Почему диапазон чисел в компьютере ограничен связано ли это с двоичностью компьютерной арифметики

Обновлено: 05.07.2024

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. 10 класса. Босова Л.Л. Оглавление

§13. Представление чисел в компьютере

Самым первым видом данных, с которыми начали работать компьютеры, были числа. ЭВМ первого поколения могли производить только математические расчёты (вычисления).

Из курса информатики основной школы вы помните, что компьютеры работают с целыми и вещественными числами. Их представление в памяти осуществляется разными способами.

13.1. Представление целых чисел

Во многих задачах, решаемых на компьютере, обрабатываются целочисленные данные. Прежде всего, это задачи экономического характера, при решении которых данными служат количества акций, сотрудников, деталей, транспортных средств и др. Целые числа используются для обозначения даты и времени, для нумерации различных объектов: элементов массивов, записей в базах данных, машинных адресов и т. д. По своей природе множество целых чисел дискретно, т. к. состоит из отдельных элементов.

И хотя любое целое число можно рассматривать как вещественное, но с нулевой дробной частью, предусмотрены специальные способы представления целых чисел. Это обеспечивает: эффективное расходование памяти, повышение быстродействия, повышение точности вычислений за счёт введения операции деления нацело с остатком.

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда.

Беззнаковое представление можно использовать только для неотрицательных целых чисел.

Для получения компьютерного представления беззнакового целого числа в n-разрядной ячейке памяти достаточно перевести его в двоичную систему счисления и, при необходимости, дополнить полученный результат слева нулями до n-разрядов.

Например, десятичные числа 130 и 39 в восьмиразрядном представлении будут иметь вид:


Понятно, что существуют ограничения на числа, которые могут быть записаны в n-разрядную ячейку памяти. Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2 n -1. Минимальное число соответствует n нулям, хранящимся в n разрядах памяти, и равно нулю. Далее приведены диапазоны значений для беззнаковых целых n-разрядных чисел:


При знаковом представлении целых чисел старший разряд ячейки отводится под знак (0 — для положительных, 1 — для отрицательных чисел), а остальные разряды — под цифры числа.

Представление числа в привычной для человека форме «знак-величина», при которой старший разряд ячейки отводится под знак, а остальные разряды — под цифры числа, называется прямым кодом.

Например, прямые коды чисел 48 и -52 для восьмиразрядной ячейки равны:



В математике множество целых чисел бесконечно.

Компьютер работает с ограниченным множеством целых чисел.

Прямой код положительного числа отличается от прямого кода равного по абсолютной величине отрицательного числа только содержимым знакового разряда.

В прямом коде числа можно хранить, но выполнение арифметических операций над числами в прямом коде затруднено — оно требует более сложной архитектуры центрального процессора, «умеющего» выполнять не только сложение, но и вычитание, а также «знающего» особый алгоритм обработки не имеющего «веса» знакового разряда. Этих трудностей позволяет избежать использование дополнительного кода.

Чтобы понять сущность дополнительного кода, рассмотрим работу реверсивного счётчика, последовательность показаний которого можно представить в виде замкнутого кольца из чисел (рис. 3.5).


Рис. 3.5. Реверсивный счётчик

При возрастании показаний счётчика до максимального, например до 999, следующими его состояниями должны быть 1000, 1001, 1002 и т. д. Но для изображения старшей единицы в счётчике не хватает разряда, происходит переполнение разрядной сетки. Поэтому мы увидим 000, 001, 002 и т. д.

При убывании показаний счётчика после состояния 000 будут идти 999, 998, 997 и т. д. Но после достижения нуля последовательное вычитание единицы должно давать -1, -2, -3 и т. д.

Будем рассматривать числа 999, 998, 997 как коды чисел -1, -2, -3 и проверим на их примере соотношение: у + (-у) = 0:

1 + 999 = 1000;
2 + 998 = 1000;
3 + 997 = 1000.

С учётом того что единица переполнения теряется, мы, сложив число и код противоположного ему числа, получаем ноль!

Вот ещё несколько примеров:

5-2 = 5 + [-2] = 5 + 998 = 1003;
7-5 = 7 + [-5] = 7 + 995 = 1002.

Для устранения неоднозначности в кольце будем считать половину состояний (0-499) кодами нуля и положительных чисел, а оставшуюся половину (500-999) — кодами отрицательных чисел.

Таким образом, дополнительный код положительного числа совпадает с этим числом, а для отрицательного числа он равен дополнению его величины до числа q n , возникающего при переполнении разрядной сетки. Здесь q — основание системы счисления, n — число разрядов в разрядной сетке.

Рассмотрим алгоритм получения дополнительного n-разрядного кода отрицательного числа:

1) модуль числа представить прямым кодом в n двоичных разрядах;
2) значения всех разрядов инвертировать (все нули заменить единицами, а единицы — нулями);
3) к полученному представлению, рассматриваемому как n-разрядное неотрицательное двоичное число, прибавить единицу.

Пример 1. Найдём 16-разрядный дополнительный код отрицательного числа -201710.


Использование дополнительного кода позволяет свести операцию вычитания чисел к операции поразрядного сложения кодов этих чисел.

Выполним эту операцию в 16-разрядных машинных кодах.

Нам потребуются прямой код числа 48 и дополнительный код числа -2017.


Рассмотрим полученный результат. Это отрицательное число (об этом говорит 1 в знаковом разряде), представленное в дополнительном коде. Перейдём к прямому коду модуля соответствующего числа, по которому сможем восстановить десятичное представление результата.

Прямой код можно получить из дополнительного кода, если применить к нему операцию инвертирования и прибавить единицу.


Получаем: -111101100012 = -1969.

13.2. Представление вещественных чисел

В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.

Попробуйте обосновать это утверждение.

Вещественные числа записываются в естественной или в экспоненциальной форме.

В жизни мы чаще пользуемся естественной формой записи чисел, при которой: число представляется последовательностью десятичных цифр со знаком плюс или минус, знак плюс может опускаться, для разделения целой и дробной частей числа используется запятая.

Например: 12,34; 0,0056; -708,9.

В экспоненциальной форме вещественное число а представляется как а = ± m • q p , где m — мантисса числа, q — основание системы счисления, р — порядок числа.

Например, длину некоторого отрезка, равного 47,8 см, можно записать так:

1) 478 • 10 -1 см;
2) 47,8 • 10 0 см;
3) 4,78 • 10 1 см;
4) 0,478 • 10 2 см;
5) 0,000478 • 10 5 см.

Такое многообразие вариантов записи в экспоненциальной форме одного и того же числа не всегда удобно. Для однозначного представления вещественных чисел в компьютере используется нормализованная форма.

Нормализованная запись отличного от нуля вещественного числа 1) — это запись вида а = ± m • q p , где р — целое число (положительное, отрицательное или ноль), m — дробь, целая часть которой содержит одну значащую (ненулевую) цифру, т. е. 1 ≤ m < q.

1) Стандарт IEEE 754.

Примеры нормализации чисел:

1) 31,415926 = 3,1415926 • 10 1 ;
2) 1000 = 1,0 • 10 3 ;
3) 0,123456789 = 1,23456789 • 10 -1 ;
4) 0,00001078 = 1,078 • 108 -5 ;
5) 1000,00012 = 1,00000012 • 102 11 ;
6) AB,CDEF16 = A,BCDEF16 • 1016 1 .

Диапазон вещественных чисел в памяти компьютера очень широк, но, тем не менее, ограничен. Множество вещественных чисел, которые могут быть представлены в компьютере, конечно.


Поясним это на примере калькулятора, который производит вычисления в десятичной системе счисления. Пусть это будет калькулятор с десятью знакоместами на дисплее:

• 6 знакомест отводится под мантиссу (одно знакоместо отводится под знак мантиссы, четыре — под цифры мантиссы, одно — под точку, разделяющую целую и дробную части мантиссы);
• одно знакоместо отводится под символ «Е»;
• три знакоместа отводятся под порядок (одно — под знак порядка, два — под цифры порядка).

У калькуляторов первая значащая цифра, с которой и начинается мантисса, изображается перед точкой.

Число 12,34 в таком калькуляторе будет представлено как +1.234Е+01.

Число 12,35 будет представлено как + 1.235Е+01.

Как известно, между числами 12,34 и 12,35 находится бесконечное множество вещественных чисел, например: 12,341; 12,3412; 12,34123 и т. д.

Каждое из этих чисел в нашем калькуляторе будет представлено как + 1.234Е+01. Для последних разрядов у нас просто не хватает знакомест! Аналогичная ситуация имеет место и в компьютерном представлении вещественных чисел, независимо от того, ячейки какой разрядности там использованы.

Получается, что точно мы можем представить в компьютере лишь некоторую конечную часть множества вещественных чисел, а остальные числа — лишь приближённо.

Таким образом, множество вещественных чисел, представляемых в компьютере, дискретно, конечно и ограничено.

САМОЕ ГЛАВНОЕ

В математике множество целых чисел дискретно, бесконечно и не ограничено.

Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. В любом случае компьютерное представление целых чисел дискретно, конечно и ограничено.

В математике множество вещественных чисел непрерывно, бесконечно и не ограничено.

Для компьютерного представления вещественных чисел используется нормализованная запись вещественного числа а = ± m • q p , где q — основание системы счисления, р — целое число (положительное, отрицательное или ноль), m — дробь, целая часть которой содержит одну значащую (ненулевую) цифру, т. е. 1 ≤ m < q.

Компьютерное представление вещественных чисел дискретно, конечно и ограничено.

Вопросы и задания

*7. Найдите десятичные эквиваленты чисел, представленных в дополнительном коде: 1) 00000100; 2) 11111001.

8. Для хранения целого числа со знаком в компьютере используется два байта. Сколько единиц содержит внутреннее представление числа -101, записанного:

1) в прямом коде;
2) в дополнительном коде?

9. Вычислите с помощью калькулятора (приложение Windows) в режиме «Программист» следующие примеры:

Как вы можете объяснить полученные результаты?

10. Запишите десятичные числа в нормализованной форме:

1) 217,934; 2) 75321; 3) 10,0101; 4) 200450.

11. Сравните следующие числа:

1) 318,4785 • 10 9 и 3,184785 • 10 11 ;
2) 218,4785 • 10 -3 и 1847,85 • 10 -4 .

12. Выполните операцию сложения:

1) 0,397621 • 10 3 + 0,2379 • 10 1 ;
2) 0,251452 • 10 -3 + 0,125111 • 10 -2 .

13. Чем ограничивается диапазон представимых в памяти компьютера вещественных чисел?

14. Почему множество вещественных чисел, представимых в памяти компьютера, дискретно, конечно и ограничено?

*15. Попытайтесь самостоятельно сформулировать основные принципы представления данных в компьютере.

Да, связано. Все числовые типы в компьютере имеют нижнюю и верхнюю границу. Они хранятся в памяти компьютера в двоичном виде. Чем больше памяти (кол-во бит = позиций с нулем или единицей) выделяется на число, тем больше различных значений оно может содержать. Поэтому, максимально возможное значение числа есть всегда.

var

i, n, m: integer;

a: array of integer;

begin

write('Размер массива? ');

read(n);

setlength(a, n);

writeln('Введи элементы массива');

for i := 0 to n - 1 do

read(a[i]);

write('Что искать? ');

read(m);

for i := 0 to n - 1 do

if a[i] = m then

begin

write('Найден элемент с номером ', i + 1);

exit;

end;

write('Нет такого элемента');

end.

Так как количество лилий с каждым днём становилось в 2 раза больше, то для заполнения половины пруда понадобилось 10-1 = 9 дней.

К десятому дню выросло 1*2=2*2=4*2=8*2=16*2=32*2=64*2=128*2=256*2=512*2=1024 лилий.

При оцифровке сигнала количество уровней квантования называют также глубиной дискретизации или разрядностью. Глубина дискретизации измеряется в битах и обозначает количество бит в двоичном слове, выражающих амплитуду сигнала. Чем больше глубина дискретизации и чем больше частота дискретизации, тем точнее цифровой сигнал соответствует аналоговому. В случае однородного квантования глубину дискретизации называют также динамическим диапазоном и измеряют в децибелах (1 бит ≈ 6 дБ).

Глубина звука (битность, уровень квантования) - важнейший параметр для цифрового звука, определяющий численное значение амплитуды сигнала. Иными словами, АЦП делает замер и записывает численное значение данного замера, а величина этого значения как раз зависит от уровня квантования. Например 16-битное квантование дает нам 65536 уровней. В большинстве своем на многих компьютерах звук кодирован с глубиной 16 бит. Многие хорошие звуковые карты и профессиональное оборудование может кодировать звук с глубиной 24 бита. Зачем нужно повышение битности звука? Для увеличения максимального динамического диапазона и для уменьшения шумов квантования.

1) в свободную ячейку, например F2 пишешь формулу Если *Имя ячейки с округом* = "СВ", то значение истина равно ячейке с предметом, в знаечение ложь ставишь пробел. далее формулу растягиваешь до конца таблицы, после в ячейка H2 пишешь формулу счет если выделяешь ячейки в которых формула Если и в окне критерий пишешь: "математика". 3 делаешь аналогично


На уроках математики вы никогда не обсуждали, как хранятся числа. Математика — это теоретическая наука, для которой совершенно не важно, записаны они на маленьком или большом листе бумаги, зафиксированы с помощью счётных палочек, счётов, или внутри полупроводниковой схемы. Поэтому число в математике может состоять из любого количества цифр, которое требуется в решаемой задаче.
В то же время инженеры, разрабатывающие компьютер, должны спроектировать реальное устройство из вполне определённого количества деталей. Поэтому число разрядов, отведённых для хранения каждого числа, ограничено, и точность вычислений тоже ограничена. Из-за этого при компьютерных расчётах могут возникать достаточно серьёзные проблемы. Например, сумма двух положительных чисел может получиться отрицательной, а выражение А + В может совпадать с А при ненулевом В. В этой главе мы рассмотрим важные особенности компьютерной арифметики, которые нужно учитывать при обработке данных. В первую очередь, они связаны с тем, как размещаются целые и вещественные числа в памяти компьютера.

Предельные значения чисел
Как вы уже поняли, числа, хранящиеся в компьютере, не могут быть сколь угодно большими и имеют некоторые предельные
значения. Представим себе некоторое вычислительное устройство,
которое работает с четырехразрядными неотрицательными целыми десятичными числами (рис. 4.1). Для
вывода чисел используется четырёх разрядный индикатор, на котором можно
отобразить числа от 0 (все разряды числа
минимальны) до 9999 (все разряды максимальны) — рис. 4.2.

Вывести на такой индикатор число 10 000 невозможно: не хватает технического устройства для пятого разряда. Такая «аварийная» ситуация называется переполнением разрядной сетки или просто переполнением (англ. overflow — переполнение «сверху»).
Переполнение разрядной сетки— это ситуация, когда число, которое требуется сохранить, не умещается в имеющемся количестве разрядов вычислительного устройства.
В нашем примере переполнение возникает при значениях, больших 9999 = 10 4 - 1, где 4 — это количество разрядов. В общем случае, если в системе счисления с основанием В для записи числа используется К разрядов, максимальное допустимое число Сmax вычисляется по аналогичной формуле 1

Сmax=В К -1.
Именно эта формула для В = 2 неоднократно применялась в главе 2.
Подчеркнем, что переполнение никак не связано с системой счисления: оно вызвано ограниченным количеством разрядов устройства и не зависит от количества возможных значений в каждом из этих разрядов.
Рассмотрим теперь, что получится, если наше устройство будет работать не только с целыми, но и с дробными числами. Пусть, например, один из четырёх разрядов относится к целой части числа, а остальные три — к дробной (рис. 4.3). Конечно, эффект переполнения сохранится и здесь: максимально допустимое число равно 9,999.

1Докажите эту формулу самостоятельно, например, подсчитав количество всех возможных комбинаций значений цифр в К разрядах.

Кроме того , дробная часть числа тоже ограничена, поэтому любое число, имеющее более трёх цифр после запятой, не может быть представлено точно: младшие цифры придётся отбрасывать (или округлять).


Не все вещественные числа могут быть представлены в компьютере точно.


При ограниченном числе разрядов
дробной части существует некоторое минимальное ненулевое значение Cmin, которое можно записать на данном индикаторе (в нашем примере это 0,001,
рис. 4.4). В общем случае, если число записано в системе счисления с основанием В и для хранения дробной части числа используется F разрядов, имеем
Cmin = B - F .
Любое значение, меньшее чем Cmin, неотличимо от нуля. Такой эффект принято называть анти переполнением (англ. underflow — переполнение «снизу»).

Кроме того, два дробных числа, отличающиеся менее чем на Cmin , для компьютера неразличимы. Например, 1,3212 и 1,3214 на нашем индикаторе выглядят совершенно одинаково (рис. 4.5).
Дополнительная погрешность появляется при переводе дробных чисел из десятичной системы
счисления в двоичную. При этом даже некоторые «круглые» числа (например, 0,2) в памяти компьютера представлены неточно, потому что в двоичной системе они записываются как бесконечные дроби и их приходится округлять до заданного числа разрядов.
Так как вещественные числа хранятся в памяти приближённо, сравнивать их (особенно если они являются результатами сложных расчётов) необходимо с большой осторожностью. Пусть при вычислениях на компьютере получили X=10 -6 и У = 10 6 . Дробное значение X будет неточным, и произведение X * У может незначительно отличаться от 1. Поэтому при сравнении вещественных чисел в компьютере условие «равно» использовать не рекомендуется. В таких случаях числа считаются равными, если
их разность достаточно мала по модулю. В данном примере нужно проверять условие |1-X-Y|<е, где е — малая величина, которая задаёт нужную точность вычислений. К счастью, для большинства практических задач достаточно взять е порядка 10 -2 . 10 -4 , а ошибка компьютерных расчётов обычно значительно меньше 1 (не более 10 -7 ).
Введение разряда для знака числа не меняет сделанных выше выводов, только вместо нулевого минимального значения появляется отрицательное, которое зависит от разрядности (оно равно -9999 в первом из обсуждаемых примеров).
Различие между вещественными и целыми числами
Существуют величины, которые по своей природе могут принимать только целые значения, например счётчики повторений каких-то действий, количество людей или предметов, координаты пикселей на экране и т. п. Кроме того, как показано в главе 2, кодирование нечисловых видов данных (текста, изображений, звука) сводится именно к целым числам.
Чтобы сразу исключить все возможные проблемы, связанные с неточностью представления в памяти вещественных чисел, целочисленные данные кодируются в компьютерах особым образом.


Целые и вещественные числа в компьютере хранятся и обрабатываются по - разному.


Операции с целыми числами, как правило, выполняются значительно быстрее, чем с вещественными. Не случайно в ядре современных процессоров реализованы только целочисленные арифметические действия, а для вещественной арифметики используется специализированный встроенный блок — математический сопроцессор.
Кроме того, использование целых типов данных позволяет экономить компьютерную память. Например, целые числа в интервале от 0 до 255 в языке Паскаль можно хранить в перемен -
1 Тем не менее встречаются ситуации, когда вычислительные трудности все же возникают: классический пример — разность близких по значению десятичных дробей, отличающихся в последних значащих цифрах.

ных типа byte, которые занимают всего один байт в памяти. В то же время самое «короткое» вещественное число (типа single) требует четырёх байтов памяти.
Наконец, только для целых чисел определены операции деления нацело и нахождения остатка. В некоторых задачах они удобнее, чем простое деление с получением дробного (к тому же не совсем точного) результата: например, без них не обойтись при вычислении суммы цифр какого-то числа.
Таким образом, для всех величин, которые не могут иметь дробных значений, нужно использовать целочисленные типы данных.
Дискретность представления чисел
Из § 7 вы знаете, что существует непрерывное и дискретное представление информации. Их принципиальное различие состоит в том, что дискретная величина может принимать конечное количество различных значений в заданном интервале, а непрерывная имеет бесконечно много возможных значений. Для нашего обсуждения важно, что:

*целые числа дискретны;

*вещественные( действительные, дробные) числа непрерывны;

*современный компьютер работает только с дискретными данными.

Вопросы и задания
1. Чем отличается компьютерная арифметика от «обычной»? Почему?
2. Почему диапазон чисел в компьютере ограничен? Связано ли это
с двоичностью компьютерной арифметики?
3. Что такое переполнение разрядной сетки?
4. Какие проблемы появляются при ограниченном числе разрядов
в дробной части?
*6.. Может ли антипереполнение сделать невозможными дальнейшие вычисления?
7. Сколько битов информации несет знаковый разряд?

8.Приведите примеры величин , которые по своему смыслу могут иметь только целые значения.

9.Какая математическая операция между двумя целыми числами может дать в результате нецелое число?

10.Чем различается деление для целых и вещественных чисел?

11.Какие преимущества дает разделение в компьютере целых и вещественных (дробных) чисел?

12.Вспомните определение дискретных и непрерывных величин. Какие множества чисел в математике дискретны, а какие – нет? Ответ обоснуйте.

13.Объясните, почему ограниченность разрядов дробной части приводит к нарушению свойства непрерывности.

1 Такие задачи часто даются на школьных олимпиадах по информатике; для них даже придумано специальное название : «длинная» арифметика.

14. Можно ли организовать вычисления с разрядностью, превышающей аппаратную разрядность компьютера? Попробуйте предложить способы решения этой задачи.

Тебе известно, что компьютер работает только с двоичным кодом. \(0\) и \(1\) обозначают два устойчивых состояния: вкл/выкл, есть ток/нет тока и т. д. Оперативная память представляет собой контейнер, который состоит из ячеек. В каждой ячейке хранится одно из возможных состояний: \(0\) или \(1\). Одна ячейка — \(1\) бит информации или представляет собой разряд некоторого числа.

Целые числа в памяти компьютера хранятся в формате с фиксированной запятой . Такие числа могут храниться в \(8\), \(16\), \(32\), \(64\)-разрядном формате.

Для целых неотрицательных чисел в памяти компьютера выделяется \(8\) ячеек (бит) памяти.

Минимальное число для такого формата: \(00000000\). Максимальное: \(11111111\).

Переведём двоичный код в десятичную систему счисления и узнаем самое большое число, которое можно сохранить в восьмибитном формате.

1 × 2 7 + 1 × 2 6 + 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 255 10 .

Если целое неотрицательное число больше \(255\), то оно будет храниться в \(16\)-разрядном формате и занимать \(2\) байта памяти, то есть \(16\) бит.

Подумай! Какое самое большое число можно записать в \(16\)-разрядном формате?

Чем больше ячеек памяти отводится под хранение числа, тем больше диапазон значений.

В таблице указаны диапазоны значений для \(8\), \(16\) и \(32\)-разрядных форматов.

Скриншот 16-09-2021 004411.jpg

Для \(n\)-разрядного представления диапазон чисел можно вычислить следующим образом: от \(0\) до 2 n − 1 .

Запишем целое беззнаковое число \(65\) в восьмиразрядном представлении. Достаточно перевести это число в двоичный код.

Это же число можно записать и в \(16\)-разрядном формате.

Скриншот 16-09-2021 004807.jpg

Для целых чисел со знаком в памяти отводится \(2\) байта информации (\(16\) бит). Старший разряд отводится под знак: \(0\) — положительное число; \(1\) — отрицательное число. Такое представление числа называется прямым кодом.

Скриншот 16-09-2021 005135.jpg

Для хранения отрицательных чисел используют дополнительный и обратный коды, которые упрощают работу процессора. Но об этом ты узнаешь в старших классах.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Представление чисел в компьютере"

На данном уроке мы с вами узнаем, как представляются целые и вещественные числа в компьютере.

А начнём мы с вами с целых чисел.

Как вы уже знаете, целые числа – это множество чисел, которое состоит из натуральных чисел, чисел, противоположных натуральным, и нуля.

Итак, оперативная память представляет собой таблицу, то есть состоит из ячеек.

Каждая ячейка оперативной памяти представляет собой физическую систему, которая состоит из некоторого числа однородных элементов. Эти элементы обладают двумя устойчивыми состояниями, которые соответствуют двум числам – нулю и единице. Каждый такой элемент предназначен для хранения одного из битов – разряда двоичного числа. Поэтому каждый элемент ячейки называется битом или разрядом.

То есть, можно сказать, что каждая ячейка оперативной памяти содержит число, представленное в двоичной системе счисления, так как вся информация представлена в памяти компьютера именно в этой системе счисления. Каждая ячейка также включает в себя некоторое количество клеточек (ячеек). В каждой клеточке содержится число ноль или один. Это зависит от того, какой код соответствует изначальному числу.

Давайте рассмотрим одну ячейку, которая состоит из n разрядов.

Она разбита на n клеточек. n обозначает количество разрядов или битов, отведённых под исходное число. Первая клеточка слева – это (n-1)-й разряд. Вторая – (n-2)-й разряд и так далее. Последняя клеточка – это 0-й разряд.

Можно сказать, что разряд – это степени для числа два в двоичной системе счисления.

Для представления целых чисел в компьютере существует несколько различных способов, которые отличаются друг от друга количеством разрядов и наличием или отсутствием знакового разряда. Обычно под целые числа отводится 8, 16, 32 или 64 разряда или бита.

Существует беззнаковое и знаковое представление чисел. Беззнаковое представление можно использовать только для неотрицательных чисел, отрицательные же числа представляются только в знаковом виде.

Беззнаковое представление используется для таких объектов, как адреса ячеек; счётчиков, например, количество символов в тексте; чисел, которые обозначают дату и время; размеров графических изображений в пикселях и много другое.

Для этих данных используется беззнаковое представление, так как они никак не могут быть отрицательными числами.

Давайте рассмотрим таблицу максимальных значений для беззнаковых целых n -разрядных чисел:

В первом столбце указано количество битов, во втором минимальное значение, а в третьем – максимальное значение.

Минимальное значение во всех строка равно нулю. А вот максимальное вычисляется по формуле 2 n – 1. То есть максимальное восьмиразрядное число будет равно 255.

2 8 – 1 = 256 – 1 = 255.

Максимальное значение целого неотрицательного числа достигается в том случае, когда во всех разрядах ячейки хранятся единицы.

Давайте разберёмся на примере.

Возьмём восьмиразрядную ячейку и поместим в неё максимально допустимое число 255.

Исходя из этого можем сказать, что наша ячейка состоит из 8 разрядов или клеточек. При переводе числа 255 в двоичную систему счисления получим 8 единиц. То есть в каждой клеточке будет содержаться по единице.

Число разрядов n=8. Давайте над каждой клеточкой расставим соответствующий разряд начиная с крайней левой.

Давайте вспомним общий вид нашей ячейки.

То есть ячейка из n разрядов, в нашем случае 8, состоит из n клеточек (снова из 8), а каждый разряд вычисляется по формуле n – 1, n – 2 и так далее. В зависимости от того, на каком месте находится ячейка.

А если мы возьмём все наши единицы и проставим над ними наши разряды, то мы можем перевести наше число из двоичной системы счисления в десятичную уже известным нам образом.

Если же брать число 256, то мы не сможем поместить его в восьмиразрядную ячейку, так как оно будет состоять из единицы и восьми нулей, а клеточек у нас 8.

Если мы возьмём число 65 535, то в двоичной системе счисления оно будет состоять из 16 единиц. А если шестнадцатиразрядную ячейку снова представить, как строку, состоящую из 16 клеточек и расставить соответствующие разряды, то она будет выглядеть следующим образом:

Для получения компьютерного представления беззнакового целого числа достаточно перевести его в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.

Давайте рассмотрим, как будет выглядеть число 125 в восьмиразрядном и шестнадцатиразрядном представлениях. Для этого переведём наше число в двоичную систему и получим следующее:

Наше число состоит из 7 цифр. Поместим его в восьмиразрядную ячейку.

Но ячеек 8, а цифр 7. В таком случае помещаем наше число в крайние справа семь ячеек, а в первую левую запишем ноль.

Он не повлияет на наше число, но все разряды ячейки должны быть заполнены цифрами.

А если мы поместим это же число в шестнадцатиразрядную ячейку, то получим 9 ячеек слева, заполненных нулями, а в остальных 7 будет располагаться наше число.

То есть можно сказать, что мы записываем наше число в двоичной системе счисления, а затем дополняем эту двоичную запись незначащими нулями слева в зависимости от того, из скольких разрядов состоит наше представление числа.

Это то, что касается беззнакового представления чисел.

При представлении числа со знаком (плюсом, если это положительное число, и минусом, если это отрицательное число) самый старший разряд, то есть тот, который находится слева, отводится под знак числа, а остальные разряды – под само число. Если число положительное, то в самый старший разряд (самую левую клеточку) пишется цифра 0, а если отрицательное, то 1.

Такое представление чисел называется прямым кодом. Такие коды в компьютере используются для хранения положительных чисел в запоминающих устройствах, для выполнения операций с положительными числами.

Например, число 56 в двоичной системе будет равно: 1110002.

Оно в себя включает 6 цифр. Запишем его в восьмиразрядную ячейку.

Две оставшиеся слева клеточки заполним нулями, так как число положительное.

А если бы наше число было отрицательным, то оно выглядело бы следующим образом.

В старший разряд мы поставили единицу, так как число отрицательное.

Для выполнения операций с отрицательными числами используется дополнительный код, который позволяет заменить операцию вычитания сложением.

Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму:

· записать прямой код модуля числа;

· инвертировать его (заменить единицы нулями, нули – единицами);

· прибавить к инверсному коду единицу.

Давайте рассмотрим применение этого алгоритма на примере.

Нам дано число –25. При переводе в двоичную систему модуля числа получим следующее число: 110012.

Теперь смотрим на первый пункт. Нам необходимо записать прямой код модуля числа. Возьмём восьмиразрядный код. То есть наше число будет записано в клеточки, а в трёх пустых клеточках слева от него – нули.

Далее во втором пункте нам необходимо инвертировать наше число, то есть заменить единицы нулями, а нули – единицами. Получим следующее:

Теперь нам осталось, исходя из третьего пункта, прибавить к числу единицу. Получим следующее число:

Всё, что говорилось ранее, относилось к представлению целых чисел. Для представления вещественных чисел используется немного другой способ. Давайте рассмотрим его.

Любое вещественное число A может быть записано в экспоненциальной форме:

m – мантисса числа.

q – основание системы счисления.

p – порядок числа.

Возьмём для примера число 1 345 572. Его можно представить различными способами:

С экспоненциальной формой записи вы наверняка уже встречались. Например, считая на калькуляторе, вы могли получить следующее число: 1,34Е + 6.

Оно обозначает следующее: 1,34 · 10 6 . То есть знак Е – это основание десятичной системы счисления.

Из примера, можно сделать вывод, что положение запятой может изменяться.

Для единообразия мантиссу обычно записывают как правильную дробь, которая имеет после запятой цифру, отличную от нуля. То есть наше число 1 345 572 будет выглядеть следующим образом: 1 345 572 = 0,1345572 • 10 7 .

Вещественное число может занимать в памяти компьютера 32 или 64 разряда.

То есть наша ячейка в памяти может состоять из 32 или 64 клеточек. При этом выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Давайте разберёмся на примере. Возьмём число 125 в десятичной системе счисления и запишем её в тридцатидвухразрядную ячейку.

Для начала нам нужно перевести число 125 в двоичную систему счисления. Получим следующее: 12510 = 11111012.

Теперь запишем это число в экспоненциальной форме.

Ставим равно. Мантиссой числа будет следующее: 0,1111101.

Ставим знак умножения. q – это основание системы счисления. В нашем случает это двоичная система счисления. Число 2 в двоичной системе счисления будет состоять из цифр 1 и 0. Запишем его.

11111012 = 0,1111101 · 10.

p – это порядок числа или же степень. Мы с вами перенесли наше число на семь знаков вправо после запятой. Значит наше p будет равно 7. При переводе числа семь в двоичную систему счисления получим следующее:

11111012 = 0,1111101 · 10 111 .

Мы с вами записали двоичное число в экспоненциальной форме.

Теперь перенесём всё в клеточки ячейки памяти, размером 32 разряда.

Под знак и порядок выделяется восемь клеточек, под знак и мантиссу двадцать четыре.

Первую клеточку слева выделяем под знак. Так как наше число положительное, то ставим цифру 0.

В разделе «Знак и порядок» запишем число 7 в двоичной системе счисления. Оставшиеся клеточки заполним нулями.

Теперь переходим к разделу «Знак и мантисса». В первой слева снова ставим цифру ноль, которая обозначает, что знак нашего числа положительный.

Далее запишем наше число, а оставшиеся клеточки заполним нулями.

Мы записали наше число в тридцатидвухразрядную ячейку.

Диапазон представления вещественных чисел определяется количеством разрядов, отведённых для хранения порядка чисел, а точность – количеством разрядов, отведённых для хранения мантиссы.

Давайте рассмотрим следующий пример:

В нём максимальное значение порядка числа составляет: 11111112 = 12710.

Следовательно, максимальное значение числа будет равно: 0,11111111111111111111111 · 10 111 .

Широкий диапазон представления вещественных чисел важен для решения научных и инженерных задач. Но в тоже время алгоритмы обработки таких чисел более трудоёмки по сравнению с алгоритмами обработки целых чисел.

А теперь пришла пора подвести итоги урока.

Сегодня мы узнали, как представляются целые и вещественные числа в компьютере, а также научились преобразовывать числа в ячейки памяти, учитывая разрядность ячейки.

Читайте также: