На основе таблицы 2 сравнить файловые системы ext ext2 ext3 ext4

Обновлено: 02.07.2024

XFS — начало разработки 1993 год, фирма Silicon Graphics, в мае 2000 года предстала в GNU GPL, для пользователей большинства Linux систем стала доступна в 2001-2002 гг. Отличительная черта системы — прекрасная поддержка больших файлов и файловых томов, 8 эксбибайт — 1 байт (8*2 60 -1 байт) для 64-х битных систем. Ко всему прочему обладает другими немаловажными особенностями — непрерывные области дискового пространства, задержка выделения пространства и онлайн дефрагментация. Является одной из старейших журналируемых файловых систем для *nix, и содержит в себе наиболее отлаженный, в этом контексте, исходный код.

ReiserFS (Reiser3) — одна из первых журналируемых файловых систем под Linux, разработана Namesys. Имеет некоторые врождённые головные боли, но в целом неплохая система, ведущая отсчёт дней своих с 2001 года. Оговорюсь, что смысл журналируемых систем заключается в дисковых транзакциях, которые последовательно пишутся в специальную зону диска (журнал, он же лог), перед тем как данные попадают в конечные точки файловой системы. Максимальный объём тома для этой системы равен 16 тебибайт (16*2 40 байт).

JFS (Journaled File System) — файловая система, детище IBM, явившееся миру в далёком 1990 году для ОС AIX (Advanced Interactive eXecutive). В виде первого стабильного релиза, для пользователей Linux, система стала доступна в 2001 году. Из плюсов системы — неплохая масштабируемость. Из минусов — не особо активная поддержка на протяжении всего жизненного цикла. Максимальный рамер тома 32 пэбибайта (32*2 50 байт).

ext (extended filesystem) — появилась в апреле 1992 года, это была первая файловая система, изготовленная специально под нужды Linux ОС. Разработана Remy Card с целью преодолеть ограничения файловой системы Minix.

ext2 (second extended file system) — была разработана Remy Card в 1993 году. Не журналируемая файловая система, это был основной её недостаток, который исправит ext3.

ext3 (third extended filesystem) — по сути расширение исконной для Linux ext2, способное к журналированию. Разработана Стивеном Твиди (Stephen Tweedie) в 1999 году, включена в основное ядро Linux в ноябре 2001 года. На фоне других своих сослуживцев обладает более скромным размером пространства, до 4 тебибайт (4*2 40 байт) для 32-х разрядных систем. На данный момент является наиболее стабильной и поддерживаемой файловой системой в среде Linux.

Reiser4 — первая попытка создать файловую систему нового поколения для Linux. Впервые представленная в 2004 году, система включает в себя такие передовые технологии как транзакции, задержка выделения пространства, а так же встроенная возможность кодирования и сжатия данных. Ханс Рейзер (Hans Reiser), главный разработчик системы, рекламировал использовать своё детище непосредственно как БД с улучшенными метаданными. После того, как Ханс Рейзер был осуждён за убийство в 2008 году, дальнейшая судьба системы стала сомнительной.

ext4 — попытка создать 64-х битную ext3 способную поддерживать больший размер файловой системы (1 эксбибайт). Позже добавились возможности — непрерывные области дискового пространства, задержка выделения пространства, онлайн дефрагментация и прочие. Обеспечивается прямая совместимость с системой ext3 и ограниченная обратная совместимость при недоступной способности к непрерывным областям дискового пространства.

UPD: Btrfs (B-tree FS или Butter FS) — проект изначально начатый компанией Oracle, впоследствии поддержанный большинством Linux систем. Многие считаеют систему эдаким ответом на ZFS. Ключевыми особенностями данной файловой системы являются технологии: copy-on-write, позволяющая сделать снимки областей диска (снапшоты), которые могут пригодится для последующего восстановления; контроль за целостностью данных и метаданных (с повышенной гарантией целостности); сжатие данных; оптимизированный режим для накопителей SSD (задаётся при монтировании) и прочие. Немаловажным фактором является возможность перехода с ext3 на Btrfs. С августа 2008 года данная система выпускается под GNU GPL.

Tux2 — известная, но так и не анонсированная публично файловая система. Создатель Дэниэл Филипс (Daniel Phillips), система базируется на алгоритме «Фазового Дерева», который как и журналирование защищает файловую систему от сбоев. Организована как надстройка на ext2.

Tux3 — наступая на пятки Btrfs, представлена новая файловая система. Система создана на основе FUSE (Filesystem in Userspace), специального модуля для создания файловых систем на *nix платформах. Данный проект ставит перед собой цель избавиться от привычного журналирования, взамен предлагая версионное восстановление (состояние в определённый промежуток времени). Преимуществом используемой в данном случае версионной системы, является способ описания изменений, где для каждого файла создаётся изменённая копия, а не переписывается текущая версия. Такой подход позволяет более гибко управлять версиями.

UPD: Xiafs — задумка и разработка данной файловой системы принадлежат Frank Xia, основана на файловой системе MINIX. В настоящее время считается устаревшей и практически не используется. Наряду с ext2 разрабатывалась, как замена системе ext. В декабре 1993 года система была добавлена в стандартное ядро Linux. И хотя система обладала большей стабильностью и занимала меньше дискового пространства под контрольные структуры — она оказалась слабее ext2, ведущую роль сыграли ограничения максимальных размеров файла и раздела, а так же способность к дальнейшему расширению.

UPD: ZFS (Zettabyte File System) — изначально созданная в Sun Microsystems файловая система, для небезызвестной операционной системы Solaris в 2005 году. Отличительные особенности — отсутствие фрагментации данных как таковой, возможности по управлению снапшотами (snapshots), пулами хранения (storage pools), варьируемый размер блоков, 64-х разрядный механизм контрольных сумм, а так же способность адресовать 128 бит информации! В Linux системах может использоваться посредствам FUSE.

Файловая система — это набор стандартов и соответствующих процессов, которые определяют и управляют тем, в каком виде ваши данные хранятся на носителе информации и каким образом они могут быть из него извлечены.

Способ организации файловой системы в Linux

В качестве способа повышения эффективности ОС, в Linux применяется следующая модель файловой системы:


Благодаря такому подходу, добавление поддержки какой-нибудь новой файловой системы не потребует вносить соответствующих изменений в само ядро ОС.

Ядро Linux поддерживает различные типы файловых систем (ext3, ext4, ReiserFS, Btrfs, XFS и многие другие). На сегодняшний день наиболее часто используемой файловой системой является ext4, поэтому в данной статье основной упор будет сделан именно на нее.

Примечание: В Linux практически все объекты представлены в виде файлов (например, каталоги, принтеры, разделы диска, устройства и т.д.). Это делает еще более важным изучение того, как работает файловая система Linux.

Эволюция файловой системы ext в Linux

Давайте детально рассмотрим эволюцию файловой системы ext в Linux:


Файловая система Minix

Файловая система Minix — это первая файловая система, являющаяся прообразом современных файловых систем в Linux, которая была представлена в 1987 году Эндрю С. Таненбаумом в составе одноименной ОС Minix.

Операционная система Minix и её файловая система использовались в виде наглядного пособия для студентов, изучающих основы строения ОС (одним из таких студентов был сам Линус Торвальдс). Из-за того, что Minix была, прежде всего, учебной системой, её файловая система обладала множеством недостатков: производительность файловой системы оставляла желать лучшего; длина имени файла была ограничена 14 символами, а размер разделов — 64 МБ. Для сравнения, жесткие диски того времени имели размер вплоть до 140 МБ.

Файловая система ext

Хотя ext и удалось решить проблемы, присутствовавшие в файловой системе Minix, у нее был один серьезный недостаток — временная метка. Сейчас, когда каждый файл в Linux имеет три временные метки (доступа к файлу, изменения содержимого файла, изменения свойств и метаданных файла (например, разрешений)), файловая система ext поддерживала только одну временную метку.

Файловая система ext2

В январе 1993 года, менее чем через год после выхода ext, Реми Кард разрабатывает новую файловую систему — ext2.

В ext2 были расширены функциональные возможности ext:

увеличена производительность файловой системы;

данные файлов хранились в блоках данных одинаковой длины;

поддерживался максимальный размер файла в 2 тебибайта;

длина имени файла была ограничена 255 байтами (а не количеством символов, как раньше).

Повреждение файлов, если в момент записи данных на диск отключалось питание или возникал сбой системы.

Потеря производительности из-за фрагментации данных: происходит, когда один файл разбивается на части (фрагментируется) и распределяется по нескольким местам на диске. В результате чтение и запись файлов занимают больше времени, что приводит к снижению производительности файловой системы.

Система ext2 использовалась по большей части до начала 2000-х годов, когда была представлена файловая система ext3.

Файловая система ext3

В ноябре 2001 года, благодаря усилиям программиста Стивена Твиди, вместе с релизом ядра Linux 2.4.15 увидела свет и новая файловая система — ext3.

Файловая система ext3 — это улучшенная версия файловой системы ext2, в которой появилась возможность ведения логов. Она, как и ext2, поддерживает файлы размером в 2 тебибайта, а имена файлов ограничены 255 байтами.

Ядро Linux поддерживает три уровня ведения логов:

Journal — состоит из записи метаданных и содержимого файлов в лог-файл до внесения изменений в основную файловую систему, тем самым обеспечивая наиболее полное логирование данных. Если случится какая-нибудь аварийная ситуация, то можно перечитать лог-файл и восстановить потерянную информацию. Недостатком данного уровня ведения логов является то, что он снижает производительность системы.

Ordered — процесс сохранения данных выполняется в определенном порядке: сначала в лог-файл записываются метаданные, затем содержимое файла записывается в основную файловую систему и уже тогда метаданные соединяются с основной файловой системой. В случае сбоя, основная файловая система не будет повреждена; риску повреждения подвергаются только те файлы, которые находятся во время сбоя непосредственно в процессе записи.

Writeback — уровень ведения лог-файла, при котором в него заносятся только метаданные, а содержимое файла записывается непосредственно в основную файловую систему. Из-за отсутствия синхронизации метаданных и содержимого файлов, в случае сбоя системы они, скорее всего, окажутся поврежденными.

Файловая система ext4

Файловая система ext4 была представлена в октябре 2008 года вместе с ядром Linux 2.6.28. Она поддерживает максимальный размер файла в 16 тебибайт и ограничивает максимальную длину имени файла 255 байтами.

Особенности файловой системы ext4

Давайте рассмотрим основной функционал файловой системы ext4:

Обратная совместимость. Файловая система ext4 поддерживает обратную совместимость с файловыми системами ext3 и ext2. Дополнительной функцией является автоматическое монтирование файловой системы ext3 в режиме ext3 с помощью драйвера ext4.

Улучшения распределения. Файловая система ext4 более эффективно распределяет блоки данных перед их записью на диск. Это повышает производительность как чтения, так и записи.

Многоблочное распределение. Особый механизм распределения блоков ищет свободные блоки, которые можно использовать для записи данных на диск. Файловая система ext4 задействует многоблочное распределение, позволяющее распределять несколько блоков всего лишь одним вызовом. Это уменьшает фрагментацию диска.

Отложенное распределение. Функция отложенного распределения выделяет блоки только при записи файла на диск. Благодаря этой функции кэш-память не заполняется ненужными данными, а производительность системы повышается.

Неограниченное количество подкаталогов. Ядро Linux версии 2.6.23 поддерживает неограниченное количество подкаталогов. Файловая система ext4 ввела древовидную структуру данных HTree, чтобы избежать снижения производительности. HTree представляет собой специализированную версию B-дерева.

Подсчет контрольных сумм. Файловая система ext4 использует подсчет контрольной суммы файлов. Данный механизм был введен для снижения риска повреждения файлов. Система ведения логов является наиболее используемой частью диска. Когда происходит сбой оборудования, блоки становятся непригодными для использования и происходит повреждение файлов. Используя подсчет контрольной суммы, система постоянно проверяет, не поврежден ли блок. Этот процесс также повышает производительность, поскольку сокращает время работы с лог-файлом.

Быстрая проверка файловой системы. Файловая система ext4 помечает нераспределенные группы блоков. Время, необходимое для выполнения команды проверки диска fsck , значительно сокращается, поскольку отмеченные группы пропускаются. Это повышает общую производительность.

Онлайн-дефрагментация. Фрагментация диска приводит к снижению производительности файловой системы, что было серьезной проблемой для ext2 и ext3. Файловая система ext4 поддерживает утилиту e4defrag, которая позволяет пользователям дефрагментировать отдельные файлы или всю файловую систему.

Ограничения файловой системы ext4

Хотя файловая система ext4 считается лучшей файловой системой для дистрибутивов Linux, есть несколько ограничений, которые следует учитывать в вашей дальнейшей работе:

Восстановление поврежденных данных. Файловая система ext4 не может обнаружить или восстановить поврежденные данные, уже записанные на диск.

Максимальный размер тома установлен в 1 эксбибайт. Однако файловая система не может обрабатывать более 100 тебибайт данных без значительной потери производительности и увеличения фрагментации диска.

Альтернативные файловые системы

Существует несколько альтернативных файловых систем, поддерживаемых ядром Linux.

XFS — это 64-разрядная файловая система, которая впервые была представлена в 1994 году и встроена в ядро Linux с 2001 года. XFS поддерживает максимальный размер файла в 8 эксбибайт и ограничивает длину имени файла 255 байтами. Она поддерживает ведение логов и, как и ext4, сохраняет изменения в лог-файле до того, как они будут зафиксированы в основной файловой системе. Это снижает вероятность повреждения файлов.

Данные структурированы в виде B + -деревьев, что обеспечивает эффективное распределение пространства и, следовательно, повышение производительности.

Основным недостатком этой системы является сложный процесс изменения размера существующей файловой системы XFS.

OpenZFS

OpenZFS — это платформа, которая объединяет функционал традиционных файловых систем и диспетчера томов. Впервые была представлена в 2013 году. OpenZFS поддерживает максимальный размер файла в 16 эксбибайт и ограничивает максимальную длину имени файла 255 символами. В качестве особенностей данной системы можно выделить защиту от повреждения данных, шифрование данных, поддержку накопителей увеличенного объема, копирование при записи и RAID-Z.

Основным недостатком OpenZFS является юридическая несовместимость между лицензиями CDDL (OpenZFS) и GPL (ядро Linux). Эта проблема решается путем компиляции и загрузки кода ZFS в ядро Linux.

Btrfs

Некоторые особенности Btrfs включают в себя:

добавление и удаление блочных устройств в режиме онлайн;

настраиваемое для каждого файла или тома сжатие;

контрольные суммы и возможность создания файлов подкачки и разделов подкачки.

ReiserFS

ReiserFS — это альтернатива файловой системе ext3, которая обладает улучшенной производительностью и расширенным функционалом. Ранее, ReiserFS использовалась в качестве файловой системы по умолчанию в SUSE Linux. ReiserFS поддерживает динамическое изменение размеров файловой системы. К недостаткам можно отнести относительно низкую производительность.

Примечание: Такие файловые системы, как NTFS, FAT и HFS могут использоваться в Linux, но корневая файловая система Linux на них не устанавливается, поскольку они для этого не предназначены. Swap — это файл подкачки, служащий источником дополнительной памяти в тех случаях, когда для выполнения программы требуется больше оперативной памяти, чем имеется в компьютере, — он не является отдельной файловой системой.

Как узнать, какая у меня файловая система?

Способ №1: Использование команды df

Команда df отображает информацию об использовании дискового пространства файловой системы. Для указания того, что нам нужно вывести тип файловой системы, используйте следующую команду:

$ df -Th | grep "^/dev"


Как вы можете видеть, у меня используется файловая система ext4 (см. раздел /dev/sda1).

Примечание: Имена дисков в Linux расположены в алфавитном порядке. /dev/sda — это первый жесткий диск (основной), /dev/sdb — второй и т.д. Цифры относятся к разделам, поэтому /dev/sda1 — это первый раздел первого диска.

Способ №2: Использование команды fsck

Команда fsck применяется для проверки и, при необходимости, восстановления файловых систем Linux. При этом она также может отображать и тип файловой системы на указанных разделах диска, например:



Способ №3: Использование команды lsblk

Команда lsblk отображает информацию о блочных устройствах. Добавив опцию -f , мы также получим и информацию о типе файловой системе:



Способ №4: Использование команды mount

Команда mount применяется для монтирования файловой системы в Linux. Её также можно использовать для монтирования ISO-образа, удаленной файловой системы Linux и многого другого. Чтобы узнать тип файловой системы, используйте следующую комбинацию:

Перевод поста HTG Explains: Which Linux File System Should You Choose? (2010 год) с некоторыми дополнениями и уточнениями.

Журналирование

Журналирование в том или ином виде применяется практически во всех современных файловых системах.

Journal

ext

Файловые системы Ext

Характеристики Ext :

  • максимальный размер файла: 2GB;
  • максимальный размер раздела: 2GB;
  • максимальный размер имени 255 символов.

Мы не будем её рассматривать, т.к. скорее всего вы уже никогда с ней не столкнётесь.

Рекомендации по использованию:

Рекомендации по использованию:

  • максимальный размер файла: 16 TB;
  • максимальный размер раздела: 16 TB;
  • максимальный размер имени файла: 255 символов.

Рекомендации по использованию:

  • наилучший выбор для SSD;
  • наилучшая производительность по сравнению с предыдущими Etx-системами;
  • она так же отлично подходит в качестве файловой системы для серверов баз данных, хотя сама система и моложе Ext3 .

BtrFS

  • максимальный размер файла: 16 EB (Exabyte);
  • максимальный размер раздела: 16 EB;
  • максимальный размер имени файла: 255 символов.

Рекомендации по использованию:

btrfs_vs_ext4

ReizerFS

  • максимальный размер файла: 1 EB (Exabyte);
  • максимальный размер раздела: 16 TB;
  • максимальный размер имени файла: 4032 байт, но ограничено до 255 символов Linux VFS.

Рекомендации по использованию:

  • максимальный размер файла: 16 EB (Exabyte);
  • максимальный размер раздела: 256 ZiB (Zebibyte);
  • максимальный размер имени файла: 255 байт.

Рекомендации по использованию:

На домашнем компьютере озадачился выбором файловой системы для своего домашнего раздела и специального раздела для backup, пока что по критерию - производительность, о надёжности пока не беспокоюсь ибо бекапы рулят

Желание подобрать ФС возникло после того как ощутил разницу между копирование больших файлов на Ext4 и ReiserFS, ReiserFS видимо не для этого должна использоваться

Для тестов использовал наиболее типичные для моего домашнего компьютера задачи (копирование больших и маленьких файлов, поиск текста в исходниках, удаление хлама, make clean)

cmd1="cp -r /media/media4/video/best $dest"
cmd2="rsync -rlhtgopu /media/media4/backup $dest"
cmd3="grep linux -sir $dest/backup/wine-src/"
cmd4="find $dest -type f -delete"

  1. В качестве данных использовал DVDRipы фильмов и свой старенький backup (фотки и сорци кое каких собираемых руками программ)
  2. данные перемещались с Sata на IDE
  3. замеры проводились в помощью /usr/bin/time
  4. между тестами 10 минутные паузы, чтобы устаканить uptime
  5. раздел размещён на LVM
  6. размер ФС подобран так чтобы данные заполняли его на 2/3

1,7G /media/media4/backup/ - 40285 файлов (AD0 Foto home.e2i.bz2 Transmission video Video wine-src)
7,4G /media/media4/video/best/ - 4 файла DVDRIP

Полным победителем оказывается vfat, открытая реализация ФС от МС - ужас, а ведь некоторых это может даже впечатлить

Но если отбросить архаику(ext2), экзотику(xfs,reiserfs) и извращения(vfat)(не скажу почему) и оставить наиболее распространённые и поддерживаемые разработчиками файловые системы то картинка проясняется, видим

что у Ext3 вроде бы больше плюсов перед всеми, но Ext4 смотрится вкуснее особенно если выкинуть btrfs

Похоже, что для обычного серферского компа, на котором крутится браузер с парой графических программ лучше подойдёт Ext4

Хотя если важнее поиск по файлам, работа с исходниками и системами контроля версий и переход на новые версии ядна не предвидится, то смысла использовать Ext4 нет

Использовать так (после правки путей. ):

ps: Весьма смущает результаты повторного поиска, почему то он всегда долще чем первый на любых ФС, как будто ФС не умеют кешировать данные

pss: при создании и монтировании файловых системы применялись стандартные опции(смотреть тест), тоесть ни каких опций не применялось

psss: добавлены результаты тестирования jfs, результаты не радуют


В прошлый раз мы тестировали производительность файловой системы ReFS в Windows 10. Там мы затронули некоторые ФС из мира Linux, которые показали достаточно вялые результаты, поскольку из-за ограничений Windows чтение и запись были недостаточно хорошо реализованы. На сей раз подобная несправедливость будет устранена, теперь роли меняются, и файловые системы NTFS, FAT32 и exFAT уже сами становятся гостями. Методика тестирования была усовершенствована, теперь все операции выполняются специальным скриптом, с точностью до миллисекунды замеряющим время, затраченное на определенную операцию. Кроме того был изменен набор данных, вместо поочередного копирования групп различных файлов проводится копирование сразу всех файлов разных типов. Также тестирование теперь не ограничивается только жестким диском, здесь были задействованы более актуальные в настоящее время твердотельные и flash накопители. На каждом из них для размещения тестовых данных был создан раздел объемом 4 Гб, вторым устройством для перемещения данных выступал созданный в оперативной памяти раздел объемом 2304 Мб с файловой системой TMPFS. Поскольку flash-память имеет ограниченное количество циклов перезаписи, то в оценке производительности на данном типе носителей участвовали только нежурналируемые файловые системы.

реклама

var firedYa28 = false; window.addEventListener('load', () => < if(navigator.userAgent.indexOf("Chrome-Lighthouse") < window.yaContextCb.push(()=>< Ya.Context.AdvManager.render(< renderTo: 'yandex_rtb_R-A-630193-28', blockId: 'R-A-630193-28' >) >) >, 3000); > > >);

Тестовая система:

  • Процессор: Xeon E5440 @ 3.4 ГГц
  • GIGABYTE GA-P35-DS3L
  • Оперативная память: 3584 МБ DDR2-800
  • Жесткий диск: Seagate Barracuda 7200.10 3250410AS 250 ГБ
  • Твердотельный накопитель: SanDisk SDSSDHII-120G-G25 120 ГБ
  • MicroSD карта SanDisk Ultra 16 Гб UHS-I, поключенная с помощью адаптера MXT
  • Ubuntu 16.04 x64 с последними обновлениями

Набор данных:

  • 100 MP3 файлов - 681,3 Мб
  • 880 JPEG изображений 268,8 Мб
  • 4 видеоролика в формате MP4 - 492,7 Мб
  • 1 ISO образ - 583 Мб
  • Суммарный объем:

реклама

Краткая характеристика участников тестирования:

EXT2 - расширенная версия первой файловой системы EXT для ОС на ядре Linux.

EXT3 - журналируемая EXT2.

реклама

EXT4 - значительно расширенная по функционалу EXT3.

BTRFS - прогрессивная файловая система, использующая СУБД-подобную структуру , а также предлагающая множество современных опций.

F2FS - файловая система от Samsung, предназначенная для использования на flash-памяти.

ReiserFS - журналируемая ФС от компании Namesys, позволяющая изменять свой размер на лету без размонтирования.

XFS - высокопроизводительная 64-битная журналируемая файловая система, созданная компанией Silicon Graphics.

JFS - 64-битная журналируемая ФС, разработанная IBM с прицелом на высокую производительность, надёжность и масштабируемость для многопроцессорных компьютеров.

HFS+ - файловая система, использующаяся в macOS.

NTFS - ФС для Windows NT, выросшая из HPFS, совместной разработки IBM и Microsoft для OS/2.

FAT32 - усовершенствованная версия файловой системы FAT для DOS и Windows.

exFAT - расширенная версия FAT32, предназначенная для flash-накопителей.

Результаты тестов:

Итак, для начала запишем наши данные на жесткий диск с гораздо более быстрой оперативной памяти. Считывание происходит моментально, а вот скорость записи служит характеристикой быстродействия конкретной файловой системы для данного типа накопителя.


Новая файловая система F2FS демонстрирует отличный результат, опережая своих оппонентов. За ней следуют продвинутые журналируемые ФС, в основном использующиеся в NIX системах. Гости из Windows, а также устаревшие EXT2 и EXT3 заметно отстают.

Теперь проделаем тоже самое, но уже с быстрым твердотельным накопителем.


Разрыв между первым и замыкающим участниками заметно вырос. На сей раз в лидерах созданная профессионалами Sun Microsystems система XFS, которая показала результат близкий к максимальной пропускной способности интерфейса SATA-II. BTRFS, все еще считающая в некоторых аспектах не совсем стабильной, находится в нижней части списка. Работающая в пользовательском пространстве с помощью специального драйвера, NTFS показала почти в четверо более низкий результат, чем XFS.

А теперь данные будут переноситься наоборот с дисков в ОЗУ. Так как запись происходит очень быстро, то распределение файловых систем в диаграмме будет зависеть от их производительности при считывании.


Ситуация похожа на ту, которая была продемонстрирована в первом тесте. Но тут FAT32 поднялась сразу на семь позиций, а на ее место переехала BTRFS. Устаревшие EXT2 и EXT3 снова замыкают список.

Теперь очередь за SSD.


Видно, что разница сократилась, поскольку и твердотельный накопитель и оперативная память довольно быстрые устройства, и одно лишь это устраняет различные недостатки, присущие каждой их файловых систем. XFS выдала просто ошеломительный результат, практически уперевшись в пропускную способность SATA-II. Более усложненная BTRFS на второй позиции. Несмотря на прослойку в виде FUSE, NTFS заняла довольно почетное место.

Настала очередь flash-накопителей.


exFAT обошла F2FS в тесте записи примерно на 18%. EXT2, как и в предыдущих испытаниях, плетется в конце.

Ну и, наконец, чтение с flash-памяти.


FAT32 показывает, кто здесь царь. Несмотря на почтенный возраст, она и не собирается сдавать своих позиций. К сожалению максимальный размер файла в FAT32 ограничен четырьмя гигабайтами, что совершенно не подходит для тех же фильмов в высоком качестве. Однако, ее замена в лице exFAT отменяет данный изъян ценой всего лишь десятипроцентной потери производительности.

И ради интереса был проведен еще один тест с участием только RAM-дисков (копирование ISO-образа).


Заключение

Мир Linux открывает перед пользователями Windows множество граней, одной из которых является наличие гораздо большего количества различных файловых систем. Каждая из них имеет свои достоинства и недостатки, кто-то силен в одних ситуациях, кто-то в других. И в проведенном тестировании мы попытались выявить данное распределение сил.

В результате наших проверок выяснилось, что более новые и хорошо отлаженные файловые системы стремятся показать более высокую производительность. И наоборот, устаревшие системы уменьшают скорость выполнения операций чтения-записи. Но данное правило не всегда строго выполняется, так как характеристики конкретной файловой системы могут не всегда соответствовать определенным в текущий момент условиям использования, для которых подходит пусть менее передовая, но более подходящая система.

Разумеется в подавляющем большинстве случаев нет возможности менять файловую систему одномоментно с изменившимися критериями эксплуатации. Но в этом и не будет особой необходимости, если заранее оценить рабочее окружение и возможные сценарии использования и лишь затем принимать решение о выборе файловой системы.

Читайте также: