Подключение мозга к компьютеру

Обновлено: 04.07.2024

Группа ученых из Стэнфордского университета смогли соединить человеческий мозг и компьютер, благодаря чему открылись новые, невероятные возможности.

Группа нейрохирургов и нейроинженеров из института Говарда Хьюза при Стэнфордском университете долгое время работали в направлении создания интерфейса, способного соединить мозг человека и компьютер, это помогло бы людям, с ограниченными возможностями управлять протезами или упростило бы повседневную жизнь.

Основных проблем, в создании такого интерфейса несколько, во-первых, конструкция мозговых имплантов и способность их собирать достаточное количество информации, которую компьютер смог бы интерпретировать в управляющие команды. Во-вторых, место, куда нужно устанавливать подобные импланты и в-третьих, безопасность подобных устройств для человека.

Первые эксперименты с проводными имплантами показали одну очень важную и крайне негативную особенность, оказалось, что для сборы нужного объема данных из мозга требуется большое количество энергии, которая разогревает импланты до температуры, несовместимой с мозгом. Именно поэтому инженеры сосредоточились на беспроводном интерфейсе, повысив их чувствительность.

Для эксперимента две миниатюрных пластинки с электродами были имплантированы парализованному ниже шеи больному 65 лет в участок двигательной коры головного мозга, отвечающий за планирование, контроль и выполнение движений, управление конечностями.

Больного, не способного управлять своим телом попросили представлять, как будто он пишет какой-то текст рукой, электроды передавали в компьютер сигналы, которые расшифровывались и интерпретировались процессором компьютера в письменный текст на экране.

В результате ученым удалось добиться скорость письма текста на экране до 90 символов в минуту, компьютер очень точно преобразовывает сигналы мозга в символы. На данный момент инженеры создают интерфейс для управления объектами на экране, по аналогии с экраном смартфона, когда не нужно управлять курсором.

А следующим шагом будет интерфейс для управления протезами, тогда человек сможет управлять электронными конечностями для выполнения движений.

Как думаете, как скоро подобные технологии будут доступны всем людям?

Через несколько месяцев после того, как Илон Маск (Elon Musk) представил рабочий прототип чипа Neuralink, имплантированный в мозг свиньи, Специалисты из Университета Брауна в Род-Айленде (США) установили беспроводную связь между компьютером и человеческим мозгом.


В ходе исследования двое парализованных мужчин в возрасте 35 и 63 лет, которые ранее перенесли травмы спинного мозга, использовали систему BrainGate с беспроводным передатчиком, чтобы выбрать объект и ввести текст на обычном планшетном компьютере. Система, описанная в журнале IEEE Transactions on Biomedical Engineering, работает с использованием небольшого передатчика, вес которого слегка превышает 40 грамм и крепится он на голове. Блок с передатчиком подключается к электродной матрице, вживлённой в моторную кору головного мозга через порт, который применяется в аналогичных проводных системах.


Учёные утверждают, что им удалось достичь той же точности и скорости передачи данных, что и при использовании проводного оборудования. Сообщается, что технология BrainGate способна автономно функционировать до 24 часов, что позволяет использовать интерфейс мозг-компьютер (BCI) даже во время сна. Это позволит учёным собрать больше данных для изучения.

Учёные отмечают, что единственное отличие беспроводного интерфейса от используемых ранее систем заключается в том, что человеку больше не нужно быть привязанным к стационарному оборудованию, что открывает новые возможности с точки зрения использования системы.

Учёные уверены, что благодаря новому интерфейсу они смогут наблюдать за мозговой активностью людей в течение длительного периода времени, что раньше было почти невозможно. В перспективе это поможет разработать алгоритмы декодирования, что позволит существенно расширить возможности для людей с параличом.

Фото: Shutterstock

Нейроинтерфейс (или интерфейс «мозг — компьютер») — это устройство и технология для обмена информацией между мозгом и внешним устройством: компьютером, смартфоном, экзоскелетом или протезом, бытовыми приборами, инвалидной коляской или искусственными органами чувств. Самый распространенный пример — прибор для электроэнцефалограммы (ЭЭГ), который используют в медицине с 1970-х годов.

История создания нейроинтерфейсов

Первым прототипом нейроинтерфейса считается электродное устройство Stimoceiver, изобретенное в 1950-х годах. Его испытали на мозге быка, заставив животное изменить направление движения.

В 1972-м ученые выпустили первый нейропротез для глухих — кохлеарный имплант, которым, по данным за 2019 год, пользуются более 700 тыс. человек в мире.

В 1998 году американский невролог Филипп Кеннеди впервые вживил нейроинтерфейс в мозг Джонни Рея, художника и музыканта, который был полностью парализован из-за травмы ствола головного мозга. Он управлял курсором на мониторе, представляя движения рук.

В 2000 году группа во главе с бразильским ученым Мигелем Николелесом создала нейроинтерфейс, который позволял обезьяне управлять джойстиком при помощи мысли. В 2021-м этот опыт повторили в Neuralink, но уже с инвазивным нейроинтерфейсом. В 2004-м появился электронный нейрочип от Cyberkinetics Inc., который вживили парализованному американцу Мэтью Бейглу, чтобы он мог управлять роборукой с помощью мозга.

В последние годы главные прорывы происходят в области нейропротезирования. В 2015 году калифорнийские исследователи разработали нейроинтерфейс, который позволяет ходить людям, парализованным по пояс. В 2016-м ученые из Германии, Швейцарии и США с помощью нейроинтерфейса смогли частично восстановить поврежденный спинной мозг пациента. В том же году британец Нил Харбиссон, от рождения не различающий цвета, разработал специальную камеру, которая преобразовывает цвет в звуки и посылает их во внутреннее ухо. А в 2021-м группа исследователей из Калифорнии создала нейропротез, который помогает улучшить память на 30%.

Типы нейроинтерфейсов

По типу взаимодействия нейроинтерфейсы бывают однонаправленные и двунаправленные. Первые либо принимают сигналы от мозга, либо посылают их ему. Вторые могут и посылать, и принимать сигналы одновременно. Однонаправленные уже существуют и функционируют, тогда как двунаправленные пока что представлены только в виде концепции.

По расположению различают инвазивные, малоинвазивные и неинвазивные нейроинтерфейсы. Первые вживляют в мозг, вторые располагают на поверхности мозга, а треть — на голове. Чем ближе к мозгу расположены электроды нейроинтерфейсов, тем лучше они передают сигнал.

С точки зрения функций выделяют нейроинтерфейсы для управления чем-либо с помощью мозга или для восстановления/дополнения его функций. Последнее актуально при поражениях мозга при рассеянном склерозе, деменции, болезни Альцгеймера или Паркинсона.

Как работают нейроинтерфейсы

Однонаправленные нейроинтерфейсы — или интерфейсы «мозг-компьютер» — регистрируют электроэнцефалограмму — то есть электрическую активность мозга. Образуя нейронные связи и передавая сигналы между нейронами, наш мозг излучает электрические импульсы. Эту ЭЭГ расшифровывает компьютер и преобразует в команды для системы или внешних устройств.

Инвазивные нейроинтерфейсы в виде маленьких пластинок с электродами вживляют в кору головного мозга. Неинвазивные размещают на голове в виде шлема или отдельных электродов. Для улучшения проводимости их иногда смачивают водой или специальным гелем.

Чтобы расшифровать импульсы мозга, ученые используют алгоритм, который сам вычленяет нужные сигналы или дает готовые параметры, которые система ищет в потоке данных. В первом случае интерфейс с большей вероятностью сможет предсказать, о каком движении думает человек. Во втором случае для точного результата нам нужно хорошо понимать, как именно то или иное намерение проявляется в сигнале мозга. К сожалению, пока что этот вопрос не до конца изучен.

В нейроинтерфейсах с двусторонней связью информация в виде данных о работе мозга, звуков, образов, тактильных ощущений передается в компьютер, затем анализируется и передается в мозг — при помощи стимуляции клеток центральной и периферической нервной системы.

Где применяются нейроинтерфейсы

Сегодня главных сфер применения всего две:

    Медицина. Нейроинтерфейсы помогают восстанавливать утраченные функции мозга, диагностировать неврологические заболевания. Нейропротезы позволяют людям с парализованными или утраченными частями тела посылать сигналы мышцам рук, ног, головы и всего тела. Существуют отдельные роботизированные протезы и целые экзоскелеты, работающие таким образом. Также нейроинтерфейсы выполняют функции утраченных органов: например, глаз или ушей.

53-летняя парализованная американка с помощью нейрочипов управляет роботизированной кроватью

Сейчас ведется множество разработок, которые расширят сферу применения и возможности нейроинтерфейсов. Например, не так давно был создан биосинтетический материал, который можно будет использовать в качестве нейрочипа, который подключает мозг к искусственному интеллекту.

Кто создает нейроинтерфейсы в мире

Согласно отчету Market Research Future, к 2024 году ежегодный темп роста рынка интерфейсов «мозг-компьютер» будет составлять 15,1%. В 2019-м его объем оценивался в $980 млн. 50% рынка приходится на США. Среди главных факторов роста называют:

  • прогресс в исследованиях расстройств и травм мозга, нарушений когнитивных функций;
  • совершенствование сферы здравоохранения и протезирования;
  • растущий спрос на биосовместимые материалы;
  • развитие смежных технологий — скоростного интернета, интернета вещей, искусственного интеллекта, нейросетей и робототехники.

Пока что на рынке преобладают неинвазивные устройства. Большинство из них представляют собой мобильные ЭЭГ-гарнитуры или шлемы с разным числом электродов набором функций.

Emotiv Systems в 2009 году разработала Emotiv EPOC — нейроинтерфейс в виде шлема с 14 электродами, регистрирующий 13 частот мозга, сокращения мышц и движения головы с помощью двух гироскопов. Он распознает эмоциональное состояние и уровень стресса, помогая создавать 3D-модели мозга и диагностировать психические расстройства.

Neurable — компания, создающая «многофункциональные нейротехнологические инструменты, которые интерпретируют человеческие намерения, измеряют эмоции и обеспечивают телекинетический контроль над цифровым миром». Одним из таких инструментов стала специальная считывающая импульсы мозга гарнитура для VR-игр. Компания уже собрала $6 млн на следующую разработку VR-очков, которые пригодятся в самых разных сферах — например, в строительстве или управлении транспортом.

NeuroSky выпускает мобильные ЭЭГ-гарнитуры MindWave для анализа активности мозга. Ее используют, чтобы играть в игры или управлять героями интерактивных фильмов. Чуть позже появились наушники MindSet, для тех же целей.

Канадская InteraXon одной из первых в 2014 году вышла на рынок с Muse — мобильной ЭЭГ-гарнитурой с четыремя электродами, которые взаимодействуют со смартфоном или компьютером. Гарнитура помогает улучшить концентрацию и медитировать, преобразуя сигналы мозга в звуки.

Международные корпорации тоже разрабатывают свои нейроинтерфейсы. Например, Nissan внедряет подобные технологии для улучшения управляемости и безопасности автомобиля на дороге. Такой нейрошлем помогает лучше реагировать на изменение ситуации, предсказывая реакцию и действия водителя.

Facebook ведет разработки технологии, которая поможет пользователям публиковать посты и комментарии без помощи клавиатуры. В первую очередь, эта функция будет полезна парализованным людям: благодаря ей они смогут печатать со скоростью 100 слов в минуту, что в пять раз быстрее, чем набор на смартфоне. Нейроинтерфейс будет неинвазивным, а над разработкой системы его управления трудятся ведущие университеты и исследовательские лаборатории США. Они занимаются алгоритмами машинного обучения для распознавания и визуализации нейронных сигналов.

Среди инвазивных нейроинтерфейсов самый известный — нейрочип от Neuralink Илона Маска. Еще в 2016-м, когда стартовал проект, бизнесмен утверждал: «Все мы практически уже киборги».

Первую презентацию компания провела в августе 2020 года. На ней показали свиней с нейрочипами, чья мозговая активность отображалась на экране.


Компания Илона Маска Neuralink, разрабатывающая технологию для подключения мозга человека к компьютеру, планирует в 2020 году начать клинические испытания на людях.

Neuralink уже создала чип N1, предназначенный для вживления в мозг, разработала робота, который будет вживлять чип, приложение для смартфона, чтобы управлять чипом.

В будущем Маск не исключает появления магазина "приложений для мозга". Конечная цель — обеспечить симбиоз человека и ИИ.

Основатель компании и ее ключевые сотрудники в июле 2019 года впервые рассказали о том, какие цели преследует Neuralink и каких успехов удалось достичь за 2,5 года существования компании. ЭП записала самое главное.

Что такое Neuralink

Neuralink — это нейротехнологическая компания, основанная Илоном Маском в Сан-Франциско в 2016 году. Ее деятельность нацелена на разработку имплантируемых интерфейсов мозг-машина.

До июля 2019 года о результатах работы фирмы было известно мало. К июлю 2019 года компания получила финансирование в размере 158 млн долл, из которых 100 млн долл — от Маска. На тот момент в ней работало 90 человек.

Лечение заболеваний мозга и симбиоз с ИИ

Пережитые человеком рак, инсульт или инфаркт часто приводят к расстройствам функций мозга. Они могут выражаться в болезнях Альцгеймера, Паркинсона, деменции. Есть врожденные заболевания мозга, приобретенные в результате несчастного случая, патологии спинного мозга. В Neuralink считают, что могут помочь в лечении таких заболеваний с помощью чипа.

Маск уверен, что разрабатываемый компанией интерфейс "мозг-машина" позволит достичь человечеству симбиоза с искусственным интеллектом (ИИ). "Мы получим возможность слиться с ИИ. Это будет необязательно, только если вы этого хотите", — говорит изобретатель.

У человеческого мозга есть лимбическая система, которая отвечает за первобытные нужды, желания, эмоции. Есть моторная кора, отвечающая за мыслительный процесс. В дополнения к ним в Neuralink стремятся создать цифровой слой "сверхинтеллекта". Этот слой у людей уже есть — это смартфон и компьютер, но скорость взаимодействия с ними — узкое место.

Скорость вывода информации из мозга очень низкая, потому что основная часть людей печатает только двумя пальцами. При этом скорость ввода информации в мозг гораздо быстрее из-за особенностей работы зрения.

Однако низкая пропускная способность будет ограничивать возможность человека слиться с искусственным интеллектом. "После решения вопросов, связанных с заболеваниями мозга, мы перейдем к решению проблемы экзистенциальной опасности ИИ", — говорит Маск.

Как считывать информацию с мозга

Мозг состоит примерно из 100 млрд клеток — нейронов, которые имеют много сложных форм. Они соединяются в большую сеть с помощью синапсов.

В точках соединения нейроны передают друг другу информацию используя химические сигналы, которые называются нейромедиаторами. Эти сигналы появляются в результате импульса под названием "потенциал действия".

Как только клетка получает достаточно нейромедиаторов одного вида, запускается цепь реакций, которые приводят к возникновению потенциала действия. Потенциал действия создает ток, который распространяется от нейрона и может быть обнаружен, если рядом установить электрод. Это позволит записать информацию, предоставляемую нейронам.

Все, что человек ощущает, слышит, чувствует и думает, — это потенциал действия, то есть просто всплески нейронной активности. Цель Neuralink — записывать и стимулировать эти импульсы, и делать это лучше, чем позволяют существующие методы, без серьезного хирургического вмешательства.

Что разработала Neuralink

В Neuralink разработали чип N1 размером 4х5 мм с 1 024 электродами. Его потенциал позволяет довести количество электродов до 10 тыс. Наилучшая система стимуляции мозга пациентов с болезнью Паркинсона, разрешенная профильным управлением США (FDА), оперирует десятью электродами.

Читайте также: