. Осталось разобраться, как это так: волна есть, а возможности пощупать ее — нет.

Электромагнитная волна появляется благодаря электромагнитному полю.

Вот есть электрическое поле — его создает любой электрический заряд. Есть магнитное поле — оно возникает из-за движущегося заряда (кстати, подробно про магнитное поле можно почитать в нашей статье). А их взаимодействие — это электромагнитное поле.

Если совсем честно, то электрическое и магнитное поле не могут существовать в отдельности, потому что частицы всегда есть электрическое поле и она всегда худо-бедно да движется. Рассмотрение в отдельности электрических и магнитных полей может быть только в теоретической физике. В реальных инженерных задачах рассматривается обязательно электромагнитное поле.

Электромагнитная волна — это распространение электромагнитного поля. А если конкретнее, то электрическое поле колеблется, магнитное поле колеблется, эти колебания распространяются, и получается электромагнитная волна.


что такое электромагнитная волна

К электромагнитным волнам относятся радио, Wi-Fi и даже свет.

Разве свет не из частиц состоит?

Ничего от вас не скроешь. Дело в том, что свет — это как Гермиона с маховиком времени в двух местах сразу — одновременно и частица и волна.

Можете перечитать фразу выше, чтобы с ней смириться. Это не шутка. Экспериментально давно обнаружено, что свет в одних экспериментах ведет себя, как частица, а в других, как волна.

Все это безумство называется корпускулярно-волновым дуализмом. И это работает не только со светом, но и с другими волнами. В общем, у физики тоже бывает раздвоение личности.

Характеристики электромагнитной волны

Чтобы изучать любое явление, его нужно как-то охарактеризовать.

Длина волны

Это самая важная характеристика для волны. Ей называется расстояние между двумя точками этой волны, колеблющихся в одной фазе. Если проще, то это расстояние между двумя «гребнями».

Обозначается эта величина буквой λ и измеряется в метрах.

Еще длиной волны можно назвать расстояние, пройденное волной, за один период колебания.

Период

Период — это время, за которое происходит одно колебание. То есть, если дано время распространения волны и количество колебаний, можно рассчитать период.

Формула периода колебания волны

T = t/N

N — количество колебаний [-]

Для электромагнитных волн есть целая шкала длин волн. Она показывает длину волны и частоту для разных типов электромагнитных волн.


шкала длины волн

Частота

Частота — это величина, обратно пропорциональная периоду. Она определяет, сколько колебаний в единицу времени совершила волна.

Формула частоты колебания волны

υ = N/t = 1/T

N — количество колебаний [-]

Скорость

Также важной характеристикой распространения волны является ее скорость.

Чтобы вывести формулу скорости через длину волны, нужно вспомнить формулу скорости из кинематики — это раздел физики, в котором изучают движение тел без учета внешнего воздействия.

Формула скорости

𝑣 = S/t

Переходя к волнам, можно провести следующие аналогии:

А для скорости даже аналогия не нужна — скорость и Африке скорость.

Формула скорости волны

𝑣 = λ/T

λ — длина волны [м]

Для электромагнитной волны скорость равна скорости света — 𝑣 = 3*10^8 м/с. Поэтому формулу скорости чаще всего используют для нахождения из нее длины волны или периода.

Задачка

Определить цвет освещения, проходящий расстояние, в 1000 раз больше его длины волны за 2 пс.

Решение:

Для начала переведем 2 пикасекунды в секунды — это 2*10^-12 с.

Теперь возьмем формулу скорости

По условию S = 1000λ

Выражаем длину волны

Подставляем значения скорости света и известного нам времени:

λ = 3*108* 2*10-121000 =600 нм

И соотносим со шкалой видимого света


шкала видимого света

Из шкалы видно, что длине волны в 600 нм соответствует оранжевый цвет излучения.

Ответ: цвет освещения при заданных условиях будет оранжевым.

Рубрика «Разрушаем мифы»

А теперь давайте немного о распространенных заблуждениях. Присаживайтесь поудобнее — этот разговор, к сожалению, не на пару минут.

Миф 1. Вышки 5G вредны для нашего здоровья

Одна из теорий против 5G гласит, что новый тип связи может стать причиной раковых заболеваний. Справедливости ради — такие же обвинения не раз поступали в адрес 2G, 3G, 4G и более ранних поколений беспроводных сетей.

Стандарт 5G может использовать разные частотные диапазоны. Как правило, это низкий диапазон 600 МГц, а также средние частоты 2,5 ГГц, 3,5 ГГц и 3,7–4,2 ГГц.

В России «Государственная комиссия по радиочастотам» (ГКРЧ) рекомендует для выделения и использования под 5G частотный диапазон 27,1-27,5 ГГц. Американским операторам также скоро будут доступны диапазоны 37 ГГц, 39 ГГц и 47 ГГц.

Диапазон от 30 ГГц (миллиметровые волны) относится к так называемому спектру крайне высоких частот — и именно он вызывает большинство опасений по поводу вреда 5G для здоровья человека. Все еще недостаточно исследований, которые изучают влияние высоких частот на организм.


электромагнитный спектр волн

Тем не менее, известно, что даже в верхнем диапазоне излучение 5G не обладает достаточной энергией для разрушения человеческой ДНК или влияния на клетки. А значит, не может вызвать рак и не представляет опасность для нашего организма. По этой же причине нельзя верить в теорию, что 5G убивает птиц — этому излучению просто не хватит сил, чтобы кого-то убить.

К опасному излучению относятся волны, распространяемые на частотах от 30 ПГц (петагерц) — утрафиолетовые, рентгеновские и гамма-лучи. Они могут влиять на атомную структуру клеток и разрывать химические связи в ДНК. Именно поэтому, например, врачи советуют избегать долгого пребывания на солнце.

Миф 2. Шапочки из фольги защищают от вредного излучения

Кстати, они наоборот любую электромагнитную волну усиливают. Это доказали студенты из MIT (Массачусетский технологический институт), которые исследовали это опытным путем.

Ребята установили антенну в четырех частях от головы добровольцев: на лбу, затылке, висках и в районе мозга. И сравнивали показатели радиосигнала в шапочке для фольги и без нее. Оказалось, что сигнал не ослабляется, а усиливается. Так что шапочка вас не спасет от вредного излучения, а наоборот — только усилит сигнал.

Миф 3. Микроволновки убивают еду, и она становится неживой

Электромагнитный фон возле СВЧ-печей выше больше, чем природный более, чем в миллион раз, но вреда человеку не наносит. Санитарные требования к этим приборам очень жёсткие, поэтому опасности микроволновка не представляет. Например, благодаря системе блокировки дверцы генерация микроволнового излучения прекращается, когда дверца открыта. Также в микроволновке обязательно должна быть система защиты от утечки излучения. Гораздо опаснее электромагнитные излучения от солнца или солярия, потому что там есть ультрафиолет, который легко повреждает клетки кожи человека.

Продукты становятся теплее за счёт нагревания в них воды. И когда мы их греем, могут образовываться радикалы — но это происходит при любом способе теплового воздействия. Например, при жарке могут образовываться ещё и канцерогены.

Наш организм способен бороться с небольшим количеством «вредных» радикалов благодаря иммунитету. При нагревании пищи образуется то количество радикалов, с которым организм способен бороться, поэтому ничего страшного ни в микроволновке, ни в кастрюле, в которой вы греете суп, нет.

Механические возмущения, распространяющиеся в упругой среде с конечной скоростью, называются упругими или механическими волнами . Тела, которые, воздействуя на упругую среду, вызывают эти возмущения, называют источниками упругих волн.

Упругая волна является продольной , если частицы среды колеблются в направлении распространения волны.

Упругая волна является поперечной , если частицы среды колеблются перпендикулярно направлению распространения волны.

В жидкостях и газах упругие волны всегда продольные. В твердых телах могут распространяться и продольные, и поперечные волны.

Распространение в упругой среде механических возмущений, возбуждаемых источником волн, связано с переносом энергии. Поэтому такие волны называются бегущими волнами . Скорость распространения возмущений в среде v называется скоростью волны (фазовой скоростью). Скорость распространения упругих волн зависит от плотности и упругих свойств среды.

Линия, касательная к которой в каждой ее точке совпадает с направлением распространения волны, называется лучом . Геометрическое место точек, в которых фаза колебаний частиц среды имеет одно и то же значение, называется волновой поверхностью . В однородной среде волновые поверхности перпендикулярны лучам. В зависимости от формы волновых поверхностей различают плоские, сферические, цилиндрические и другие волны. На рисунке представлены плоская и сферическая волны.

Уравнение плоской волны, распространяющейся вдоль оси Ox (в положительном направлении), имеет вид:

Если волна распространяется в отрицательном направлении оси Ox , то:

Если колебания частиц в волне гармонические, то волна называется гармонической или монохроматической. Уравнение плоской гармонической волны, бегущей вдоль оси Ox , может быть записано в виде:

Здесь A – амплитуда колебаний в волне, - циклическая частота волны, - волновое число, - фаза волны.

Расстояние, на которое распространяется волна за время, равное периоду колебаний, называется длиной волны λ (м):

С учетом этого волновое число можно представить в виде:

График зависимости s ( x ) в плоской гармонической волне для некоторого момента времени t представлен на рисунке:

В случае, когда плоская волна распространяется в произвольном направлении, ее уравнение имеет вид:

Здесь - волновой вектор. Его модуль равен волновому числу k , а направление совпадает с направлением распространения волны в точке с радиус-вектором .

Экспоненциальная форма записи уравнения плоской волны:

Уравнение расходящейся сферической волны:

В случае монохроматической сферической волны:

Дифференциальное уравнение, описывающее распространение волн в однородной изотропной непоглощающей среде со скоростью v , называется волновым уравнением и имеет вид:

где - оператор Лапласа.

Если волна гармоническая, то , и волновое уравнение принимает вид:

Это уравнение называется уравнением Гельмгольца .

Амплитуда, начальная фаза и частота волны определяются колебаниями в источнике волн. Фазовая скорость волны, как уже было сказано выше, зависит от физических свойств среды, в которой распространяется волна.

Читайте также: