Назовите все типы линий связи которые могут использоваться для организации компьютерных сетей

Обновлено: 04.07.2024

Компьютерная сеть – это группа компьютеров, соединенных линиями связи.

Для передачи данных между компьютерами могут использоваться:

специальные электрические кабели;

оптоволокно (нить из стекла или пластика, по которой идет свет);

радиоволны (в беспроводных сетях).

Объединяя компьютеры в сеть, мы получаем следующие преимущества :

быстрый обмен данными между компьютерами без использования сменных носителей ( CD - и DVD -дисков, флэш-дисков);

совместное использование ресурсов:

общих данных, которые могут быть размещены на одном компьютере;

программ, которые могут запускаться с другого компьютера;

внешних устройств (например, все компьютеры в сети могут использовать один принтер);

электронную почту и другие способы сетевого общения (чаты, форумы и т.п.).

В то же время существуют и недостатки :

необходимы денежные затраты на сетевое оборудование (кабели, вспомогательные устройства) и программное обеспечение (например, операционную систему специального типа);

снижается безопасность данных, поэтому компьютеры, на которых ведутся секретные разработки, не должны быть подключены к сети;

для настройки сети и обеспечения её работы необходим высококвалифицированный специалист – системный администратор.

Системный администратор обычно решает следующие задачи:

устанавливает и настраивает программное обеспечение;

устанавливает права доступа пользователей к ресурсам сети;

обеспечивает защиту информации;

предотвращает потерю данных в случае сбоя электропитания;

периодически делает резервные копии данных на DVD -дисках, съемных жестких дисках;

устраняет неисправности в сети.

Какие бывают сети?

По «радиусу охвата» обычно выделяют следующие типы компьютерных сетей:

персональные сети (англ. PAN - Personal Area Network ), объединяющие устройство одного человека (сотовые телефоны, карманные компьютеры, смартфоны, ноутбук и т.п.) в радиусе не более 30 м; самый известный стандарт таких сетей – Bluetooth ;

локальные сети (англ. LAN - Local Area Network ), объединяющие, как правило, компьютеры в пределах одного или нескольких соседних зданий;

корпоративные сети (англ. Corporate network ) – сети компьютеров одной организации (возможно, находящиеся в разных районах города или даже в разных городах);

городские сети (англ. MAN - Metropolitan Area Network ), объединяющие компьютеры в пределах города;

глобальные сети ( WAN - Wide Area Network ), объединяющие компьютеры в разных странах; типичный пример глобальной сети – Интернет .

Серверы и клиенты

В любой сети одни компьютеры используют ресурсы других. Для описания роли компьютеров в обмене данными вводят два термина: сервер и клиент.

Сервер – это компьютер, это компьютер, предоставляющий свои ресурсы (файлы, программы, внешние устройства и т.д.) в общее использование.

Клиент – это компьютер, использующий ресурсы сервера.

Обычно серверы – это специально выделенные мощные компьютеры, которые используются только для обработки запросов большого числа клиентских компьютеров ( рабочих станций ) и, как правило, включены постоянно. Чаще всего они находятся в отдельных помещениях, куда пользователи не имеют доступа; это повышает защищенность данных.

В крупных локальных сетях используются несколько серверов, каждый из которых решает свою задачу:

файловый сервер хранит данные и обеспечивает доступ к ним;

сервер печати обеспечивает доступ к общему принтеру;

почтовый сервер управляет электронной почтой;

серверы приложений (например, серверы баз данных) выполняют обработку информации по запросам клиентов.

hello_html_m1b63897c.jpg

Сервер получает запросы от клиентов, ставит их в очередь и после выполнения посылает каждому клиенту ответ с результатами выполнения запроса. Задача клиента – послать серверу запрос в определенном формате и после получения ответа вывести ответ на монитор пользователя. Такая технология называется « клиент-сервер ». Её используют, например, все веб-сайты в Интернете: программа-браузер (клиент) посылает запрос веб-серверу и выводит его ответ (веб-страницу) на экран.

Обмен данными

Для того чтобы люди могли полноценно общаться, нужно, чтобы они говорили на одном языке. Эта аналогия действует и для компьютерных систем, где вместо слова «язык» используется термин «протокол».

Протокол – это набор правил и соглашений, определяющих порядок обмена данными в сети.

Можно объединить в одну сеть устройства, которые используют разные протоколы обмена данными. Для этого требуется устройство «переводчик», которое называется шлюзом . Задача шлюза – «перевести» принятые данные в формат другого протокола. Шлюзы часто используют для связи между промышленными сетями (измерительной аппаратурой, датчиками) и сетями персональных компьютеров.

В современных сетях пересылаемые данные делятся на пакеты . Дело в том, что чаще всего одна линия связи используется для обмена данными между несколькими узлами. Если передавать большие файлы целиком, то получится, что сеть будет заблокирована, пока не закончится передача файла. Кроме того, в этом случае при сбое весь файл нужно передавать заново, это увеличивает нагрузку на сеть.

Если передавать отдельные пакеты, время ожидания сокращается до времени передачи одного пакета (это доли секунды), нагрузка на линию связи становится более равномерной. По сети одновременно передаются пакеты, принадлежащие нескольким файлам. На рисунке по одной линии связи (между узлами 3 и 4) одновременно выполняется передача данных от узла 2 к узлу 5 (пакеты обозначены синими прямоугольниками) и от узла 1 к узлу 6 (красные прямоугольники).

hello_html_8ccac2e.jpg

Вместе с каждым пакетом передается его контрольная сумма – число, найденное по специальному алгоритму и зависящее от всех данных пакета. Узел-приёмник рассчитывает контрольную сумму полученного блока данных и, если она не сходится с контрольной суммой, указанной в пакете, фиксируется ошибка и этот пакет (а не весь файл!) передаётся, как правило, ещё раз.

hello_html_b943e93.jpg

Казалось бы, чем меньше размер пакета, тем лучше. Однако это не так, потому что любой пакет кроме «полезных» данных содержит служебную информацию: адреса отправителя и получателя, контрольную сумму. Поэтому в каждом случае ест некоторый оптимальный размер пакета, который зависит от многих условий (например, от уровня помех, количества компьютеров в сети, предаваемых данных и т.д.). Чаще всего для обмена данными в локальных сетях и в Интернете используются пакеты размером не более 1,5 Кбайт.

Что такое компьютерная сеть?

Какие каналы связи могут использоваться в сетях?

Какие преимущества даёт объединение компьютеров в сеть? Что при этом ухудшается?

Средой передачи информации называются те линии связи (или каналы связи), по которым производится обмен информацией между компьютерами. В подавляющем большинстве компьютерных сетей (особенно локальных) используются проводные или кабельные каналы связи, хотя существуют и беспроводные сети, которые сейчас находят все более широкое применение, особенно в портативных компьютерах.

Но это еще не все. Передача на большие расстояния при любом типе кабеля требует сложной передающей и приемной аппаратуры, так как при этом необходимо формировать мощный сигнал на передающем конце и детектировать слабый сигнал на приемном конце. При последовательной передаче для этого требуется всего один передатчик и один приемник. При параллельной же количество требуемых передатчиков и приемников возрастает пропорционально разрядности используемого параллельного кода. В связи с этим, даже если разрабатывается сеть незначительной длины (порядка десятка метров) чаще всего выбирают последовательную передачу.

К тому же при параллельной передаче чрезвычайно важно, чтобы длины отдельных кабелей были точно равны друг другу. Иначе в результате прохождения по кабелям разной длины между сигналами на приемном конце образуется временной сдвиг, который может привести к сбоям в работе или даже к полной неработоспособности сети. Например, при скорости передачи 100 Мбит/с и длительности бита 10 нс этот временной сдвиг не должен превышать 5—10 нс. Такую величину сдвига дает разница в длинах кабелей в 1—2 метра. При длине кабеля 1000 метров это составляет 0,1—0,2%.

Надо отметить, что в некоторых высокоскоростных локальных сетях все-таки используют параллельную передачу по 2—4 кабелям, что позволяет при заданной скорости передачи применять более дешевые кабели с меньшей полосой пропускания . Но допустимая длина кабелей при этом не превышает сотни метров. Примером может служить сегмент 100BASE-T4 сети Fast Ethernet .

Промышленностью выпускается огромное количество типов кабелей, например, только одна крупнейшая кабельная компания Belden предлагает более 2000 их наименований. Но все кабели можно разделить на три большие группы:

  • электрические (медные) кабели на основе витых пар проводов (twisted pair), которые делятся на экранированные ( shielded twisted pair, STP ) и неэкранированные (unshielded twisted pair, UTP );
  • электрические (медные) коаксиальные кабели ( coaxial cable );
  • оптоволоконные кабели ( fiber optic ).

Каждый тип кабеля имеет свои преимущества и недостатки, так что при выборе надо учитывать как особенности решаемой задачи, так и особенности конкретной сети, в том числе и используемую топологию.

Можно выделить следующие основные параметры кабелей, принципиально важные для использования в локальных сетях:

  • Полоса пропускания кабеля (частотный диапазон сигналов, пропускаемых кабелем) и затухание сигнала в кабеле. Два этих параметра тесно связаны между собой, так как с ростом частоты сигнала растет затухание сигнала . Надо выбирать кабель, который на заданной частоте сигнала имеет приемлемое затухание . Или же надо выбирать частоту сигнала, на которой затухание еще приемлемо. Затухание измеряется в децибелах и пропорционально длине кабеля.
  • Помехозащищенность кабеля и обеспечиваемая им секретность передачи информации. Эти два взаимосвязанных параметра показывают, как кабель взаимодействует с окружающей средой, то есть, как он реагирует на внешние помехи, и насколько просто прослушать информацию, передаваемую по кабелю.
  • Скорость распространения сигнала по кабелю или, обратный параметр – задержка сигнала на метр длины кабеля. Этот параметр имеет принципиальное значение при выборе длины сети. Типичные величины скорости распространения сигнала – от 0,6 до 0,8 от скорости распространения света в вакууме. Соответственно типичные величины задержек – от 4 до 5 нс/м.
  • Для электрических кабелей очень важна величина волнового сопротивления кабеля. Волновое сопротивление важно учитывать при согласовании кабеля для предотвращения отражения сигнала от концов кабеля. Волновое сопротивление зависит от формы и взаиморасположения проводников, от технологии изготовления и материала диэлектрика кабеля. Типичные значения волнового сопротивления – от 50 до 150 Ом.

В настоящее время действуют следующие стандарты на кабели:

  • EIA / TIA 568 (Commercial Building Telecommunications Cabling Standard) – американский;
  • ISO/IEC IS 11801 (Generic cabling for customer premises ) – международный;
  • CENELEC EN 50173 (Generic cabling systems ) – европейский.

Эти стандарты описывают практически одинаковые кабельные системы, но отличаются терминологией и нормами на параметры. В данном курсе предлагается придерживаться терминологии стандарта EIA / TIA 568.

7. ФИЗИЧЕСКИЙ УРОВЕНЬ ПЕРЕДАЧИ ДАННЫХ

7.1. Каналы связи

Линия связи, ( line ) (рис. 21) состоит в общем случае из физической среды, по которой передаются электрические информационные сигналы, аппаратуры передачи дан­ных и промежуточной аппаратуры. Синонимом термина линия связи являет­ся термин канал связи ( channel ).


Рис. 21. Состав линии связи

Физическая среда передачи данных ( medium ) может представлять собой кабель, то есть набор проводов, изоляционных и защитных оболочек и соединительных разъемов, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

В зависимости от среды передачи данных линии связи разделяются на следующие (рис. 22):

· кабельные (медные и волоконно-оптические);

· радиоканалы наземной и спутниковой связи.


Рис. 22. Типы линий связи

Проводные (воздушные) линии связи представляют собой провода без каких-либо изолирующих или экранирующих оплеток, проложенные между столбами и вися­щие в воздухе. По таким линиям связи традиционно передаются телефонные или телеграфные сигналы. Скоростные качества и помехоза­щищенность этих линий минимальна. Сегодня проводные линии связи быстро вытесняются кабельными .

Кабельные линии представляют собой достаточно сложную конструкцию. Кабель состоит из проводников, заключенных в несколько слоев изоляции: электрической, электромагнитной, механической, а также климатической. Кроме того, кабель может быть оснащен разъемами, позволяющими быстро выполнять присо­единение к нему различного оборудования. В компьютерных сетях применяются три основных типа кабеля: кабели на основе скрученных пар медных проводов, коак­сиальные кабели с медной жилой, а также волоконно-оптические кабели.

Скрученная пара проводов называется витой парой ( twisted pair ). Витая пара существует в экранированном варианте ( Shielded Twistedpair , STP) и неэкранированном ( Unshielded TwistedPair , UTP). Скручивание проводов снижает влияние внешних помех на полезные сигналы, передаваемые по кабелю. Коаксиальный кабель ( coaxial ) имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции. Суще­ствует несколько типов коаксиального кабеля, отличающихся характеристиками и областями применения — для локальных сетей, глобальных сетей, кабельно­го телевидения и т.п. Волоконно-оптический кабель ( opticalfiber ) состоит из тонких (5-60 мкм) волокон, по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/ с и выше) и к тому же лучше других обеспечивает защиту данных от внешних помех.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Существует большое количество различных типов каналов. Диапазоны коротких, средних и длинных волн (KB, СВ и ДВ), называемые также диапазонами амплитудной модуляции ( Amplitude Modulation , AM), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Более скоростными являются каналы, работающие на диапазонах ультракоротких волн (УКВ), для которых характерна частотная модуляция ( Frequency Modulation , FM), а также диапазонах сверхвысо­ких частот (СВЧ или microwaves ). В диапазоне СВЧ (свыше 4 ГГц) сигналы уже не отражаются ионосферой Земли и, для устойчивой связи, требуется наличие прямой видимости между передатчиком и приемником. Поэтому такие частоты используют либо спутниковые, либо радиорелейные каналы.

В компьютерных сетях сегодня применяются практически все описанные типы физических сред передачи данных, но наиболее перспективными являются волоконно-оптические. Спутниковые каналы и радиосвязь используются в тех случаях, когда кабельные связи применить нельзя — например, при прохождении канала через малонаселенную местность или же для связи с мобильным пользователем сети.

Аппаратура передачи данных ( АПД или DCEData Circuit terminating Equipment ) непосредственно связывает компьютеры или локальные сети и является, таким образом, пограничным оборудованием. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, оптические модемы, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу и прием сигнала нужной формы и мощности в физи­ческую среду.

Аппаратура пользователя линии связи, вырабатывающая данные и подключаемая непосредственно к аппаратуре передачи данных, обобщенно носит название оконечное оборудование данных (ООД или DTE — Data Terminal Equipment ). Примером DTE могут служить компьютеры или маршрутиза­торы локальных сетей. Эту аппаратуру не включают в состав линии связи.

Промежуточная аппаратура обычно используется на линиях связи большой протяженности и решает две основные задачи:

  • улучшение качества сигнала;
  • создание постоянного составного канала связи между двумя абонентами сети.

В глобальных сетях необходимо обеспечить качественную передачу сигналов на большие расстояния. Поэтому без усилителей сигналов, уста­новленных через определенные расстояния, построить территориальную линию связи невозможно.

Промежуточная аппаратура канала связи прозрачна для пользователя. В действительности промежуточная аппаратура образует сложную сеть, которую называют первичной сетью, так как сама по себе она никаких высокоуровневых служб не поддерживает, а только служит осно­вой для построения компьютерных, телефонных или иных сетей.

В зависимости от типа промежуточной аппаратуры все линии связи делятся на аналоговые и цифровые. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов. Для создания высокоскоростных каналов, которые мультиплексируют несколько низкоскоростных аналоговых абонентских каналов, обычно используется техника частотного мультиплексирования ( Frequency Division Multiplexing , FDM).

В цифровых линиях связи передаваемые сигналы имеют конечное число состоя­ний. С помощью таких сигналов передаются как компьютерные данные, так и оцифрованные речь и изображение. В цифровых каналах связи промежуточная аппаратура улучшает форму импульсов и обеспечивает их ресинхронизацию (то есть восстанавливает период их следования). Промежуточная аппаратура образования высокоскоростных цифровых каналов рабо­тает по принципу временного мультиплексирования каналов ( Time Division Multiplexing , TDM), когда каждому низкоскоростному каналу выделяется опреде­ленная доля времени (тайм-слот или квант) высокоскоростного канала.

К основным характеристикам линий связи относятся:

  • амплитудно-частотная характеристика;
  • полоса пропускания;
  • затухание;
  • помехоустойчивость;
  • перекрестные наводки на ближнем конце линии;
  • пропускная способность;
  • достоверность передачи данных;
  • удельная стоимость.

Основными являются пропускная способность и достоверность передачи данных. Они характеризуют как линии связи, так и способ передачи данных.


Рис.23. Представление периодического сигнала суммой синусоид


Рис.24. Спектральное разложение идеального импульса

Искажение передающим каналом синусоиды какой-либо частоты приводит к искажению передаваемого сигнала любой формы, особенно если синусоиды различных частот искажаются неодинаково. В результате сигналы могут плохо распознаваться.

Линия связи искажает передаваемые сигналы из-за того, что ее физические параметры отличаются от идеальных . Так, медные провода всегда представляют собой некоторую комбинацию активного сопротивления, емкостной и индуктивной нагрузки (это наиболее ярко проявляется в области высоких частот). Волоконно-оптический кабель также имеет отклонения, мешающие идеальному распространению света.

Кроме искажений сигналов, вносимых внутренними физическими параметрами линии связи, существуют и внешние помехи. Они создаются различными электричес­кими двигателями, электронными устройствами, атмосферными явлениями и т. д.

Степень искажения синусоидальных сигналов линиями связи оценивается с помо­щью таких характеристик, как амплитудно-частотная характеристика и полоса про­пускания.

Амплитудно-частотная характеристика (рис. 25) показывает, как затухает ам­плитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала.

Рис. 25. Амплитудно-частотная характеристика

Знание амплитудно-частотной характеристики реальной линии позволяет определить форму выходного сигнала для любого входного сигнала.

Полоса пропускания ( bandwidth ) - это непрерывный диапазон частот, для кото­рого отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел (обычно 0,5). То есть определяет диа­пазон частот синусоидального сигнала, которые передаются без значительных искажений. Этот параметр зависит от типа лин ии и ее протяженности.

Пропускная способность ( throughput ) линии характеризует максимально возможную скорость передачи данных по линии связи. Пропускная способность измеря­ется в битах в секунду — бит/с, а также в производных единицах, таких как килобит секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д.

Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно изме­ряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются последовательно. Такие единицы измерения, как килобит, мегабит или гигабит, в сетевых технологиях строго соответствуют степеням 10 (килобит - это 1000 бит, а мегабит - это 1 000 000 бит).

Пропускная способность линии связи зависит не только от ее характеристик, таких как амплитудно-частотная характеристика, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться данной линией связи и приемник сможет правильно распознать информацию, отправленную по линии передатчиком (рис. 26).

Рис. 26. Соответствие между полосой пропускания линии связи и спектром сигнала

Выбор способа представления дискретной информации в виде сигналов, подаваемых на линию связи, называется физическим или линейным кодированием.

Теория информации говорит, что любое различимое и непредсказуемое измене­ние принимаемого сигнала несет в себе информацию. Так большинство способов кодирования используют изменение какого-либо параметра периодического сигнала — частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, парамет­ры которого изменяются, называют несущим сигналом или несущей частотой.

Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в бодах ( baud ). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика. Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод, это соотношение зависит от способа кодирования.

На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Логическое кодирование выполняется до физического кодирования и подразумевает замену бит исходной информации новой последовательностью бит, несущей ту же информацию, но обладающей дополнительными свойствами. Дру­гим примером логического кодирования может служить шифрация данных, обес­печивающая их конфиденциальность при передаче через общественные каналы связи.

Чем выше частота несущего периодического сигнала, тем больше информации в единицу времени передается по линии и тем выше пропускная способность линии при фиксированном способе физического кодирования. Однако с увеличением частоты периодического несущего сигнала увеличивается его ширина спектра. Чем больше несоответствие между полосой пропускания линии и шириной спектра передавае­мых информационных сигналов, тем больше сигналы искажаются и тем вероятнее ошибки в распознавании информации принимающей стороной, а значит, скорость передачи информации оказывается меньше.

Связь между полосой пропускания лин ии и ее максимально возможной пропуск­ной способностью, вне зависимости от принятого способа физического кодирования, установил Клод Шеннон:

где С – максимальная пропускная способность линии, бит/с;

F – ширина полосы пропускания линии, Гц ;

РС – мощность сигнала;

РШ – мощность шума.

Из этого соотношения видно, что хотя теоретического предела пропускной спо­собности линии с фиксированной полосой пропускания не существует. Однако повышение мощности передатчика ведет к значительному уве­личению его габаритов и стоимости. Снижение уровня шума требует применения специальных кабелей с хорошими защитными экранами, что весьма дорого, а так­же снижения шума в передатчике и промежуточной аппаратуре, чего достичь весьма не просто. К тому же при достаточно типичном исходном отношении мощности сигнала к мощности шума в 100 раз повышение мощности передатчика в 2 раза даст только 15 % увеличения пропускной способ­ности линии.

Близким по сути к формуле Шеннона является соотношение, полу­ченное Найквистом, которое также определяет максимально возможную пропуск­ную способность линии связи:

где М — количество различимых состояний информационного параметра.

Хотя формула Найквиста явно не учитывает наличие шума, косвенно его влия­ние отражается в выборе количества состояний информационного сигнала. Для повышения пропускной способности канала увеличивают это количество до значительных величин, но на практике оно ограничено из-за шума на линии.

Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми явля­ются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной — волоконно-оптические линии.

Перекрестные наводки на ближнем конце ( Near End Cross Talk — NEXT) опреде­ляют помехоустойчивость кабеля к внутренним источникам помех, когда электромаг­нитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Показатель NEXT, выраженный в децибелах: , где РВЫХ и РНАВ — мощность выходного и наведенного сигнала.

В связи с тем, что в некоторых новых технологиях используется передача дан­ных одновременно по нескольким витым парам, в последнее время стал приме­няться показатель PowerSUM , являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передаю­щих пар в кабеле.

Достоверность передачи данных или интенсивно­сть битовых ошибок ( Bit Error Rate , BER) характеризует вероятность искажения для каждого передаваемого бита данных. Величина BER для каналов связи составляет, как правило, 10 -4 -10 -6 , в оптоволоконных линиях связи — 10 -9 . Значение достоверности передачи данных, например, в 10 -4 говорит о том, что в среднем из 10 000 бит искажается значение одного бита.

В глобальных сетях для передачи информации применяются следующие виды коммутации:

Большой интерес представляет глобальная информационная сеть Интернет.

Интернет объединяет множество различных компьютерных сетей (локальных, корпоративных, глобальных) и отдельных компьютеров, которые обмениваются между собой информацией по каналам общественных телекоммуникаций.

В настоящее время в Интернете существует достаточно большое количество сервисов, обеспечивающих работу со всем спектром ресурсов. Наиболее известными среди них являются:

Запись адреса электронной почты строится по определенной форме и состоит из двух частей:

Имя_пользователя, чаще всего, имеет произвольный характер и задается самим пользователем.

Имя_сервера жестко связано с выбором пользователем сервера, на котором он разместил свой почтовый ящик.

Условное разделение адресов электронной почты:

У каждой сетевой службы должен быть свой протокол. Он определяет порядок взаимодействия клиентской и серверной программ. От него зависит, что может запросить та или иная сторона, а что — не может; на что может ответить сторона, а на что — не должна. Он же определяет, в какой форме должен быть сделан запрос и как должен быть представлен ответ.

Кроме того, электронная почта позволяет:

Телеконференция - это форум, где проводятся дискуссии по отдельной теме.

Телеконференция осуществляется на базе программно-технической среды, которая обеспечивает взаимодействие пользователей. Основным достоинством телеконференций является возможность получения практически любой информации в достаточно короткие сроки.

Три типа телеконференций

Всё обеспечение сети разделяют на два вида:
1.Аппаратное – оборудование, которое обеспечивает существование и функционирование сети
2.Программное – программы необходимые для работы в сети

Чтобы сеть функционировала нужны сервера, компьютеры абонентов, устройства для объединения компьютеров в сети и линии связи между ними.

Компьютер-сервер – это высокопроизводительный компьютер, который постоянно подключён к сети и имеет бесперебойное электропитание, при этом он занимается постоянным приёмом/передачей информации по сети и обеспечивает предоставление информационных услуг в сети.

Компьютер-терминал – это наш домашний компьютер, через который мы выходим в интернет для получения и передачи информации.

Чтобы выйти в интернет не достаточно одного компьютера, ещё для этого необходим модем.

Модем – название произошло от слов модулятор/демодулятор. Модуляция – это преобразование информации из дискретной цифровой формы в аналоговую при передаче информации в сеть, демодуляция – наоборот. Информация в ЭВМ имеет дискретную двоичную форму, а линии телефонной связи, через которые выходим в интернет передают аналоговый – непрерывный сигнал, вот для того чтобы преобразовывать сигнал из одного вида в другой и нужен модем.

Модем (модулятор/демодулятор) — устройство для преобразования физической формы представления информации из компьютерного стандарта в стандарт телефонной связи и обратно.

До развития интернета самыми популярными были модемы для коммутируемых телефонных линий или как их ещё называли dial-up модемы, которые издавали шипяще-звинящие звуки в момент подключения к сети и обеспечивали скорость передачи до 8 килобит в секунду.

На скорость работы таких модемов влияла их скорость, измеряющаяся в бодах.

Бод — единица скорости передачи сигнала, измеряемая числом дискретных переходов или событий в секунду. Бод используется как единица измерения при обозначении скорости модемов для коммутируемых телефонных линий, выражающая число изменений состояния канала связи в секунду (для модема – действительную частоту несущей при передаче данных).
Названа в честь Эмиля Бодо, изобретателя кода Бодо — кодировки символов для телетайпов.

Иногда ошибочно считают, что бод — это количество бит, переданное в секунду. Но это верно лишь для двоичного кодирования. Например, в современных модемах используется квадратурная амплитудная манипуляция, и одним изменением уровня сигнала может кодироваться несколько (до 16) бит информации.
Например, при символьной скорости 2400 бод скорость передачи может составлять 9600 бит/c благодаря тому, что в каждом временном интервале передаётся 4 бита.

Кроме этого, бодами выражают полную ёмкость канала, включая служебные символы (биты), если они есть. Эффективная же скорость канала выражается другими единицами, например битами в секунду (бит/c, bps).

В высокоскоростных модемах один символ несёт несколько битов. Например, модемы V.22bis и V.32 передают 4 бита на 1 символ, V.32bis – 6 битов, а V.34 – 9.

До появления DSL модемов скорость интернета у обычных пользователей была не большой, но теперь с приходом технологий DSL и VPN скорость интернета ограничивается чаще только тарифным планом провайдера.

Также необходимым наличием, в случае подключения к интернету по выделенному каналу связи или с помощью DSL модема необходима сетевая карта.

Сетевая карта (сетевая плата или Ethernet-адаптер или NIC – network interface card) – периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети.

Существует 4 основных вида линий (каналов) связи:
1. Телефонные линии
2. Электрическая кабельная сеть
3. Оптоволоконная кабельная сеть
4. Радиосвязь (радиорелейные линии, спутники)
Все эти каналы связи различаются по пропускной способности, помехоустойчивости, стоимости.
Самый дешёвые – телефонные, т.к. их уже протянули и они используются и для обычных телефонов, самые дорогие – оптоволоконные.
Помехоустойчивые – оптоволоконные, неустойчивые – радиосвязь.
Пропускная способность — это максимальная скорость передачи информации по каналу. Измеряется в Кбит/с или Мбит/с.
Примерная оценка пропускной способности телефонных линий около 50Мбит/с, у оптоволоконных и радиосвязи до 1Гбит/с.

Основным ПО для функционирования сетей являются сетевые операционные системы на серверах: Windows Server, FreeBSD, различные версии Linux и другие.

ПО делится на два вида:
Базовое — обеспечивает поддержку работы сети по протоколу TCP/IP.
Прикладное — обеспечивает работу служб интернета — WWW, почта и другие.

Основная технология работы сети – клиент-сервер – программа-клиент на компьютере абонента сети формирует запросы, а сервер обрабатывает эти запросы.

Интернет — это всемирная система компьютерных сетей, объединённых на базе общего протокола TCP/IP, также её именуют WWW – World Wide Web – всемирная паутина или всемирная информационная сеть.

Всемирная сеть состоит из сети документов, ещё их называют веб-страницами, связанных между собой гиперссылками.

Гиперссылка (гипертекст) — это слово или участок текста, который выделен каким-либо цветом и щелчок по которому позволит перейти на другую веб-страницу или веб-сайт.

Гиперссылка, связанная с другой страницей образует гиперсвязь. Если гиперсвязь осуществляется между мультимедиа документами, то она образует систему — гипермедиа.

Веб-страницы хранятся на веб-сервере, а если страницы находятся в одном домене, то все вместе они составляют веб-сайт.

Для просмотра веб-документов в сети Интернет необходима клиент-программа — браузер.

Практически все услуги Internet построены на принципе клиент-сервер. Вся информация в Интернет хранится на серверах. Обмен информацией между серверами сети осуществляется по высокоскоростным каналам связи или магистралям.

К таким магистралям относятся: выделенные телефонные аналоговые и цифровые линии, оптические каналы связи и радиоканалы, в том числе спутниковые линии связи. Серверы, объединенные высокоскоростными магистралями, составляют базовую часть Интернет.

Отдельные пользователи подключаются к сети через компьютеры местных поставщиков услуг Интернета, Internet - провайдеров (Internet Service Provider - ISP), которые имеют постоянное подключение к Интернет. Региональный провайдер, подключается к более крупному провайдеру национального масштаба, имеющего узлы в различных городах страны.

Сети национальных провайдеров объединяются в сети транснациональных провайдеров или провайдеров первого уровня. Объединенные сети провайдеров первого уровня составляют глобальную сеть Internet.

Услуги, которые могут быть предоставлены пользователям в Интернет:

  • электронная почта E-mail;
  • компьютерная телефония;
  • передача файлов FTP;
  • терминальный доступ для интерактивной работы на удаленном компьютере TELNET;
  • глобальная система телеконференций USENET;
  • справочные службы;
  • доступ к информационным ресурсам и средства поиска информации в Интернете.

Кроме того, Интернет - это мощное средство ведения электронного бизнеса и дистанционного (интерактивного или он-лайн) обучения.

Краткая история развития компьютерных сетей

Компьютерные сети появились в результате развития телекоммуникационных технологий и компьютерной техники. То есть появились компьютеры. Они развивались. Были телекоммуникационные системы, телеграф, телефон, то есть связь. И вот люди думали, хорошо было бы если бы компьютеры могли обмениваться информацией между собой. Эта идея стала основополагающей идеей благодаря которой появились компьютерные сети.

50-е годы: мейнфреймы

50-е годы: мейнфреймы

Начало 60-х годов: многотерминальные системы

В дальнейшем к одному мейнфрейму стали подключать несколько устройств ввода-вывода, появился прообраз нынешних терминальных систем да и сетей в целом.

Начало 60-х годов: многотерминальные системы

70-е годы: первые компьютерные сети

Arpanet

Середина 70-х годов: большие интегральные схемы

Локальная сеть (Local Area Network, LAN) – объединение компьютеров, сосредоточенных на небольшой территории. В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую
одной организации.

Сетевая технология – согласованный набор программных и аппаратных средств (драйверов, сетевых адаптеров, кабелей и разъемов), а также механизмов передачи данных по линиям связи, достаточный для построения вычислительной сети.

В период с 80-х до начала 90-х годов появились и прочно вошли в нашу жизнь:

Общие принципы построения сетей

Со временем основной целью компьютерных развития сетей (помимо передачи информации) стала цель распределенного использования информационных ресурсов:

  1. Периферийных устройств: принтеры, сканеры и т. д.
  2. Данных хранящихся в оперативной памяти устройств.
  3. Вычислительных мощностей.

Достичь эту цель помогали сетевые интерфейсы. Сетевые интерфейсы это определенная логическая и/или физическая граница между взаимодействующими независимыми объектами.

Сетевые интерфейсы разделяются на:

  • Физические интерфейсы (порты).
  • Логические интерфейсы (протоколы).

Из определения обычно ничего не ясно. Порт и порт, а что порт?

Начнем с того что порт это цифра. Например 21, 25, 80.

Протокол

Протокол, например TCP/IP это адрес узла (компьютера) с указанием порта и передаваемых данных. Например что бы передать информацию по протоколу TCP/IP нужно указать следующие данные:

Пара клиент—сервер

Начнем с определений.

При этом программа может быть установлена на Клиенте, а база данных программы на Сервере.

Топология физических сетей

Под топологией сети понимается конфигурация графа, вершинам которого соответствуют конечные узлы сети (например, компьютеры) и коммуникационной оборудование (например, маршрутизаторы), а ребрам – физические или информационные связи между вершинами.

  • Полносвязная (а).
  • Ячеистая (б).
  • Кольцо (в).
  • Звезда (г).
  • Дерево (д).
  • Шина (е).

Топология сетей

Адресация узлов сети

Множество всех адресов, которые являются допустимыми в рамках некоторой схемы адресации, называется адресным пространством. Адресное пространство может
иметь плоскую (линейную) организацию или иерархическую организацию.

Для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешения адресов.

Коммутация

Соединение конечных узлов через сеть транзитных узлов называют коммутацией. Последовательность узлов, лежащих на пути от отправителя к получателю, образует маршрут.

Коммутация

Обобщенные задачи коммутации

  1. Определение информационных потоков, для которых требуется прокладывать маршруты.
  2. Маршрутизация потоков.
  3. Продвижение потоков, то есть распознавание потоков и их локальная коммутация на каждом транзитном узле.
  4. Мультиплексирование и демультиплексирование потоков.

Уровни сетевой модели OSI и уровни TCP/IP

Для упрощения структуры большинство сетей организуются в наборы уровней, каждый последующий возводится над предыдущим.

Целью каждого уровня является предоставление неких сервисов для вышестоящих уровней. При этом от них скрываются детали реализации предоставляемого сервиса.

Уровни сетевой модели OSI

Протоколы, реализующие модель OSI никогда не применялись на практике, но имена и номера уровней используются по сей день.

  1. Физический.
  2. Канальный.
  3. Сетевой.
  4. Транспортный.
  5. Сеансовый.
  6. Представления.
  7. Прикладной.

Для лучшего понимания приведу пример. Вы открываете страницу сайта в интернете. Что происходит?

Канальный уровень. Канальный уровень это технология каким образом будут связаны узлы (передающий и принимающий), тут вспоминает топологию сетей: кольцо, шина, дерево. Данный уровень определяет порядок взаимодействия между большим количеством узлов.

  1. Сетевые протоколы (IPv4 и IPv6).
  2. Протоколы маршрутизации и построения маршрутов.

Сеансовый уровень. Отвечает за управление сеансами связи. Производит отслеживание: кто, в какой момент и куда передает информацию. На этом уровне происходит синхронизация передачи данных.

Прикладной уровень. Осуществляет взаимодействие приложения (например браузера) с сетью.

Уровни TCP/IP

Набор протоколов TSP/IP основан на собственной модели, которая базируется на модели OSI.

  • Прикладной, представления, сеансовый = Прикладной.
  • Транспортный = Транспортный.
  • Сетевой = Интернет.
  • Канальный, физический = Сетевой интерфейс.

Соответствие TCP/IP - OSI

Уровень сетевого интерфейса

Уровень сетевого интерфейса (называют уровнем 2 или канальным уровнем) описывает стандартный метод связи между устройствами которые находятся в одном сегменте сети.

Этот уровень предназначен для связи расположенных недалеко сетевых интерфейсов, которые определяются по фиксированным аппаратным адресам (например MAC-адресам).

Уровень сетевого интерфейса так же определяет физические требования для обмена сигналами интерфейсов, кабелей, концентраторов, коммутаторов и точек доступа. Это подмножество называют физическим уровнем (OSI), или уровнем 1.

Например, интерфейсы первого уровня это Ethernet, Token Ring, Point-to-Point Protocol (PPP) и Fiber Distributed Data Interface (FDDI).

Немного о Ethernet на примере кадра web-страницы

Пакеты Ethernet называют кадрами. Первая строка кадра состоит из слова Frame. Эта строка содержит общую информацию о кадре.

Пример кадра

В полном заголовке Ethernet есть такие значения как DestinationAddress и SourceAddress которые содержат MAC-адреса сетевых интерфейсов.

Поле EthernetType указывает на следующий протокол более высокого уровня в кадре (IPv4).

Коммутаторы считывают адреса устройств локальной сети и ограничивают распространение сетевого трафика только этими адресами. Поэтому коммутаторы работают на уровне 2.

Уровень Интернета

Уровень интернета называют сетевым уровнем или уровнем 3. Он описывает схему адресации которая позволяет взаимодействовать устройствам в разных сетевых сегментах.

Если адрес в пакете относится к локальной сети или является широковещательным адресом в локальной сети, то по умолчанию такой пакет просто отбрасывается. Поэтому говорят, что маршрутизаторы блокируют широковещание.

Стек TCP/IP реализован корпорацией Microsoft ну уровне интернета (3). Изначально на этом уровне использовался только один протокол IPv4, позже появился протокол IPv6.

Протокол версии 4 отвечает за адресацию и маршрутизацию пакетов между узлами в десятках сегментах сети. IPv4 использует 32 разрядные адреса. 32 разрядные адреса имеют довольно ограниченное пространство, в связи с этим возникает дефицит адресов.

Протокол версии 6 использует 128 разрядные адреса. Поэтому он может определить намного больше адресов. В интернете не все маршрутизаторы поддерживают IPv6. Для поддержки IPv6 в интернете используются туннельные протоколы.

В Windows по умолчанию включены обе версии протоколов.

Транспортный уровень

Транспортный уровень модели TCP/IP представляет метод отправки и получения данных устройствами. Так же он создает отметку о предназначении данных для определенного приложения. В TCP/IP входят два протокола транспортного уровня:

  1. Протокол TCP. Протокол принимает данные у приложения и обрабатывает их как поток байт.Байты группируются, нумеруются и доставляются на сетевой хост. Получатель подтверждает получение этих данных. Если подтверждение не получено, то отправитель отправляет данные заново.
  2. Протокол UDP.Этот протокол не предусматривает гарантию и подтверждение доставки данных. Если вам необходимо надежное подключение, то стоит использовать протокол TCP.

Прикладной уровень

Анатолий Бузов

Обучаю HTML, CSS, PHP. Создаю и продвигаю сайты, скрипты и программы. Занимаюсь информационной безопасностью. Рассмотрю различные виды сотрудничества.

Читайте также: