Отличие представления информации в книге и на экране компьютера

Обновлено: 06.07.2024

В этом параграфе обсудим способы компьютерного кодирования текстовой, графической и звуковой информации. С текстовой и графической информацией конструкторы «научили» работать ЭВМ, начиная с третьего поколения (1970-е годы). А работу со звуком «освоили» лишь машины четвертого поколения, современные персональные компьютеры. С этого момента началось распространение технологии мультимедиа.

Что принципиально нового появлялось в устройстве компьютеров с освоением ими новых видов информации? Главным образом, это периферийные устройства для ввода и вывода текстов, графики, видео, звука. Процессор же и оперативная память по своим функциям изменились мало. Существенно возросло их быстродействие, объем памяти. Но как это было на первых поколениях ЭВМ, так и осталось на современных ПК — основным навыком процессора в обработке данных является умение выполнять вычисления с двоичными числами. Обработка текста, графики и звука представляет собой тоже обработку числовых данных. Если сказать еще точнее, то это обработка целых чисел. По этой причине компьютерные технологии называют цифровыми технологиями.

О том, как текст, графика и звук сводятся к целым числам, будет рассказано дальше. Предварительно отметим, что здесь мы снова встретимся с главной формулой информатики:

Смысл входящих в нее величин здесь следующий: i — разрядность ячейки памяти (в битах), N — количество различных целых положительных чисел, которые можно записать в эту ячейку.

Текстовая информация

Принципиально важно, что текстовая информация уже дискретна — состоит из отдельных знаков. Поэтому возникает лишь технический вопрос — как разместить ее в памяти компьютера.

Напомним о байтовом принципе организации памяти компьютеров, обсуждавшемся в курсе информатики основной школы. Вернемся к рис. 1.5. Каждая клеточка на нем обозначает бит памяти. Восемь подряд расположенных битов образуют байт памяти. Байты пронумерованы. Порядковый номер байта определяет его адрес в памяти компьютера. Именно по адресам процессор обращается к данным, читая или записывая их в память (рис. 1.10).


Рис. 1.10. Байтовая организация памяти

Поскольку в мире много языков и много алфавитов, постепенно совершается переход на международную систему кодировки Unicode, в которой используются многобайтовые коды. Например, если код символа занимает 2 байта, то с его помощью можно закодировать 2 16 = 65 536 различных символов.

Текстовый документ, хранящийся в памяти компьютера, состоит не только из кодов символьного алфавита. В нем также содержатся коды, управляющие форматами текста при его отображении на мониторе или на печати: тип и размер шрифта, положение строк, поля и отступы и пр. Кроме того, текстовые процессоры (например, Microsoft Word) позволяют включать в документ и редактировать такие «нелинейные» объекты, как таблицы, оглавления, ссылки и гиперссылки, историю вносимых изменений и т. д. Всё это также представляется в виде последовательности байтовых кодов.

Графическая информация

Из курса информатики 7-9 классов вы знакомы с общими принципами компьютерной графики, с графическими технологиями. Здесь мы немного подробнее, чем это делалось раньше, рассмотрим способы представления графических изображений в памяти компьютера.

Принцип дискретности компьютерных данных справедлив и для графики. Здесь можно говорить о дискретном представлении изображения

Дискретное представление изображения. Изображение на экране монитора дискретно. Оно составляется из отдельных точек, которые называются пикселями (picture elements — элементы рисунка). Это связано с техническими особенностями устройства экрана, независимо от его физической реализации, будь то монитор на электронно-лучевой трубке, жидкокристаллический или плазменный. Эти «точки» столь близки друг другу, что глаз не различает промежутков между ними, поэтому изображение воспринимается как непрерывное, сплошное. Если выводимое из компьютера изображение формируется на бумаге (принтером или плоттером), то линии на нем также выглядят непрерывными. Однако в основе всё равно лежит печать близких друг к другу точек.

В зависимости от того, на какое графическое разрешение экрана настроена операционная система компьютера, на нем могут размещаться изображения, имеющие размер 800 х 600, 1024 х 768 и более пикселей. Такая прямоугольная матрица пикселей на экране компьютера называется растром.

Качество изображения зависит не только от размера растра, но и от размера экрана монитора, который обычно характеризуется длиной диагонали. Существует параметр разрешения экрана. Этот параметр измеряется в точках на дюйм (по-английски dots per inch — dpi). У монитора с диагональю 15 дюймов размер изображения на экране составляет примерно 28 х 21 см 2 . Зная, что в одном дюйме 25,4 мм, можно рассчитать, что при работе монитора в режиме 800 х 600 пикселей разрешение экранного изображения равно 72 dpi.

При печати на бумаге разрешение должно быть намного выше. Полиграфическая печать полноцветного изображения требует разрешения 200-300 dpi. Стандартный фотоснимок размером 10 х 15 см 2 должен содержать примерно 1000 х 1500 пикселей.

Дискретное представление цвета. Восстановим ваши знания о кодировании цвета, полученные из курса информатики основной школы. Основное правило звучит так: любой цвет точки на экране компьютера получается путем смешивания трех базовых цветов: красного, зеленого, синего. Этот принцип называется цветовой моделью RGB (Red, Green, Blue).

Двоичный код цвета определяет, в каком соотношении находятся интенсивности трех базовых цветов. Если все они смешиваются в одинаковых долях, то в итоге получается белый цвет. Если все три компоненты «выключены», то цвет пикселя — черный. Все остальные цвета лежат между белым и черным.

Дискретность цвета состоит в том, что интенсивности базовых цветов могут принимать конечное число дискретных значений.

Пусть, например, размер кода цвета пикселя равен 8 битам — 1 байту. Между базовыми цветами они могут быть распределены так:


2 бита — под красный цвет, 3 бита — под зеленый и 3 бита — под синий.

Из описанного правила, в частности, следует:


Обобщение этих частных примеров приводит к следующему правилу. Если размер кода цвета равен b битов, то количество цветов (размер палитры) вычисляется по формуле:

Величину b в компьютерной графике называют битовой глубиной цвета.

Еще один пример. Битовая глубина цвета равна 24. Размер палитры будет равен:

К = 2 24 = 16 777216.

В компьютерной графике используются разные цветовые модели для изображения на экране, получаемого путем излучения света, и изображения на бумаге, формируемого с помощью отражения света. Первую модель мы уже рассмотрели — это модель RGB. Вторая модель носит название CMYK.

Цвет, который мы видим на листе бумаги, — это отражение белого (солнечного) света. Нанесенная на бумагу краска поглощает часть палитры, составляющей белый цвет, а другую часть отражает. Таким образом, нужный цвет на бумаге получают путем «вычитания» из белого света «ненужных красок». Поэтому в цветной полиграфии действует не правило сложения цветов (как на экране компьютера), а правило вычитания. Мы не будем углубляться в механизм такого способа цветообразования. Расшифруем лишь аббревиатуру CMYK: Cyan — голубой, Magenta — пурпурный, Yellow — желтый, ЫасК — черный.

Растровая и векторная графика

О двух технологиях компьютерной графики — растровой и векторной — вы знаете из курса информатики основной школы.

В растровой графике графическая информация — это совокупность данных о цвете каждого пикселя на экране. Это то, о чем говорилось выше. В векторной графике графическая информация — это данные, математически описывающие графические примитивы, составляющие рисунок: прямые, дуги, прямоугольники, овалы и пр. Положение и форма графических примитивов представляются в системе экранных координат.

Растровую графику (редакторы растрового типа) применяют при разработке электронных (мультимедийных) и полиграфических изданий. Растровые иллюстрации редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют сканированные иллюстрации, подготовленные художником на бумаге, или фотографии. Для ввода растровых изображений в компьютер применяются цифровые фото- и видеокамеры. Большинство графических редакторов растрового типа в большей мере ориентированы не на создание изображений, а на их обработку. Достоинство растровой графики — эффективное представление изображений фотографического качества. Основной недостаток растрового способа представления изображения — большой объем занимаемой памяти. Для его сокращения приходится применять различные способы сжатия данных. Другой недостаток растровых изображений связан с искажением изображения при его масштабировании. Поскольку изображение состоит из фиксированного числа точек, увеличение изображения приводит к тому, что эти точки становятся крупнее. Увеличение размера точек растра визуально искажает иллюстрацию и делает ее грубой.

Векторные графические редакторы предназначены в первую очередь для создания иллюстраций и в меньшей степени для их обработки.

Достоинства векторной графики — сравнительно небольшой объем памяти, занимаемой векторными файлами, масштабирование изображения без потери качества. Однако средствами векторной графики проблематично получить высококачественное художественное изображение. Обычно средства векторной графики используют не для создания художественных композиций, а для оформительских, чертежных и проектно-конструкторских работ.

Графическая информация сохраняется в файлах на диске. Существуют разнообразные форматы графических файлов. Они делятся на растровые и векторные. Растровые графические файлы (форматы JPEG, BMP, TIFF и другие) хранят информацию о цвете каждого пикселя изображения на экране. В графических файлах векторного формата (например, WMF, CGM) содержатся описания графических примитивов, составляющих рисунок.

Следует понимать, что графические данные, помещаемые в видеопамять и выводимые на экран, имеют растровый формат вне зависимости от того, с помощью каких программных средств (растровых или векторных) они получены.

Звуковая информация

Принципы дискретизации звука («оцифровки» звука) отражены на рис. 1.11.


Рис. 1.11. Оцифровка звука (у — интенсивность (уровень) звукового сигнала, t — время)

Ввод звука в компьютер производится с помощью звукового устройства (микрофона, радио и др.)» выход которого подключается к порту звуковой карты. Задача звуковой карты — с определенной частотой производить измерения уровня звукового сигнала (преобразованного в электрические колебания) и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

Промежуток времени между двумя измерениями называется периодом измерений — τс. Обратная величина называется частотой дискретизации — 1/τ (герц). Чем выше частота измерений, тем выше качество цифрового звука.

Результаты таких измерений представляются целыми положительными числами с конечным количеством разрядов. Вы уже знаете, что в таком случае получается дискретное конечное множество значений в ограниченном диапазоне. Размер этого диапазона зависит от разрядности ячейки — регистра памяти звуковой карты. Снова работает формула 2 i , где i — разрядность регистра. Число i называют также разрядностью дискретизации. Записанные данные сохраняются в файлах специальных звуковых форматов.

Существуют программы обработки звука — редакторы звука, позволяющие создавать различные музыкальные эффекты, очищать звук от шумов, согласовывать с изображениями для создания мультимедийных продуктов и т. д. С помощью специальных устройств, генерирующих звук, звуковые файлы могут преобразовываться в звуковые волны, воспринимаемые слухом человека.

При хранении оцифрованного звука приходится решать проблему уменьшения объема звуковых файлов. Для этого кроме кодирования данных без потерь, позволяющего осуществлять стопроцентное восстановление данных из сжатого потока, используется кодирование данных с потерями. Цель такого кодирования — добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных. Это достигается путем использования различных алгоритмов, сжимающих оригинальный сигнал путем выкидывания из него слабослышимых элементов. Методов сжатия, а также программ, реализующих эти методы, существует много.

Для сохранения звука без потерь используется универсальный звуковой формат файлов WAV. Наиболее известный формат «сжатого» звука (с потерями) — MP3. Он обеспечивает сжатие данных в 10 раз и более.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Представление текста в компьютере"

· использование таблицы кодировок;

· информационный объём текста.

Компьютер может работать с пятью видами информации:

Одним из самых массовых приложений ЭВМ является работа с текстами.

Имея компьютер, можно создавать тексты, не тратя на это много времени и бумагу. Носителем текста становится память компьютера. Текст на внешних носителях сохраняется в виде файла.

Как вы уже знаете, вся информация, независимо от того, какая она графическая, видео или звуковая, представляется в компьютере с помощью чисел, это всего два символа двоичного кода, 0 и 1, которые легко перевести в сигналы.

Прежде всего, вспомним о байтовом принципе организации памяти компьютера.

Как вы помните, каждая клетка обозначает бит памяти. Восемь подряд идущих битов образуют байт памяти. Байты пронумерованы. Порядковый номер байта определяет его адрес в памяти компьютера. По этим адресам процессор обращается к данным, считывает их или записывает в память.

Схема представления текста в памяти компьютера очень проста. Каждая буква алфавита, цифра, знак препинания или любой другой символ необходимый для записи текста обозначается определённым двоичным кодом, длина которого фиксирована.

Например, в системах кодировки Windows – 1251 и KОИ-8 каждый символ заменяется на восьмиразрядное целое положительное двоичное число, оно хранится в одном байте памяти. Это число является порядковым номером символа в кодовой таблице.

Мы уже говорили о том, что разрядность ячейки памяти i и количество различных целых положительных чисел, которые можно записать в эту ячейку n связаны соотношением:

Восьмиразрядный двоичный код позволяет получить 256 различных кодовых комбинаций, то есть 2 8 = 256.

С помощью 256 кодовых комбинаций можно закодировать все символы двух алфавитов (английского и русского) и все остальные дополнительные символы, расположенные на клавиатуре компьютера — цифры и знаки арифметических операций, знаки препинания и скобки и так далее, а также ряд управляющих символов, без которых невозможно создание текстового документа (удаление предыдущего символа, переход на новую строку, пробел и другие).

Мощность алфавита равна 256 символов. Сколько Килобайт памяти потребуется для сохранения 160 страниц текста, содержащего в среднем 192 символа на каждой странице?

В современном мире около 6700 живых языков и около 25 алфавитов.

Он является результатом сотрудничества Международной организации по стандартизации (ISO) с ведущими производителями компьютеров и программного обеспечения.

Этот стандарт был предложен в 1991 году некоммерческой организацией «Консорциум Юникода». С помощью этого стандарта можно закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, при этом становится ненужным переключение кодовых страниц.

В Юникод каждый символ кодируется 16-битовым двоичным кодом, то есть два байта на символ. В данном случае можно закодировать 2 16 = 65536 различных символов.

Однако в последнее время объединение Unicode приступило к кодированию письменности мёртвых языков и в этом случае 16-битового кодирования уже недостаточно. Поэтому Unicode приступил к освоению новых кодов.

Текстовый документ, который хранится в памяти компьютера, состоит из кодов символьного алфавита, кодов управления форматами текста. Также текстовые процессоры, например, Microsoft Word позволяют включать и редактировать такие объекты как таблицы, оглавления, ссылки и гиперссылки, историю вносимых изменений и так далее. Все это также представляется в виде последовательности байтовых кодов.

В зависимости от разрядности используемой кодировки информационный вес символа текста, создаваемого на компьютере, может быть равен:

• 8 бит или 1 байт — если используется восьмиразрядная кодировка;

• 16 бит или 2 байта — если используется шестнадцатиразрядная кодировка.

Информационным объёмом фрагмента текста будем называть количество битов, байтов или производных единиц (килобайтов, мегабайтов и так далее), необходимых для записи этого фрагмента заранее оговорённым способом двоичного кодирования.

Информационный объем текста, набранного на компьютере с использованием кодировки UNICODE равен 4 Килобайта. Определить количество символов в тексте.

Как мы уже говорили бывают случаи, когда, работая с текстом, программа может запросить воспользоваться другой кодировкой, например, текст в восьмибитном коде Windows перекодировать в кодировку Unicode. Давайте выясним, что произойдёт с информационным объёмом текста.

Итак, рассмотрим такой пример.

Соответствие между изображениями и кодами символов устанавливается с помощью кодовых таблиц.

В зависимости от разрядности используемой кодировки информационный вес символа текста, создаваемого на компьютере, может быть равен:

• 16 бит (2 байта) — если используется 16-разрядная кодировка.

Информационный объём фрагмента текста — это количество битов, байтов и производных единиц, необходимых для записи фрагмента оговорённым способом кодирования.

Вы уже владеете одним языком, а быть может и несколькими. Знаете некоторые понятия из химии, физики, математики и других наук. А для того, чтобы понимать и использовать компьютерный язык нужно иметь знания о представлении информации в памяти компьютера. В этой статье поговорим о представлении текста, графики, звука в ПК и рассмотрим основные положения, касающиеся этой темы.

Введение

Для того чтобы было намного проще понять, как представляются файлы в компьютере приведем несколько примеров из жизни с которыми сталкивался каждый:

  1. Вы хотите перейти дорогу, но дойдя до перекрестка, вы останавливаетесь, потому что загорелся красный свет. После небольшого ожидания цвет светофора меняется на зеленый. Машины тормозят, а вы продолжайте свой путь.
  2. Вы сильно торопитесь, когда едете на работу или учебу. Участник дорожного движения, который едет спереди двигается на низкой скорости. Вы моргаете ему фарами, он уступает вам дорогу, и вы едете дальше.

А теперь переведем эти ситуации на язык информатики – в данных ситуациях светофор и фары передают код. Красный сигнал говорит нам о том, что нужно остановиться, а моргание фарами это “код” с помощью которого мы просим уступить дорогу. Быть может вы удивитесь, но в основу любого человеческого языка тоже положен код, только символы в нем называются алфавитом. Теперь рассмотрим это определение более подробно. Итак:

Код – набор обозначений, с помощью которого можно представить информацию.

Кодирование – процесс, при котором данные переводятся в код.

По мере развития информационной сферы учеными и разработчиками предлагались многие способы кодирования информации. Некоторые из них остались незамеченными, другими же мы пользуемся до сих пор. В качестве примера приведем азбуку Морзе, разработанную Самюэлем Морзе в 1849 году. Буквы и цифры определяются в ней тремя символами:

  • Тире (длинный сигнал);
  • Точка (короткий сигнал);
  • Пауза или отсутствие сигнала.

Однако наибольшую популярность завоевал “двоичный код”, который предложил использовать Вильгельм Лейбниц в семнадцатом веке. Информация в нем определяется двумя символами – 0 и 1. Разработчикам данный метод кодирования сильно понравился из-за простоты его реализации. 0- это пропуск сигнала, а число 1- его наличие. Именно двоичное представление используется сегодня в ПК и в другой цифровой технике.

Это интересно Что такое интерфейс простыми словами 💻

Представление и устройство памяти персонального компьютера

Скорее всего, вы знаете, что внутренняя память компьютера состоит из двух частей – оперативной и основной:

Чтобы иметь представление, как работает внутренняя память компьютера, и как её использовать, нужно заглянуть внутрь системного блока. Здесь можно провести аналогию с тетрадным листом “в клеточку”. Каждая клетка содержит в себе одно из двух состояний – 0 или 1. Если в ячейке стоит 1, то это говорит о том, что данная ячейка внутренней памяти включена, если 0, то выключена. Этот способ представления информации называется цифровым кодированием.

Представление памяти пк

Каждая ячейка внутренней памяти ПК хранит в себе единицу информации, которая называется битом. Составляя различные последовательности из битов, мы можем определить различную информацию. У цифрового кодирования много преимуществ – легко копировать и переносить материалы с одного носителя на другой. При создании дубликата копия полностью идентична оригиналу, что невозможно осуществить с данными, которые представлены в аналоговой форме. Из-за большого количества преимуществ в 80-х годах 20 века люди начали использовать способы представления текста, звука и фото с помощью цифр.

Представление графических типов информации в ПК

Сейчас существует два способа представления графических данных в машинном коде.

Растровый

Суть этого способа заключается в том, что графическое изображение делится на маленькие фрагменты, которые называются пиксели. Каждый пиксель содержит в себе информацию о своем цвете. Данный способ называется растровым кодированием.

Растровое изображение

Векторный

В отличие от растрового кодирования, в данном способе представление графики описывается с помощью векторов. Каждому вектору задают координаты начала и конца, толщину и цвет. Например, для отрисовки окружности надо будет задать координаты её центра и радиус, цвет заполнения (если он есть), а также цвет и толщину контура.

векторное изображение

Текст и числа

Представление текстовой информации во внутренней памяти персонального компьютера осуществляется с помощью специальных таблиц. На данный момент, распространение получили стандарты ASCII и UTF-8

ASCII

Таблица была разработана и стандартизирована в 1963 в США. Она предназначалась для обмена данными по телетайпу. Однако сейчас, с её помощью, можно определить различные буквы, знаки и числа. Один знак в этой таблице кодируется восемью битами.

Стандарт был предложен в 1992 году. Её разработали Кен Томпсон и Роб Пайк. С помощью этой кодировки можно представить все знаки в мире. Обладает большой популярностью в интернете – большинство сервисов и сайтов используют именно это таблицу.

Для записи голоса используется микрофон и звуковая плата компьютера. Чтобы компьютер смог определить звуковую информацию – её необходимо перевести в цифровую. Для этого аналоговый сигнал поступает на аналого-цифровой преобразователь. Там он разбивается на маленькие временные кусочки, каждому из которых устанавливается величина интенсивности голоса.

представление звука в пк

В результате функция A(t) преобразуется в дискретную последовательность. Качество звуковой информации полученной на выходе определяется частотой дискретизации.

Частота дискретизации – количестве измерений уровней громкости за одну секунду. Чем больше это значение, тем лучше качество.

Видео

Заключение

Теперь вы знаете о представлении информации в памяти компьютера. Если разобраться в цифровом кодировании и устройстве внутренней памяти ПК, то вы сможете понять и другие, более серьезные разделы информатики, такие как программирование, IP-адресация и другие. Если у вас возникли вопросы по теме, то задавайте их в комментариях к статье.

Вопрос представления и кодирования информации в компьютере является очень важным вопросом компьютерной грамотности.

представление информации в компьютере

В статье «Пять поколений ЭВМ» перечисляется элементная база компьютеров разных поколений: электронные лампы, транзисторы, микросхемы. До сих пор ничего принципиально нового не появилось.

Перечисленные элементы четко распознают только два состояния: включено или выключено, есть сигнал или нет сигнала. Для того чтобы закодировать эти два состояния, достаточно двух цифр: 0 (нет сигнала) и 1 (есть сигнал).

Таким образом, с помощью комбинации 0 и 1 компьютер (с первого поколения и по сей день) способен воспринимать любую информацию: тексты, формулы, звуки и графику.

Иными словами, компьютеры обычно работают в двоичной системе счисления, состоящей из двух цифр 0 и 1. Все необходимые преобразования (в привычную для нас форму или, наоборот, в двоичную систему счисления) могут выполнить программы, работающие на компьютере.

Что такое бит и что такое байт

Байт (англ. byte) – число из восьми бит (различные комбинации из восьми нулей и единиц). Байт является единицей измерения информации.

Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binary encoding).

О представлении информации в компьютере

Чтобы перевести в цифровую форму музыкальный звук, можно применить такое устройство, как аналого-цифровой преобразователь. Он из входного звукового (аналогового) сигнала на выходе дает последовательность байтов (цифровой сигнал).

Обратный перевод можно сделать с помощью другого устройства – цифро-аналогового преобразователя, и таким образом воспроизвести записанную музыку.

На самом деле роль преобразователей (аналого-цифрового и цифро-аналогового) выполняют специальные компьютерные программы. Поэтому при использовании компьютера надобности в таких устройствах нет.

Сохранить можно не только текстовую и звуковую информацию. В виде кодов хранятся и изображения. Если посмотреть на рисунок с помощью увеличительного стекла, то видно, что он состоит из точек одинаковой величины и разного цвета – это так называемый растр.

Координаты каждой точки можно запомнить в виде числа, цвет точки – это еще одно число для последующего кодирования. Эти числа могут храниться в памяти компьютера и передаваться на любые расстояния. По ним компьютерные программы способны воспроизвести рисунок на экране монитора или напечатать его на принтере. Изображение можно увеличить или уменьшить, сделать темнее или светлее. Его можно повернуть, наклонить, растянуть.

Мы считаем, что на компьютере обрабатывается изображение. Но на самом деле компьютерные программы изменяют числа, которыми отдельные точки изображения представлены (точнее, сохранены) в памяти компьютера.

Таким образом, компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть предварительно преобразована в числовую форму при помощи соответствующих компьютерных программ.

Кодирование информации вокруг нас

Не так уж давно мы пользовались телеграфом (эта услуга остается и по сей день). При этом отправляемый текст кодируется в виде последовательностей так называемых «точек» (коротких сигналов) и «тире» (длинных сигналов), отправляется по проводам. На выходе все это декодируется и печатается на ленте.

Многие люди в недавнем прошлом обязаны были знать эту кодировку, называемую иначе «Азбукой Морзе» по имени ее изобретателя.

В музыке информация много веков кодируется с помощью нотной записи (ноты). Математические формулы используются в математике. В химии применяются химические формулы. Таких примеров кодирования информации можно привести очень много.

По сравнению с приведенными примерами, кодировка, применяемая для компьютеров, выглядит намного проще, так как в ней используются только «нули» и «единицы».

Сравнительная простота кодирования обеспечивает все многообразие представляемой в компьютере информации (от простых текстов до сложнейших графических игр и видеофильмов). Это обусловлено высочайшим быстродействием компьютеров и их способностью к почти мгновенной обработке огромных массивов данных.

Читайте также: