Н 264 кодек что это

Обновлено: 07.07.2024

Кодеки H.264, H.264+, H.265, H.265+ представляют собой программное обеспечение, необходимое для компрессии видео. В процессе обработки весь отснятый материал обрабатывается и сжимается, снижая нагрузку на потоки. Это особенно важно при сохранении информации в архивы или при передаче для просмотра в режиме онлайн. Рассмотрим, что собой представляют стандарты H.264, H.264+, H.265, H.265+ и в чем их отличие.

H.264 и H.264+: эффективные, но устаревшие стандарты кодирования

H.264 – это стандарт, появившийся еще в 2013 году и способны обеспечить запись в формате HD, а скорость обработки – 7-8 мегабайт за секунду. Ему на смену пришел стандарт Н.264+, который проводит запись в аналогичном формате, при этом скорость потока существенно выше- от 12 до 20 мегабайт за секунду.

Именно создание этих форматов способствовало активно развитию цифровых камер наблюдения, которые сейчас способны проводить съемку с разрешением Full HD и 4К. Вместе с появлением больших разрешений съемки, появилась необходимость в увеличении уровня производительности для сжатия, чтобы обеспечивать передачу сигнала в более высоком качестве, увеличивая пропускную способность канала.

В результате этого технологию снабдили различные интеллектуальными алгоритмами, благодаря которым удалось снизить размер файлов до 75% при передаче информации. Несмотря на схожее название между H.264 и H.264+, были внедрены многочисленные изменения:

  • разработчики интегрировали фоновых инструмент, используемый для подавления шума на материале;
  • в технологии интеллектуального кодирования использовалась модель предсказания фона;
  • разработчиками была внедрена технология регулировки и управления битрейтом.

Это вывело видеонаблюдение совершенно на новый уровень. Но часто можно встретить еще такие стандарты, как H.264h или H.264b. Их отличие незначительное, но для общего понимания нужно помнить, что “h” – высший стандарт, имеющий больше функций, а “b” – устаревший базовый стандарт, подходящий для старых систем с меньшим количеством процессоров. На этом и все отличие между H.264 vs H.264h vs H.264b.

H.265 и H.265+: усовершенствованные стандарты кодирования

Это инновационные стандарты кодирования, вместе с которыми начался новый уровень развития кодеков для сжатия видеоданных. Он в разы более эффективный прошлого стандарта. Обеспечивает сжатие видео с максимально высокой эффективностью. Благодаря H.265 удалось существенно уменьшить нагрузку на каналы связи, благодаря чему появилась возможность установить более совершенную камеру в существующей архитектуре наблюдения.

Для достижения идеальных результатов, разработчики предложили обновленный кодек H.265+. В нем применялся доработанный алгоритм инженеров компании Hikvision, вместе с чем была увеличена производительность на 67%. Ультрасовременный кодек, который косвенно способствовал открытию формата 4К в системах наблюдения. Ведь теперь файлы в 4К по весу занимали не более, чем HD. Стандарт H.265+ обладает следующими преимуществами:

  • обрабатывается статичный фон, чтобы максимально уменьшить размер файлов;
  • фокусируется исключительно на объектах, которые находятся в движении;
  • обрабатывается исключительно то время, когда в кадре видно движение;
  • тотально подавляет цифровые шумы при обработке информации.

Пока именно стандарт H.265+ является наиболее эффективным решением, а также раскрыл новые возможности для разработчиков цифровых технологий.

Стандарт кодирования H.265+: ключевые возможности

Интеллектуальная система кодирования

Когда в обработку попадает видео, то кодек автоматически разделяет фон и посетителей. Программное обеспечение создает модель с применение одного или нескольких кадров. Это дает возможность проводить прогнозирование в моментах, где есть предсказуемая информация из ранее переданных блоков или аналогичного кадра. Подобным образом, процесс сжатия осуществляется за счет проведения трансляции только динамической части кадра. Необходимо учитывать, что большинство объектов в система обладает статичным фоном, поэтому H.265+ значительно эффективней своего предшественника.

Подавление цифрового шума

Умение различать фоновые изображения и движущиеся объекты способствовали тому, что каждый кадр может кодироваться с использованием разных стратегий кодирования. При сильном сжатии фона для подавления шума, также кодируется визуальный шум в сцене. Благодаря этому удается достигать высокого уровня качества, несмотря на то, что видеопоток обладает минимальным весом.

Битрейт под контролем

В технологии присутствует долгосрочный средний битрейт, благодаря которому появилась возможность с максимальной эффективностью использовать возможности пропускных каналов. Проводится расчет ставки в течение определенного времени – на протяжении суток. В случае средней скорости передачи информации, камера в автоматическом режиме назначает высокую скорость передачи информации при активности посетителей, либо снижается, если наблюдается простой. Это значительно повышает эффективность системы и экономит ресурсы.

Сравнение в цифрах

К примеру, если брать за основу камеру видеонаблюдения с форматом съемки Full HD и скоростью записи 25 кадров за секунду, то в случае использования H.264 и H.265+ разница будет составлять 83%, а между H.265 и H.265+ разница будет достигать 67%. За сутки это 22,7 гигабайтов для H.264, 11,8 гигабайтов для H.265 и 3,9 гигабайтов для H.265+.

Заключение

Кодеки компрессии H.264, H.264+, H.265, H.265+ просто неразлучно связаны с цифровым видеонаблюдением. Каждая из технологий работает эффективно, но некоторые из них уже морально устарели. При этом нужно учитывать, что устаревшие камеры наблюдения неспособны работать под H.265 или H.265+, т.к. они внедрены в более современных моделях. Если у вас остались дополнительные вопросы, задавайте в комментариях или свяжитесь с представителями нашей компании.

Сегодня, кажется, все стремятся стать кинематографистами. Люди используют для видеосъемки самые различные гаджеты и девайсы, включая мобильные телефоны, цифровые фотокамеры, портативные и профессиональные видеокамеры. А последнее поколение цифровых зеркальных фотокамер позволяет записывать видео с поддержкой высокого разрешения.

Чтобы научиться снимать хорошее видео, потребуется приложить определенные усилия, но все становится еще более сложным, когда вы захотите во всей красе продемонстрировать свой шедевр другим людям. Может быть, вам нужно загрузить его на YouTube, может вы собираетесь записать свой Blu-ray или DVD диск, возможно, захотите загрузить видео на мобильный телефон или планшетный компьютер.

Разобраться в том, какой кодек и контейнер лучше подойдет для создания вашего видеошедевра порой достаточно сложно. Помочь в решении этой проблемы сможет представленный далее материал.

Какая разница между кодеком и контейнером?

Начинающие пользователи часто бывают озадачены, когда пытаются выяснить разницу между кодеками и контейнерами. Сейчас слово Кодек стало чем-то общеупотребительным, а изначально термин являлся сокращением от понятия КОмпрессор-ДЕКомпрессор. Что же делают кодеки?

Они принимают цифровые медиа данные и либо сжимают их (для передачи и хранения), либо распаковывают для просмотра и перекодирования. Каждый кодек использует определенный метод кодирования и декодирования цифровых данных.


Несжатое (англ. raw означает необработанное или часто говорят « сырое») видео и аудио требует для хранения огромного дискового пространства. Несжатое видео высокой четкости формата 1080i, записываемое со скоростью 50 кадров в секунду, съедает до 410 гигабайт в час. Аудио с CD дисков, довольно устаревшее по современным стандартам, звучит около 74 минут при емкости диска 680 мегабайт. Однако, восьмиканальный звук, кодируемый с 24 битным разрешением, потребует уже 16 мегабит в секунду, или несколько гигабайт в час. Даже возможностей широкополосного соединения с интернет порой не хватит, чтобы послушать музыку в полном аудио разрешении. Вот почему цифровые видео и аудио записи должны быть сжаты для передачи и хранения.

После того как медиа данные ужаты в разумные пределы, они должны быть упакованы для транспортировки и последующего отображения. Для этого используются форматы-контейнеры, выполняющие роль «черного ящика», наполняемого различными медиа-форматами. Хорошие форматы контейнеров могут вмещать файлы, сжатые разными кодеками.

Давайте разберемся с типами кодеков.

Общее понятие о кодеках

Если вы пообщаетесь с людьми, которые занимаются видеообработкой или посетите соответствующие веб форумы, то будете, так или иначе, причастны к, порой бурным, дебатам о том, какой кодек лучше. В действительности, эффективность любого кодека во многом зависит от используемого режима сжатия и типа обрабатываемых видеоматериалов. Так что стоит рассматривать различные кодеки и с учетом их конкретного использования и особенностей сжимаемого материала. Далее в основном рассматриваются видео кодеки, но в разделе, посвященном контейнерам форматов, упоминается и об использовании аудиокодеков.


Ввод и архивирование видео

Большинство устройств современной бытовой электроники получает контент в каком-либо уже сжатом формате. Как правило, только профессиональные видеооператоры работают с несжатым HD видео. Конечно в идеале, если это возможно, при наличии очень емкой системы хранения, видеоархивы нужно хранить в оригинальном формате съемки, потому что при этом обеспечивается максимальное качество. Перекодировка видео из одного типа сжатия в другой может привнести едва различимые искажения, которые могут снизить качество изображения. (Подобные погрешности минимизирует хорошее программное транскодирование.) Сегодня предлагается множество кодеков, с определенной специализацией. С большинством из них обычный пользователь может никогда и не столкнуться. Следующий раздел посвящен кодекам, как системам сжатия/декомпрессии, используемым в составе специального программного обеспечения, которое позволяет кодировать или перекодировать видеофайлы.

x.264/ MPEG-4 AVC (Advanced Video Coding). Этот наиболее распространенный кодек используется в современных цифровых видео- и фотокамерах, в которых результаты съемки сохраняются в виде файлов на встроенных жестких дисках, картах памяти, и т.д.

MJPEG (Motion JPEG). Это более старый формат, используемый некоторыми цифровыми камерами и видеотехникой прежнего поколения. Он был разработан теми же специалистами (Joint Picture Experts Group), которые занимались еще ранее разработкой кодека JPEG для сжатия обычных статичных изображений, отсюда и название этого кодека.

DV и HDV. Стандарт DV был разработан консорциумом компаний производителей видеотехники для ленточных систем хранения информации и часто использовался в видеокамерах со слотом для ленточных мини кассет. Некоторые версии DV успешно использовались в профессиональных видеокамерах, была разработана версия HDV для поддержки высокого разрешения с ленточными кассетами.


Дисковые форматы

Перейдем к устаревающим уже DVD или чуть более модным Blu-ray дискам. Несмотря на растущую популярность потокового видео, возможность передачи медиа данных с помощью дисков в обозримом будущем по-прежнему будет востребована. Записанные на диски материалы спокойно можно передавать там, где нет каналов связи и смотреть везде, даже там, где нет возможности подключиться к интернету.

MPEG-2. Необходимо различать кодек MPEG-2, также известный как x.262, от формата контейнера MPEG-2. MPEG-2 используется для сжатия видео на дисках DVD и сигналов телевидения высокой четкости (DVB), передаваемого по эфирным каналам. Первоначально MPEG-2 применяли и для сжатия на Blu-ray дисках, хотя большинство современных Blu-ray фильмов не используют MPEG-2.

x.264/MPEG-4 AVC. x.264 используется при сжатии видео для Blu-ray дисков. По сути это тот же кодек, который применяется для сжатия видео в современных видеокамерах. Данный метод очень масштабируемый и при высоком битрейте сжатое по стандарту x.264видео выглядит просто фантастически.

Microsoft VC-1. Microsoft VC-1 включает три разных по степени сжатия кодека. VC-1 Advanced Profile, также известный как Windows Media Video 9 Advanced Profile или просто WVC1 является одним из трех кодеков, применяемых для кодирования содержимого Blu-ray дисков. VC-1 в качестве альтернативы технологии Adobe Flash используется в интернет-платформе Microsoft Silverlight.


Потоковое и веб видео

Передача видео через интернет обязательно подразумевает компромиссы, в основном между качеством изображения и скоростью передачи данных, которая сегодня и ограничивает максимально достижимое качество. Скорость передачи или, как еще говорят, ширина канала во многом зависит от возможностей интернет-провайдера и используемой им технологии доставки сигнала в вашу квартиру.

MPEG-1. Это старый боевой конь для доставки видео в сети интернет. Хотя YouTube, Netflix, и другие поставщики относительно качественного потокового видео уже отказались от MPEG-1, масса видео стандартного разрешения на базе MPEG-1 все еще доступна на других сайтах.

WMV (Windows Media Video). Есть Windows Media Video кодек и контейнерный формат файла. Хотя, этот метод сжатия был и не так используем, как MPEG-1, в сети все еще есть много WMV контента. Но при создании своих видеоматериалов, его очевидно также не стоит применять.

x.264/ MPEG-4 AVC. x.264 обеспечивает при относительно низкой скорости передачи, достаточно высокое качество видео. x.264, вероятно, становится наиболее распространенным кодеком. Adobe поддерживает его во Flash, x.264может использоваться с изображениями HTML 5, на x.264ориентируется YouTube и Apple полностью поддерживает этот метод компрессии. Однако при создании видео сжатого в форматах x.264вы не сможете воспроизводить их на старых устройствах, это ставка на будущее.

Правильный контейнер: гибкий и удобный

Далее кратко рассмотрены наиболее распространенные сегодня контейнерные форматы медиафайлов. У каждого из них есть свои достоинства и недостатки. Выбор зависит от предполагаемой задачи. Контейнерные файлы, кроме сжатого видео, вмещают и цифровой звук, сжатый соответствующими аудио кодеками, а также меню и дополнительную информацию.

Контейнеры для архивирования и ввода

Также, как и с кодеками, Вы должны выбрать контейнерный формат для хранения сжатого видео с максимально возможным в ваших условиях качеством. Для большинства пользователей нужен просто способ сохранить свое видео, для того чтобы затем передавать его в потоковом виде по домашней сети или даже через интернет, но при этом никто не хочет видеть впоследствии на экране пиксельную структуру и смазанное изображение. Правильный контейнер поможет сохранить баланс между качеством и потоковыми возможностями.

Advanced Systems Format (ASF) – разработанный Microsoft контейнерный формат. Встречается несколько расширений, включая .asf, .wma и.wmv. Отметьте, что файл с расширением .wmv, вероятно, сжат кодеком WMV (Windows Media Video), но сам файл помещен в контейнерный файл ASF. Файлы ASF, в теории, могут содержать видео и аудио файлы, сжатые любым кодеком. Однако, практически воспроизведение иногда может стать проблемным, особенно с видео, сжатым кодеками x.264. Если вы планируете пользоваться продуктами Microsoft, ASF прекрасный выбор, но могут быть проблемы с медиа файлами на основе иных кодеков.

Audio Video Interleave (AVI) – один из более старых контейнерных форматов Microsoft. Вероятно, его уже не стоит использовать в новых проектах.


QuickTime: компания Apple продвигает собственный контейнерный формат QuickTime, который поддерживает множество кодеков для аудио и видео. Apple - убежденный сторонник x.264, таким образом, файлы QuickTime (.mov, .qt) могут содержать видео, сжатое кодеком x.264.

MP4. Этот контейнерный формат разработан Motion Pictures Expert Group, известен также как MPEG-4, часть 14. Видео внутри файлов MP4 кодируется кодеком x.264, а аудио – кодеком AAC, но могут использоваться и другие стандарты сжатия звука.

VOB и BDAV MPEG-2. Эти контейнерные форматы используются для упаковки данных на DVD и Blu-ray дисках, соответственно. В файлах Blu-ray дисков (.m2ts) могут содержаться видеозаписи сжатые кодеками x.264и VC-1, звук может быть сжат одним из кодеков Dolby или использоваться несжатый многоканальный сигнал в формате PCM.

AVCHD: Этот стандарт контейнера применен во многих видеокамерах. Снимаемое видео предварительно сжимается кодеком x.264. Аудиосигнал для контейнера кодируется кодеком Dolby Digital (AC3) или используется несжатый – PCM.


Flash: Компания Adobe имеет собственный контейнерный формат Flash, который поддерживает множество кодеков. Большая часть недавно созданного Flash видео кодирована с использование видеокодека x.264и аудиокодека AAC, но не стоит ожидать, что на всех сайтах используются только эти кодеки, особенно для ранее созданного видео.

Прочие контейнеры: Среди прочих форматов контейнеров, широко используемых особенно для доставки видео через интернет, можно упомянуть популярный во многом за счет своей универсальности и открытого кода формат Matroska (.mkv, .mk3d, .mka, .mks), а также OGG и DiVX. Файлы с расширением .divx вмещают видео, ужатое одноименным кодеком с пиратской родословной, который позволяет получить достаточно высокое качество видео при эффективной компрессии видеоматериалов. Долгое время Divx официально не признавался и его использование не приветствовалось. Однако сегодня многие известные производители уже встраивают аппаратные кодеки DiVX в свою видеотехнику.

Какой кодек и контейнер выбрать

Если вы будете размещать свое видео на домашнем сервере, с тем чтобы впоследствии смотреть его на экране телевизора, подключаемого непосредственно к сети или через медиаплеер, необходимо выяснить какие форматы распознают телевизор и плеер. Практически всеми устройствами поддерживается сегодня кодирование в соответствии со стандартом MPEG-2, но в этом случае потребуется достаточно большой объем для хранения видео в HD разрешении. Очевидно, наиболее подходящим в ближайшем будущем можно считать различные варианты кодека x.264, в котором реализован алгоритм сжатия, поддерживаемый всеми популярными контейнерами.


Если больше интересует воспроизведение готового видео, и вы планирует нарезать (ripping) фильмы из своей персональной коллекции DVD дисков для передачи по домашней сети, вас может устроить контейнер MP4, как удачный компромисс между степенью сжатия и качеством.

Разбираемся с форматами и кодеками видео

Современные медийные платформы позволяют пользователям наслаждаться высокодетализированным видео и потрясающими аудиоэффектами в режиме онлайн.

Однако создание подобного контента было бы невозможно без существования кодеков и контейнеров.

Чем кодеки отличаются от контейнера — их часто путают

Для ответа на вопрос, чем кодеки отличаются от контейнеров, необходимо понять, что такое кодеки.

Смысл понятия «кодек» лежит прямо в его названии:

Фактически кодек — это цифровой инструмент компрессии и декомпрессии данных. Компрессия (сжатие данных) необходима для экономии занимаемого файлом места. Например, несжатое видео высокой четкости в raw-формате, при 60 кадрах в секунду способно достигать размеров в полтерабайта на каждый час записи.

Восьмиканальная аудиодорожка в 24-битном разрешении будет занимать 16 мегабит за одну секунду записи. Такие объемы данных не подходят ни для штатного хранения, ни для их передачи онлайн, поэтому для их сжатия применяются специальные формулы, которые и называются кодеками.


Для хранения сжатой информации создаются контейнеры-обертки в определенном формате. Современные контейнеры способны хранить информацию, обработанную разными кодеками. Такие обертки указывают устройству на то, какими кодеками была сжата информация, и по какой формуле ее восстанавливать.

Если разобрать стандартное видео со звуком на кодеки и контейнеры, в результате получится три составные части:

  • Видеокодек, отвечающий за степень сжатия и потери качества в процессе.
  • Аудиокодек, отвечает за хранение звуковой дорожки.
  • Контейнер-обертка, хранилище обоих кодеков и дополнительной метаинформации.

В случае если в видео нет звука, аудиокодек не нужен.

Популярные и прогрессивные кодеки


Большинство создаваемого видеоконтента обрабатывается кодеками XviD, MPEG-1\2, H.264, MPEG-4, DivX, WMV, MJPEG, RealVideo, Bink Video и их вариациями. Для аудиоформатов в основном используют AAC, Opus и MP3-кодеки. Из новинок стоит отметить кодек H.266/VVC, разрабатываемый для потоковой передачи видео в 4K и 8K.

Новый кодек позволяет вдвое сократить объем файла относительно H.265 кодека за счет более сложных алгоритмов. Сложные вычисления потребляют больше ресурсов, до 1000 % от потребления H.265 при кодировании, и до 200% при декодировании.

Какие кодеки в основном поддерживаются современными ТВ и обновляются ли они с прошивкой

Современные системы поддерживают большинство существующих кодеков.

Поддержка кодеков MPEG от первого до четвертого, вариации H.264 для воспроизведения Blu-Ray, а также XviD и DivX, входят в базовый пакет любого современного телевизора.

Ведущие производители всегда следят за ошибками и актуальностью своего программного обеспечения.

Обновление кодеков в процессе прошивки регулируется разработчиками индивидуально под каждую модель SmartTV.

Если новые кодеки необходимы, поддерживаются устройством на аппаратном уровне и не вызывают ошибок отображения, ничего не мешает разработчикам добавить их в ближайших обновлениях.

Не все устройства совместимы с новыми кодеками, поэтому установка неофициальных обновлений прошивки не рекомендуется потому как может привести к ошибкам воспроизведения.

Какие кодеки используются при проигрывании онлайн-видео (современные кодеки youtube)

В настоящее время стандартом большинства видеосервисов стали кодеки H.264 и MPEG-4, значительно реже встречаются кодеки FFDshow, XviD и DivX.


Одним из самых перспективных кодеков является бесплатный AV1-кодек. Разработан сообществом AOMedia, включающим в себя таких гигантов как AMD, Google, Netflix, Mozilla, Nvidia, Intel, ARM и Cisco. Исходный код кодека открыт и свободно распространяется без каких-либо лицензионных отчислений.

Что даст конечному пользователю переход ютуба на современный AV1


Кодек AV1 разрабатывался для воспроизведения видео онлайн, в браузерах Safari, Firefox, Edge и Chrome. Степень сжатия видео кодеком AV1 превосходит кодеки VP8 и H.264 от 30% до 50%, а кодек HEVC до 30–43 % на высоких битрейтах.

Полный переход видео платформы YouTube на AV1-кодек не только ускорит загрузку всех видеороликов от 20% до 50%, но и позволит стримить в разрешении 4K.

Для минимизации потерь качества, при сохранении и конвертации файла рекомендуется использовать кодеки AV1 для видео и Opus для аудио, обернутые в MP4-контейнер.

Основная задача настоящего тестирования - сравнить результаты работы нового поколения MPEG4-кодеков (называемых MPEG-4 AVC или H.264) при записи домашнего видео простыми пользователями. Такие пользователи, как правило, используют простые известные программы для того, чтобы считывать DVD или оцифровывать сигнал с тюнера и редко изменяют настройки кодеков. Мы прекрасно понимаем, что писать кодеки так, чтобы они хорошо работали в разных ситуациях без специальной настройки (автоматически подстраиваясь под тип видео) сложнее, но тем больше чести авторам, если их кодеки хорошо справляются с такой задачей. DivX Pro 5 использовался для сравнения, как один из лучших кодеков предыдущего поколения, стандарта MPEG-4 ASP. Подробнее о разновидностях MPEG-4 можно прочитать здесь.

Использованные кодеки

Main Concept H.264

Ateme MPEG-4 AVC / H.264

Videosoft H.264 codec main

Учитывая специфику H.264 (очень большое время работы при включении "по максимуму" всех опций и возможностей), мы в дальнейшем введем два набора настроек, получаемых от производителей кодеков (и только от них). Первый набор - "tuned" - настройки, дающие максимальное качество, но долгую работу и "fast" - настройки, обеспечивающие быструю работу, но с меньшим качеством. Причем и время, и качество будут измеряться в обоих случаях. Это позволит кодекам продемонстрировать, на что они способны по качеству и даст возможность более корректно сравнивать скорость, чем в варианте сравнения настроек по умолчанию. Часть 1: Методика тестирования

Метрика PSNR

Описание метрики

В рамках данного тестирования критерием качества сжатия служит метрика PSNR (peak signal to noise ratio/пиковое отношение сигнала к шуму, измеряется в дБ). Использование именно этой метрики обусловлено ее популярностью. Ее используют в большинстве научных статей и сравнений в качестве меры потерь качества. Как и все существующие метрики, она не идеальна и имеет свои достоинства и недостатки. Для понимания приведенных ниже цифр, необходимо знать лишь то, что значение метрики тем больше, чем больше разница между сравниваемыми изображениями.

Примечание: PSNR – это наиболее общепринятая метрика для оценки различий между двумя последовательностями. Несомненно, у неё есть множество недостатков. Можно придумать огромное количество последовательностей, на которых эта метрика не совсем адекватно себя ведёт. Например, два кадра, яркость одного из которых подняли на одну единицу (из, скажем, 255). Или два кадра, отличающихся одним пикселем – на первом пиксель белый, а на втором – чёрный. В обоих примерах вы с трудом сможете уловить различия в кадрах на глаз, но с точки зрения PSNR кадры будут значительно отличаться! Однако, несмотря на все недостатки, именно метрикой PSNR до сих пор пользуется большинство разработчиков кодеков для анализа своих результатов. Эта метрика понимается и признаётся всеми профессионалами в области кодирования видео. Именно по этой причине мы выбрали PSNR в качестве основной метрики.

Смысл графиков PSNR/Frame size


На графике изображена зависимость показателя метрики от среднего размера кадра. Каждая ветвь соответствует определенному кодеку. Ветви построены на опорных точках, каждая из которых соответствует конкретному битрейту. Хорошо видно, что на каждой ветви находится по десять точек (каждая последовательность сжимается на 10 настройках битрейта). Бывает, что кодек не удерживает битрейт и с разными настройками битрейта сжимает одинаково. В таких случаях, очевидно, на ветви кодека расположено менее десяти опорных точек. Для сравнения кодеков на этих графиках следует обращать внимание на то, как высоко расположены ветви кодеков. Чем выше находится ветвь – тем выше в среднем качество последовательности, сжатой данным кодеком. На вышеприведенном в качестве примера рисунке видно, что на высоком битрейте Videosoft сжал последовательность с меньшими потерями качества по сравнению с другими кодеками.

Методика тестирования

Последовательность действий

В тестировании участвует девять фильмов (см. ниже). Каждый фильм сжимается десять раз с разными битрейтами (кбит/с): 100, 225, 340, 460, 700, 938, 1140, 1340, 1840, 2340. Таким образом, для каждого кодека генерируется 50 фильмов. Затем для каждого фильма вычисляется метрика PSNR. Причем указанная метрика вычисляется для каждого кадра. Далее для построения графика используются соответствующие числа, в зависимости от типа графика.

Задачи и правила тестирования

Самый распространённый вопрос по поводу этого тестирования – «А с какими настройками тестировались кодеки?». В полном тексте документа, в разных местах мы ответили на него 8 раз – с настройками по умолчанию! Это означает следующее. Мы брали чистую операционную систему и инсталлировали на неё кодек. Настройки, которые он выставил при этом, мы считали настройками по умолчанию. В процессе тестирования мы меняли только один параметр – битрейт. Таким образом, чтобы посмотреть все параметры, вам надо всего лишь заново проинсталлировать интересующий вас кодек.

Последовательности

На разных последовательностях кодеки показывают разные результаты. Например, эффективно сжать последовательность из одинаковых кадров намного легче, чем последовательность, состоящую из существенно различающихся картинок. Есть и другие характеристики последовательностей – размер кадров, зашумлённость, длина последовательности, тип движения камеры и т.д. Для нашего тестирования мы выбрали стандартные последовательности. Многими из них пользуются производители кодеков для тестирования своих продуктов. Конечно, эти последовательности не покрывают всего множества фильмов – тут нет ни мультфильмов, ни видео с тюнера. В дальнейшем мы планируем расширить число последовательностей.Часть 2: Графики по PSNR для всех кодеков

Графики Y-PSNR - Frame Size

На этих графиках хорошо видна динамика зависимости качества сжатого фильма от его размера. Координатами опорных точек диаграммы являются средние по фильму значения метрики и размера кадра. Таким образом, каждая ветвь имеет по десять точек, соответствующих разным битрейтам.

Delta Y-PSNR – это графики относительного PSNR. В качестве референсного кодека выбран DivX 5.1.1. Для каждого замера на графике конкретного кодека бралась разница этого замера и значения PSNR для референсного кодека с тем же битрейтом. При отсутствии значения, PSNR референсного кодека получался линейной интерполяцией.



Выводы

  • На низких битрейтах DivX сильно уступает кодекам VSS_main, Fraunhofer, Ateme.
  • На средних и высоких битрейтах кодек от Ateme опережает все остальные кодеки.

В полной версии сравнения представлены другие типы графиков для различных последовательностей и видеокодеков: V-PSNR, U-PSNR , Y-difference и bitrate-handling.

Часть 3: Покадровое сравнение видеокодеков

На этих графиках хорошо видно, как изменяется качество сжатия отдельных кадров кодеками. По оси X отложены номера соответствующих кадров, а по оси Y – PSNR кодеков при сравнении с оригиналом.

Sequence bankomatdi. Bitrate 100 kb/sec


Sequence bankomatdi. Bitrate 2340 kb/sec


  • Битрейт 700 Кбит/с.
  • Последовательности для сравнения: bbc3di и foreman.

Последовательность bbc3di, кадр 280


Последовательность foreman, кадр 282


Выводы

  • При одинаковом значении метрики PSNR кодеки стандарта H.264 показывают заметно лучшее визуальное качество.
  • Большинство кодеков явно оптимизированы для достижения максимальной скорости кодирования на сегодняшних конфигурациях и не используют всех возможностей, предоставляемых форматом H.264.

При сравнении кодеков всегда хочется узнать, кто же в итоге лучший. Часто при ответе на подобные вопросы возникают заключения вроде «H.264 лучше DivX на 45%!». Однако кодеки можно сравнивать по многим параметрам – качеству сжатых последовательностей, способности держать заданный битрейт, быстродействию, удобству использованию, размеру инсталлятора, красоте логотипа и т.д. Причём для разных задач отдельные параметры могут быть неодинаково важны. Например, если вы хотите сжимать телевизионный сигнал, для вас важна скорость работы кодека, если записывать сжатые фильмы на CD – то немаловажна точность соблюдения битрейта, а если решили сделать архив оцифрованного видео – то, скорее всего, определяющим фактором является качество сжатых последовательностей.

Как было сказано выше, данный текст является сильно сокращенным и откомментированным вариантом сравнения видеокодеков, предназначенного в первую очередь для профессиональных пользователей и производителей кодеков. Полный вариант этого тестирования имеет объем 70 pdf-страниц, содержит сравнения всех указанных в начале статьи видеокодеков, множество графиков и рисунков, не приведенных в данной статье.

Мы выражаем благодарность компаниям Moonlight Cordless LTD, Fraunhofer Institute for Integrated Circuits IIS и Ateme за любезно предоставленные для данного тестирования кодеки, недоступные публично.

Читайте также: