Настройка света вирей 3д макс

Обновлено: 08.07.2024

В первой части были рассмотрены основные принципы работы и назначение некоторых настроечных параметров VRay. А сейчас давайте посмотрим, как все это можно использовать на практике.

Сцена

sponza/files. Выбор именно этой сцены обусловлен тремя причинами. Во-первых, сцена специально предназначена для тестирования возможностей различных рендер-программ и представлена во всех основных 3d-форматах. На том же сайте отображена обширная галерея уже выполненных рендеров этой сцены, так что есть возможность сравнить свой результат с достижениями других. Во-вторых, сцена являет собой некий промежуточный вариант - это не совсем интерьер, так же как и не полноценный экстерьер. Это внутренний дворик, наглухо ограниченный четырьмя стенами. Свет внутрь проникает сверху через довольно глубокий колодец, образованный стенами дома. В сцене есть второй этаж и область под балконами, и доступ прямому свету туда затруднен. В-третьих, сцена довольно велика - около 40 метров по длинной стороне. Оригинальная сцена создавалась в LightWave. На сайте есть ее версия, адаптированная под 3ds max с материалами, с ней и будем работать. Вот как это выглядит в scan-line рендере 3ds max:



рис. 01. Так выглядит настраиваемая сцена в скан-лайн рендере3ds max. Время рендера на Athlon XP 3200 - 14 секунд.

Материалы и геометрия

VRay, как впрочем, и другие рендер-программы, предъявляет ряд требований к геометрии сцены. Геометрия обязана быть "правильной", то есть должны быть соблюдены обычные требования правильного моделирования. Геометрия не может содержать длинных тонких полигонов (полос), а стыки поверхностей должны быть выполнены без зазоров. Наличие зазоров - главная причина просачивания света сквозь углы (появления самосвечения в углах) и стыки поверхностей. Лучше, если отдельная модель представлена отдельным объектом. Например, при моделировании комнаты образующую коробку лучше сделать одним объектом, а не состоящей из шести отдельных объектов-боксов. При моделировании нужно использовать объемные "строительные" блоки, например, если стена в реальном мире всегда имеет толщину, то и в сцене не нужно пытаться моделировать ее плоскостью, не имеющей толщины. Лично я избегаю использования булевых операций для создания оконных и дверных проемов, поскольку они часто создают неоптимальную результирующую полигонную сетку. Лучший метод моделирования, который можно порекомендовать - работа с Editable poly.

VRay не так требователен к геометрии, как программы, использующие radiosity, тем не менее, хорошее моделирование - залог беспроблемного и быстрого расчета в нем. Поэтому анализ и исправление геометрии сцены при необходимости - первое, что следует сделать при подготовке к рендеру.

Достаточно важным, хотя и некритичным моментом является выбор единиц измерения в сцене. При использовании VRay наиболее удобно работать с миллиметрами. Это обусловлено диапазоном изменения значений некоторых его параметров, а использование миллиметров увеличивает точность работы с ними. Например, минимальное значение параметра Max. density фотонной карты составляет 0.001 в выбранной системе единиц измерения. Но 0.001 метра и 0.001 мм - совсем разные вещи. Конечно, столь высокая точность Max. density для фотонной карты неактуальна, но VRay имеет множество других параметров, диапазон изменения которых также основан на выбранной системе единиц. Используемую систему единиц всегда можно поменять на другую, например, при помощи утилиты Rescale World Units 3 ds max. Вот только вполне может оказаться, что большую часть уже выполненной работы придется пересчитывать. А это часы бесполезно потраченного времени.

Следует также придерживаться принципа соответствия размеров объектов сцены размерам реальных объектов. Необходимость этого обязательного требования продиктована использованием закона затухания интенсивности освещения с расстоянием в любой современной рендер-программе, рассчитывающей Global Illumination.

Поскольку я собираюсь использовать фотонные карты, необходимо настроить материалы. Как известно, VRay рассчитывает фотонные карты только для материалов типа VrayMtl. Поэтому необходимо выполнить преобразование стандартных материалов 3ds max, которые используются в нашей сцене, в материалы типа VrayMtl. Преобразование материалов довольно тривиально, нужно только изменить тип на VrayMtl, воспроизвести диффузные свойства материалов и положить в соответствующие слоты растровые карты. Поскольку некоторые материалы в оригинале имели bump, он также настраивался и в новых материалах, с теми же количественными значениями.

Объем геометрии сцены составляет 66 454 полигона, это вполне приемлемо. Количественные показатели геометрии и материалов важны - на них расходуется память, которая не может быть в дальнейшем перераспределена для других целей, например - для фотонных карт. Чем больше памяти отводится под геометрию и материалы, тем меньше ее остается для фотонов, поскольку Windows не может адресовать больше 2 гигабайт памяти. 2 Гб - это все, что доступно и системе и запущенным приложениям. Если сцена слишком велика, рендер вообще может стать невозможным. Планирование и оптимизация размера сцены - еще один немаловажный момент подготовки к расчетам.

Для планирования следует принимать цифру приблизительно в 1.5 Гб (если вы не запустили одновременно с 3ds max еще и Photoshop, Corel Draw, WinAmp, Word и IE :). Вот сцена с настроенными материалами.

Поскольку особенности нашей сцены требуют воспроизвести дневное освещение, я счел целесообразным использовать два источника света (ИС). Один из них имитирует солнце, второй - рассеянное освещение от небесного свода.

Для моделирования солнечного освещения подойдет любой ИС, который отвечает следующим трем обязательным условиям:

  • у него отсутствует спад интенсивности освещения с расстоянием;
  • его лучи параллельны друг другу;
  • он обладает световым фронтом, который можно представить частью плоскости прямоугольной или круглой формы.

В 3 ds max эти требования почти однозначно приводят к выбору ИС типа Target Direct. VrayLight не подходит, поскольку не может обеспечить параллельность лучей света (второе требование). Даже при отключении Ignore light normal в его настройках, световой фронт будет сферическим. Последнее приведет еще и к потерям излучаемых фотонов, то есть - к бесполезному увеличению времени расчетов.

Требование отсутствия затухания освещения с расстоянием не противоречит принципу физической корректности, поскольку речь идет именно о Солнце. В компьютерной графике учитывается только одна из возможных причин затухания - вследствие изменения плотности потока световой энергии в результате увеличения площади светового фронта при его распространении (увеличении радиуса сферы светового фронта со временем, или - просто расстояния от источника света). Это и приводит к затуханию с квадратом расстояния, а изменение интенсивности освещения вызвано только изменением расстояния (радиуса). Если речь идет о Солнце, то расстояние, которое лучи проделали от Солнца до Земли, просто громадно по сравнению с изменениями радиуса светового фронта в пределах Земли. Поэтому и изменение интенсивности освещения в пределах земных масштабов расстояний, будь то сотни километров или десятые доли миллиметра, ничтожно малы. Другими словами, световая сфера, дошедшая от Солнца до Земли настолько громадна, что ее поверхность можно считать плоской (причем с гораздо большим основанием, чем можно считать плоской поверхность Земли), изменение плотности светового излучения ничтожно малым, а лучи света - параллельными. И это именно физически корректно для Солнца, как для источника освещения. Совсем другое дело - обычные, земные источники света. Относительное изменение радиуса световой сферы для них всегда велико, заметно, и рассчитывать его нужно по закону квадратичного затухания.

Настройка положения и высоты Target Direct в сцене выбиралась так, чтобы наиболее интересно осветить ту часть, которая видна в камере. Волновой фронт выбран прямоугольным (Light Cone>rectangle) для облегчения его проецирования на интересующую часть сцены так, чтобы минимизировать потери при излучении фотонов. Затухание обязательно отключаем (Decay>Type>None). В качестве типа теней был выбран VRayShadow со значениями по умолчанию.

Второй источник света должен моделировать рассеянное освещение от небесного свода и потому обязательно должен быть пространственным (тип Area). В качестве такового можно выбрать ИС типа Skylight из набора 3ds max, и неплохо было бы с ним использовать подходящее изображение небесного свода в формате HDRI. Однако, учитывая то, что фотонные карты не могут работать со Skylight и HDRI, целесообразнее взять вместо него ИС типа VrayLight, которым и воспроизвести световой фронт. Впрочем, вариант с использованием Skylight+HDRI вовсе не исключен, просто здесь и сейчас я его рассматривать не буду.

Настраиваем VrayLight таким образом, чтобы он имел прямоугольную форму с размером, соответствующим размерам прямоугольного отверстия сверху дворика и располагаем его чуть ниже уровня крыши. Такое расположение минимизирует потерю фотонов, а освещение внешнего края крыши дома возложим на VRay Environment. Затухание освещения не отключаем - это не Солнце.

Наконец, для того, чтобы воспроизвести цвет неба, выставлен белый цвет для Environment 3ds max.


рис. 03. Вид сцены с положением источников и камеры.

Разрешение рендера устанавливаем 640х480, этого вполне достаточно для целей настройки освещения. После настройки, непосредственно перед финальным рендером, его нужно изменить на требуемое. Также минимизированы и параметры антиалиасинга (далее - AA): тип fixed rate, subdivs=1, можно и еще грубее.

Теперь, после расстановки освещения, необходимо настроить множители (Multiplier) для их интенсивностей. Эту операцию следует выполнять в несколько этапов. На первом - только для прямого освещения, это мы сейчас и сделаем.

Выключаем расчет GI у VRay и начинаем экспериментировать с настройками интенсивности, выполняя рендеры только с прямым освещением и регулируя Multiplier у ИС. Для данной сцены я остановился на следующих значениях: для Target Direct - 3, для VRayLight - 5 и белый Color для обоих (255, 255, 255). При настройке интенсивности света также с самого начала использовался экспоненциальный контроль экспозиции из VRay: Color mapping, тип - HSV Exponential, Dark Multiplier =1.6, Bright multiplier =1, Affect background off.



рис. 04. Так выглядит сцена с настроенным прямым освещением.

Экспоненциальный контроль хорош тем, что позволяет убирать засветы в сильно освещенных местах. В этой сцене я хочу воспроизвести ощущение достаточно яркого солнечного дня, в результате получается засвет в области крыши при приемлемой освещенности остальной сцены. Проблему помогает решить экспоненциальный контроль освещения. Вообще, необходимость в контроле засветов/затемнений вызвана тем, что современные рендеры рассчитывают физически корректные значения интенсивностей, которые далеко не всегда укладываются в "прокрустово ложе" стандартной модели RGB.


рис. 05. Параметры группы Color mapping помогают управлять экспозицией освещения.

Всего имеется три типа контроля: Linear multiply (линейный), Exponential (экспоненциальный), HSV exponential (экспоненциальный с сохранением насыщенности цвета). Различие между Exponential и HSV exponential состоит в насыщенности тонов после корректировки, при использовании Exponential изображение получается более "сдержанным", блеклым. На последующих этапах, после расчета фотонных карт и irradiance map, возможно, потребуется дополнительно подкорректировать освещение. Это вполне можно выполнить таким же образом и без пересчета карт.

Настройка фотонных карт

Для расчета освещенности выбран метод irradiance map + photon map. Сделано это в силу следующих причин: фотонная карта обеспечивает корректный и быстрый результат, карта освещенности (irradiance map) также обеспечивает скорость и при должной настройке - качество рендера. Преимущества такого метода достаточно подробно обсуждались в первой части.

Начнем с настройки фотонных карт. Прежде всего, на закладке VRay: Indirect Illumination выставляем следующие параметры:

Сейчас для первичного отскока выбран метод Global photon map с целью отладки фотонной карты. Позже, когда фотонная карта будет готова, я буду использовать Irradiance map.

Значение Secondary bounces>Multiplier установлено в максимальном значении = 1, по причине большого размера сцены и наличия труднодоступных участков для фотонов. По этой же причине значение глубины трассировки фотонов, Bounces, установлено в 20 против 10 по умолчанию.

Отключены Refractive GI caustics и Reflective GI caustics, поскольку я не планирую рассчитывать каустик-эффекты от отраженного диффузного освещения.

Самое главное, что нужно теперь определить - это количество излучаемых источниками света фотонов (subdivs). Оно должно быть достаточно большим, чтобы обеспечить требуемое качество изображения и достаточно малым, чтобы обеспечить максимальную для данных конкретных условий скорость расчета. В идеале, чем выше плотность фотонной карты, тем меньше радиус сбора (Search distance - далее SD) фотонов и тем качественнее фотонная карта. На практике же приходится учитывать временной фактор расчетов и ограничения операционной системы на память (1.5 Гб минус память на геометрию и материалы, помните?). Поэтому, разумный выбор SD и подгонка плотности фотонной карты под него - главная стратегия на этом этапе.

Критерием для выбора подходящего значения SD является анализ самой сцены. Если, например, в сцене присутствует важный хорошо видимый объект, передача светотени которого будет определяющей, выбор SD стоит привязывать к нему - SD должен быть таким, чтобы обеспечить точность передачи тени возле этого объекта. Если важного объекта нет, SD может быть выбран, исходя из размеров сцены и используемых единиц измерения (SD измеряется в установленных для сцены единицах). Поскольку в нашей сцене важных объектов нет, я предположил, что SD в пределах 50-150 миллиметров будет приемлемым, и остановился на прикидочном значении SD=100. Выбор SD позволяет сразу же определить и Max. density (разрешение фотонной карты, или ее "сжатие", далее - MD), так как между ними существует связь. Очевидно, что SD не может быть меньше MD, поскольку тогда в пределах SD не окажется ни одного фотона. Разработчики рекомендуют соотношение между SD и MD в пределах 2-6, то есть SD=MD*2…6, которым мы и воспользуемся. Обойтись вообще без MD, то бишь использовать для него нулевое значение (фотонную карту полного разрешения) не удастся, поскольку нам нужно излучить довольно большое количество фотонов, а ограничения на оперативную память не позволят этого сделать. Выбираем MD =100/6=15, в отношении величины MD всегда нужно стремиться к наименьшим из возможных значениям. Теперь рассчитаем четыре фотонных карты с разными значениями subdivs для источников света: для 3000, 5000, 7000 и 8000 subdivs на каждый. Каждую фотонную карту обязательно сохраняем в отдельный файл.

Параметры фотонной карты остаются неизменными, меняются лишь значения subdivs для источников света. Перед расчетом можно еще отключить генерацию caustic photons у источников света и у объектов (поскольку расчет каустик-эффектов от прямого освещения в этой сцене также не планируется) и убедиться в свойствах объектов, что для них установлены Generate GI/Receive GI.

  • subdivs 3000 3000 (первый и второй источники света - Target Direct и VRayLight, наше Солнце и Небо :) ;
  • излучено максимум: 18 000 000 фотонов;
  • сохранено в картах фотонов: 5 635 989;
  • потребовался объем памяти 516.4 мб;
  • размер файла на диске 315.6 мб.


Заполняющий источник света просто необходим, если вы создаете интерьер. Одного солнца VRaySun будет недостаточно, чтобы осветить даже небольшое помещение. Именно поэтому мы будем использовать дополнительный источник, который увеличит реалистичность нашей 3d-визуализации, созданной в 3ds max.

Создание заполняющего источника дневного освещения

Чтобы создать VRayLight, нужно проделать несколько действий, которые показаны на скриншоте ниже.

vray-light-create

Пошаговая инструкция создания VRayLight

Заметьте, что мы создали источник немного ниже, т.е. оставили небольшой отступ от потолка и верхней части окна. Для чего это нужно? А для того, чтобы избежать проблем с засвеченной частью потолка. Такая проблема часто мучает новичков, поэтому пришлось решить ее самым простым способом.

Затем переходим на вид сверху (горячая клавиша «T»- англ. Top-верх). Располагаем VRay Light так, как нам нужно. Если есть шторы или жалюзи, то размещаем его перед ними!

Важно! Не допускайте пересечения части штор с источником света. Это может добавить лишний шум, пятна в сцене и сильно замедлить рендер.

Вот так нужно расположить заполняющий источник света (вид сверху):

vray-light-top

Расположение объектов на виде сверху

Настраиваем VrayLight

Следующий этап — настройка. Чтобы изменить параметры VRayLight, нужно его выделить. Первый параметр — тип. По умолчанию стоит Plane (плоскость). В других случаях можно использовать другие типы, но нам сейчас нужен именно плоский вариант, размещенный на окне. Поэтому этот параметр не трогаем. Переходим сразу к яркости Multiplier. Сейчас она равняется 30. Если мы используем наши универсальные настройки VRay, то это значение слишком большое. Уменьшаем его до 4-7. Это примерные цифры. Все зависит от размера окна, размера помещения, цвета помещения (темные комнаты нуждаются в большей яркости), а так же от количества других источников света или оконных проемов.

Следующий параметр — цвет. Его рекомендуется сделать немного голубоватым, чтобы показать небесное свечение, в отличие от светильников помещения, которые предпочтительно делать с желтоватым свечением (теплый свет). В нашем случае цвет можно настроить на глаз. Подойдет примерно такой вариант цвета по RGB: 133, 176, 255. Это не принципиально, можно сделать 130, 170, 255. Так проще запомнить.

color-vraylight

Цвет свечения по RGB

Теперь нужно установить и снять важные галочки.

  • Поставить галочку Invisible. Она нужна для того, чтобы не отображалась белая плоскость источника. Нам нужно только его свечение.
  • Снять галочку Affect specular. Иначе светящаяся плоскость будет давать яркий белый свет в бликах предметов мебели.
  • Снять галочку Affect reflections. Иначе светящаяся плоскость будет отражаться на полу и предметах мебели.

galochki-vraylight

И, конечно, очень важный параметр, который отвечает за качество теней в интерьере. Это Subdivs. По умолчанию он равен 8. Но это очень мало и даст шум. Поэтому увеличиваем его сразу до 40-50. Иногда допускается значение 30, но лучше сделать больше. Можно ставить 60-70 и более. Большие цифры улучшат качество теней, но замедлят рендер. Поэтому выбираем «золотую середину» — 40-50.

Ставим VRayLight за раму

В некоторых случаях можно поставить дополнительный VRayLight за раму окна для того, чтобы он осветил саму раму и откосы, т.к. солнце VRaySun не всегда реализует эту задачу так, как нам нужно. Яркость второго источника можно сделать чуть меньше. Например, 3 или 4. Здесь уже на усмотрение. Научитесь чувствовать свет. Сравнивайте с професиональными работами, а еще лучше с фотографиями. Ведь наша задача — фотореалистичность. Этого добиться сложно, но возможно хоть как-то приблизиться. Поэтому пробуем и экспериментируем.

interior-badroom-2vraylights

Сцена спальни с двумя VrayLight (один внутри, другой снаружи)

nastroika sveta vray

1. Разместите в сцене (обязательно наличие пола, потолка, боковых стен для отражения света от них) источник освещения V-ray Plane.
Чем больше будет размер источника света - тем мягче(размытее) будут тени. Чем источник меньше - тем тени будут четче.


2. Установите в Intensity параметр Multipler так, что бы сцена не выглядела засвеченной или слишком темной:


А так же включите параметр Cast Shadows (тени) и отключите Affect reflections (источник освещения не будет виден в отражениях)

Увеличте так же параметр Subdivids с 8 до 16 (или до 24 если у вас мощный процессор).


3. Убедитесь что вы выбрали V-ray в закладке Common - Assign Render:


4. Непосредственно настройки освещения. Во вкладке Indirect Illumination измените параметры, которые я подчеркнул:


  • On - включает просчет вторичного отражения света.
  • Light Cache - метод вторичного просчета.
  • Current preset - это качество просчета (low должно хватить для сцен в которых нет большого количество мелких деталей)
  • Show Calc.Phase - будет показываться процесс просчета.
  • Mutlipass - убираем, что бы просчет проходил в одну фазу.

5. Настраиваем Light Cache и рендерим:


Subdivs - минимум ставьте 200, можете поставить 200-1000.

Number of phases говорят что нужно ставить число равное количеству ядер процессора.



2. Установите в Intensity параметр Multipler так, что бы сцена не выглядела засвеченной или слишком темной:


А так же включите параметр Cast Shadows (тени) и отключите Affect reflections (источник освещения не будет виден в отражениях)

Увеличте так же параметр Subdivids с 8 до 16 (или до 24 если у вас мощный процессор).



4. Непосредственно настройки освещения. Во вкладке Indirect Illumination измените параметры, которые я подчеркнул:


5. Настраиваем Light Cache и рендерим:


Number of phases говорят что нужно ставить число равное количеству ядер процессора.

Освещение интерьера в 3d визуализации

Настройка Vray 3d max, в последних версиях плагина, сводится к простым и нескольким действиям. Не стоит забывать, что есть и более важная тема — это понимание свойств света. Правильное освещение передает особое индивидуальное настроение интерьера, делает его художественным и привлекает к себе внимание.

Одним из самых важных качеств визуализатора, является умение разбираться в различных типах освещения.

Условно, освещение делится на два типа: искусственное (светильники) и естественное (свет от неба и солнца). Самые красивые визуализации получаются при их сочетании. Такой вариант освещения называется смешанным или комбинированным.


Смешанное освещение интерьера

В смешанном освещении интерьера, нужно обязательно учитывать один очень важный момент, что преобладать должен один из типов освещения (см. выше). Если этого не сделать, рендер получиться плоским, не объемным. Такую визуализацию не спасет ни одна постобработка.

В этом видеоуроке я использую смешанный вариант освещения, в котором преобладает дневное (направленный свет из окон).

Как вы видите, в постановке и настройке освещения нет ничего сложного. Главное, соблюдать правильность размещения источников освещения.

Видеоурок по настройке освещения интерьера без окон смотрите по ссылке Как сделать визуализацию интерьера без окон в 3ds max Vray

V-Ray — это один из самых популярных плагинов для создания фотореалистичных визуализаций. Его отличительная черта — простота в настройке и возможность получения высококачественного результата. С помощью V-Ray, применяемого в среде 3ds Max, создают материалы, освещение и камеры, взаимодействие которых в сцене приводит к быстрому созданию натуралистичного изображения.

В этой статье изучим настройки освещения с помощью V-Ray. Правильный свет очень важен для корректного создания визуализации. Он должен выявлять все лучшие качества объектов в сцене, создавать натуральные тени и обеспечивать защиту от шумов, пересветов и прочих артефактов. Рассмотрим инструменты V-Ray для настройки освещения.

Как настроить свет с помощью V-Ray в 3ds Max

1. Прежде всего скачаем и установим V-Ray. Заходим на сайт разработчика и выбираем версию V-Ray, предназначенную для 3ds Max. Скачиваем ее. Для того, чтобы скачать программу, зарегистрируйтесь на сайте.


2. Установите программу, следуя подсказкам мастера установки.


3. Запускаем 3ds Max, нажимаем клавишу F10. Перед нами панель настройки рендера. На вкладке «Common» находим свиток «Assign Renderer» и выбираем V-Ray. Нажимаем «Save as defaults».


Освещения бывают разных типов в зависимости от особенностей сцены. Разумеется, освещение для предметной визуализации будет отличаться от настроек света для экстерьера. Рассмотрим несколько основных схем освещения.

Настройка света для экстерьерной визуализации

1. Откройте сцену, в которой будет настраиваться освещение.

2. Установите источник света. Мы будем имитировать солнце. На вкладке «Create» панели инструментов выберите «Lights» и нажмите «V-Ray Sun».


3. Укажите начальную и конечную точку лучей солнца. Угол между лучом и поверхностью земли определит утренний, дневной или вечерний тип атмосферы.


4. Выберите солнце и перейдите на вкладку «Modify». Нас интересуют следующие параметры:

— Enabled — включает и отключает солнце.

— Turbidity — чем выше это значение — тем больше запыленность атмосферы.

— Intensity multiplier — параметр регулирующий яркость солнечного света.

— Size multiplier — размер солнца. чем больше параметр, тем более размытыми будут тени.

— Shadow subdivs — чем выше это число, тем качественнее тени.


5. На этом настройка солнца завершена. Настроим небо для придания большей реалистичности. Нажмите клавишу «8», откроется панель окружающей среды. Выберите карту DefaultVraySky в качестве карты окружающей среды, как показано на скриншоте.


6. Не закрывая панель окружающей среды нажмите клавишу «М», открыв редактор материалов. Перетащите карту DefaultVraySky из слота в панели окружающей среды в редактор материалов, удерживая левую кнопку мыши.


7. Редактируем карту неба в браузере материалов. Выделив карту, поставьте галочку в чекбокс «Specify sun node». Нажмите «None» в поле «Sun light» и щелкните на солнце в модельном виде. Только что мы связали солнце и небо. Теперь положение солнца будет определять яркость свечения неба, полностью имитируя состояние атмосферы в любое время суток. Остальные настройки оставим по умолчанию.


8. В общих чертах, экстрьерное освещение настроено. Запускайте рендеры и экспериментируйте со светом, чтобы добиться нужных эффектов.

Например, чтобы создать атмсоферу пасмурного дня, отключите солнце в его параметрах и оставьте светить только небо или HDRI-карту.

Настройка света для предметной визуализации

1. Откройте сцену с готовой композицией для визуализации.


2. На вкладке «Create» панели инструментов выберите «Lights» и нажмите «V-Ray Light».


3. Щелкните в той проекции, где вы хотите установить источник света. В данном примере разместим свет перед объектом.


4. Настроим параметры источника света.

— Type — этот параметр задает форму источника: плоскую, шарообразную, купольную. Форма важна в тех случаях, когда источник света виден в сцене. Для нашего случая пусть по умолчанию останется Plane (плоский).

— Intensity — позволяет установить силу цвета в люменах или относительных величинах. Оставляем относительные — их легче регулировать. Чем выше число в строке «Multiplier», тем ярче свет.

— Color — определяет колористику света.

— Invisible — источник света можно сделать невидимым в сцене, но он будет продолжать светить.

— Sampling — параметр «Subdivides» регулирует качество просчета света и теней. Чем больше число в строке, тем выше качество.

Остальные параметры лучше оставить по умолчанию.


5. Для предметной визуализации рекомендуется устанавливать несколько источников света разного размера, силы освещения и расстояния от объекта. Поместите в сцену еще два источника света по сторонам от объекта. Можете повращать их относительно сцены и порегулировать их параметры.


Такой способ не является «волшебной таблеткой» для идеального освещения, однако имитирует настоящую фотостудию, поэкспериментировав в которой, вы достигнете очень качественного результата.

Итак, мы рассмотрели основы настройки света в V-Ray. Надеемся, эта информация поможет вам в создании красивых визуализаций!

Читайте также: