При увеличении картинки качество ухудшается о каком виде компьютерной графики идет речь

Обновлено: 03.07.2024

В современном мире существует огромное множество всевозможных качественных измерителей изображения. Неопытный и непросвещенный человек может запросто запутаться в разнообразии узкоспециализированных терминов, попасть на уловки маркетологов или необдуманно лишить себя очередных технологических новшеств.

Данная статья позволит разобраться в большинстве значимых характеристиках, самостоятельно сравнить разные технологии и ухищрения, а так же решить, какой именно девайс необходим Вам в зависимости от требований и экономического достатка.

FPS (Frames Per Second)

FPS – показатель динамического изображения (не статичного), представляющий из себя количество кадров в секунду.

В настоящее время кинематограф и телевидение использует давно установленную норму в 24 кадра в секунду (ранее, во времена немого кино, стандарт составлял 16 кадров). Существуют и исключения, а именно:

  • Спортивные трансляции матчей на некоторых стриминговых сервисах и каналах составляют 60 кадров
  • «Хоббит» Питера Джексона, который снимался, а позже показывался в некоторых IMAX-кинотеатрах в 48 кадрах
  • Искусственно интерполированные переиздания фильмов (разное количество)
  • Будущие сиквелы «Аватара» Джеймса Кэмерона, которые он обещает снять в 60 кадрах

Естественно, чем больше этот показатель, тем плавнее изображение. Продемонстрировать разницу можно простейшей гифкой, в которой шар перекатывается за одинаковое время из левого угла в правый.

Как можно увидеть из гифки, разница заметно на любой даже не подготовленный взгляд. Да, разница не огромна, однако то, что плавность изображения на прямую зависит от частоты кадров, полагаю, очевидно всем.

Существуют и ухищрение, называемое интерполяцией кадров. Подобной системой пользуются при создании фанатских переизданий, а так же она встроена в некоторые телевизоры. Её суть в том, чтобы из исходных кадров рассчитывать новые дополнительные кадры, то есть между 2-мя соседними исходными кадрами программа дорисовывает новые, основываясь на данных движения из соседних. Система сей крайне довольно сложна в исполнении, а главное, рождает из себя множество артефактов, мешающих просмотру.

В игровой индустрии норма количества кадров заметно отличается от кино. 30 кадров в секунду – установленный стандарт для комфортного геймплея, но вариаций здесь куда больше. Спортивные симуляторы, файтинги, шутеры от первого лица и киберспортивные мультиплеерные жанры, где крайне важна скорость реакции, предпочтительно должны обладать 60 кадрами в секунду. Достичь подобных показателей часто бывает сложно, т.к. фпс прямо зависит от производительности системы.

Разрушители мифов

Современное информативное пространство породило множество мифов касательно частоты кадров, каждый из которых хотелось бы рассмотреть.

Человеческий глаз не видит больше 24 кадров в секунду

Данный миф родился, скорее всего, из-за стандарта киноиндустрии, но, что самое важное, он в корне ошибочен.

Видеть разницу частоты кадров, превышающей 24, способны абсолютно все, в чём Вы и убедились в уже показанной гифке. Другое дело – вопрос, способен ли мозг осознать информацию, показанную при высокой скорости. Тут уже далеко не всё так однозначно, однако исследования показали, что при должной тренировке, человек способен увидеть разницу картинки, помелькавшей лишь в одном кадре из всех.

Мистический эффект 25 кадра

Данный миф родился в 1957 году, когда американский ученый опубликовал исследование, в ходе которого якобы увеличились продажи попкорна последствием 25 кадра. Спустя 5 лет он признался, что полностью сфабриковал эксперимент. Не смотря на это, миф жив до сих пор, а в интернете можно найти множество роликов и сайтов, предлагающих за деньги чудо эффект 25 кадра (похудение, изучение языков и т.д.).

Никакого эффекта, уж тем более влияющего на разум, здесь попросту нет. В ином случае это бы означало, что абсолютно каждая игра, или тот же «Хоббит» Джексона, каждую секунду имела возможность обработать ваш мозг скрытой информацией. Что, очевидно, ну совсем глупость в чистом виде.

Разрешение изображения

Разрешение – это показатель изображения, на прямую означающий его качество, представляющий из себя количество точек (или пикселей) на единицу площади (или единицу длины).

В современной гонке технологий этот показатель наиболее знаком каждому рядовому покупателю техники. Любой магазин электроники пестрит всевозможными рекламными знаками «Full HD», «Настоящее 4к Разрешение!», «Кристальная чёткость изображения» и т.д.
Всё далеко не с проста, это самый главный показатель любого устройства для воспроизведения визуальной информации, будь то монитор ноутбука, экран телевизора, дисплей смартфона или электронной книги. Чем выше разрешение – тем чище и детальнее картинка. Прогресс картинки очевиден, стоит только, какое именно изображение мы лицезрели во времена VHS, ну или взглянуть на простейшее сравнение:

image

Качество изображения зависит так же и от его источника, скорость развития которого абсолютно разное. И во главе его стоит игровая индустрия, которая с каждым днём постоянно увеличивает технологические аспекты. Игровая индустрия не дремлет. Именно она больше всех толкает сейчас прогресс развития качества изображения. Поколения консолей, улучшение производительности систем — всё приводит к тому, что картинка становится реалистичнее, четче и детальнее.

4k разрешение

Когда мода на 3D-телевизоры быстро погасла, но её место пришёл иной технологический аспект — 4k разрешение экрана, рекламируемое со всех сторон.

Скорее всего, у всех Вас по большей части стоит дома Full Hd-телевизор. Нужно ли вам переходить на новое разрешение? Увидите ли Вы разницу?

Всё зависит от того, для чего вы собираетесь использовать его. Подобное разрешение до сих пор редкость. Современное телевидение, особенно в нашей стране, по большей части транслируется в скудном старейшем 480p (720х480 точек), лишь несколько каналов, и то порой за отдельную плату, перешли на HD (720p), и только парочка на FHD (1080p), например, «Первый Канал». Это означает, что, если вы используете телевизор только по прямому назначению, 4к разрешение в этом десятилетии вы не увидите точно.

Для того, чтобы всё-таки хоть как-то использовать возможности нового разрешения, вам понадобится либо покупать 4k blu-ray диски с фильмами (что у нас ещё мало распространено, а главное, недешево), либо искать 4k-стриминговые сервисы (аля Netflix, который, хоть и существует официально в России, не предоставляет локализацию ни одного своего творения), либо смотреть 4k-ролики на YouTube (количество которых крайне малое до сих пор), либо использовать для игровых целей в связке с высокотехнологичным устройством, таким как Xbox One X или Ps4 Pro. Но и в последнем случае использовать все возможности подобного телевизора вам далеко не всегда получится использовать. Существует множество ухищрений (способов), которым пользуются разработчики, т.к. техническая составляющая до сих не полностью подходит для новомодного разрешения.

Все вариации итогового разрешения перечислим:

Нативное разрешение

Нативное разрешение – это настоящее (пиксель в пиксель) разрешение источника, совпадающего с отображающим устройством ( в нашем случае 4k ).

Именно подобное разрешение использует Netflix и 4k-видео в YouTube, однако в игровой индустрии достичь его сложно. На подобную картинку необходимо дорогостоящее оборудование, мощности которого может все равно не хватать для стабильной частоты кадров.

Естественно, именно такое настоящее разрешение даёт наиболее качественную картинку, тогда как использование ухищрений, например, шахматного рендеринга, ухудшает четкость. Особенно это видно по дальности прорисовке при 4-кратном приближении для сравнения. В качестве примера возьмём 4-ёх кратно приближенный скриншот двух версий игры (нативное разрешение 4к – слева, динамическое разрешение с шахматным рендерингом — справа) с прекрасного канала «Digital Foundry», где сравнивается игра «Rise of Tomb Raider».

image

Суперсэмплинг

Т.к. 4к-телевизоры и мониторы до сих пор не особо распространены (особенно в России, где ещё и половина населения не перешла на HD), а цены на них высоки, существует контингент людей, имеющих лишь FHD-экран, но при этом обладающих более производительным современным устройством. Конечно, любому пользователю хочется получать максимум от возможностей новой технике. Для этого и существует технология суперсэмплинг.

Суперсэмплинг – это технология, в результате которой картинка в игре сначала рендерится в 4K, а затем отображается в 1080p. Это дает возможность увидеть больше деталей на обычном телевизоре Full HD. В сравнение картинка будет в разы проигрывать, но наличие подобной технологии крайне удобно для временного решения. Так же это требует изначального создания картинки в большем разрешении, а значит, это требует приличной производительности системы.

Для примера возьмём скриншот безумно красивой технологической демки «Insects» в свободном доступе от «Microsoft», записанный на Full HD TV. Первый – без применения суперсэмплинга, второй – с использованием.

image

image

Как можно увидеть при увеличении, разница не огромна, но присутствует. Да, это и рядом не заменит использование 4к разрешение на таком же 4к экране, но будет приятной мелочью на время.

Шахматный рендеринг

Как можно уже было понять, нативное разрешение требует для себя огромной вычислительной мощности. Т.к. даже самые современные системы далеко не всегда могут его позволить, существуют ухищрения, с помощью которых разрешение добивается при меньших затратах производительности.

Шахматный рендеринг – теxнoлoгия, с помощью которой мoжнo гeнeрировaть изобрaжение бoлee выcoкoгo рaзрeшeния нa oснoве изoбражений меньшегo pазpeшeния и некоторыx дoпoлнительныx дaнных. По сути, она несильно уменьшает итоговое качество картинки за счёт сильного уменьшения необходимой мощности.

Работает технология, как можно понять по названию, за счёт удаления каждого 2 пикселя сцены, последующим склеивании недостающих и, при необходимости, их усреднения.

Для разбора метода возьмём объяснение с интереснейшего, но уже умершего сайта «NeoGAF». В нём рассматривается процесс рендеринга совсем простенького взрыва. На первой картинке изображено обычное (в нашем случае такой, например, используется при нативном разрешении) построение рендеринга.

image

На второй — с использованием технологии:

image

Как видим, процесс построения кадра сильно отличается. За счёт убавки пикселей, как на шахматной доске, система нагружается в меньшем количестве, однако это приводит, хоть и не к значительному, ухудшению качестве итогового изображения. Усреднённые пиксели больше всего бросаются во взор, ведь в итоге мы видим небольшое замыливание картинки.

Апскейлинг

Апскейлинг – самый простейший из всех методов преобразования разрешения картинки, в ходе которого процессор (даже рядового теливизора) самостоятельно дорисует дополнительный пиксели, дабы соответствовать собственному разрешению.

Итоговое изображение, хоть фактически и будет иметь соответствующее разрешение, на самом деле будет представлять собой множество новых усредненных пикселей, ужасное качество которых отразится итоговым полным замыливанием изображения, особенно в сравнении с иными методами преобразований картинки и разрешения.

image

Естественно, в итоге сравнивая все 3 метода построения, можно заявить, что натуральное нативное разрешение в итоге выдаёт наилучшую картинку. При этом, естественно, существует зависимость от необходимой мощности. Чем лучше картинку Вы хотите и чем лучше методом построения разрешения пользоваться, тем производительнее система Вам нужна.

Итоговое сравнение сгенерированной картинки взрыва можно увидеть на финальной картинке:

image

Экономическая целесообразность

Как уже отмечалось в статье, всё зависит от того, для каких целей вы собираетесь приобретать 4k-телевизор или монитор. Контента подобного качества до сих пор очень мало. Более того, телевиденья в 4k-разрешении не существует ещё в принципе.

При применении телевизора по прямому назначению даже Ваш старый FHD-телевизор до сих пор не реализует все свои возможности. Как много HD-каналов в данный момент вы имеете? Можно с уверенностью сказать, что для перечисления их хватит пальцев одной руки. Из этого стоит сделать простой вывод, приобретать подобную технику Вам не имеет никакого смысла. Это пустая трата денег. Обещания маркетологов абсолютно новых ощущений от просмотра в таком случае чистейшая выдумка.

При применении телевизора в качестве мультимедийного устройства наконец-то появляется видимая разница. Однако стоит учесть, что и в данном случае контента крайне мало. Да, просматривать 4k-сериалы на «Netflix» безумно приятно, однако в России нету локализации, а значит, этим воспользоваться смогут лишь некоторые.

Главное и самое распространенное применение нового разрешения сейчас – игроиндустрия. Но и в этом случае стоит учесть, что Вам потребует высокопроизводительное (а значит недешевое) устройство (ПК, ps4 pro или Xbox One X), да и нативного разрешения, использующего все возможности вашего 4k-экрана, Вы увидите далеко не всегда. По большей части только для подобного применения новое разрешение будет иметь смысл.

Из всего выше сказанного следует, что новомодное 4k-разрешение ещё очень слабо распространено. Не стоит вестись на уловки маркетологов и бежать покупать новые устройства. Единственное, для чего это действительно востребовано, это сильно ограниченные в количестве стримминг-сервисы и современный гейминг. В последних случаях Вам надо детально рассмотреть, стоят ли такие небольшие преимущества тех денежных средств, которых потребуется потратить.

2.При изменении размеров растрового изображения-
а. качество остаётся неизменным
б. качество ухудшается при увеличении и уменьшении +
в. При уменьшении остаётся неизменным а при увеличении ухудшается
г. При уменьшении ухудшается а при увеличении остаётся неизменным

3.Что можно отнести к устройствам ввода информации
а. мышь клавиатуру экраны
б. клавиатуру принтер колонки
в. сканер клавиатура мышь +
г. Колонки сканер клавиатура

4.Какие цвета входят в цветовую модель RGB
а. чёрный синий красный
б. жёлтый розовый голубой
в. красный зелёный голубой +
г. розовый голубой белый

5. Что такое интерполяция-
а. разлохмачивание краёв при изменении размеров растрового изображения +
б. программа для работу в с фрактальными редакторами
в. инструмент в Photoshop
г. Это слово не как не связано с компьютерной графикой

6. Наименьшим элементом изображения на графическом экране монитора является?
а. курсор

7.Выберете устройства являющееся устройством вывода
а. Принтер +
б. сканер
в. дисплей монитора +
г. клавиатура
д. мышь
е. колонки +

8. Наименьший элемент фрактальной графики
а. пиксель
б. вектор
в. точка
г. фрактал +

9. К какому виду графики относится данный рисунок
а. фрактальной
б. растровой +
в. векторной
г. ко всем выше перечисленным

10.Какие программы предназначены для работы с векторной графикой
а. Компас3Д +
б.Photoshop
в.Corel Draw +
г.Blender
д.Picasa
е.Gimp

11.При изменении размеров векторной графики его качество
а. При уменьшении ухудшается а при увеличении остаётся неизменным
б При уменьшении остаётся неизменным а при увеличении ухудшается.
в. качество ухудшается при увеличении и уменьшении
г. качество остаётся неизменным +

13.Пиксилизация эффект ступенек это один из недостатков
а. растровой графики +
б. векторной графики
в. фрактальной графики
г. масленой графики

14. Графика которая представляется в виде графических примитивов
а. растровая
б. векторная
в. трёхмерная
г. фрактальная +

15. Недостатки трёх мерной графики
а. малый размер сохранённого файла
б. не возможность посмотреть объект на экране только при распечатывании
в. необходимость значительных ресурсов на ПК для работы с данной графикой в программах +

16. К достоинствам Ламповых мониторов относится
а. низкая частота обновления экрана
б. хорошая цветопередача +
в. высокая себестоимость

17.К недостаткам ЖК мониторов можно отнести
а. громоздкость
б. излучение
в. узкий угол обзора
г. широкий угол обзора
18. Какое расширение имеют файлы графического редактора Paint?
а. еxe
б. doc
в. bmp +
г. сom

19. Сетка из горизонтальных и вертикальных столбцов, которую на экране образуют пиксели, называется
а. видеопамять;
б. видеоадаптер;
в. растр; +
г. дисплейный процессор;

20.Графический редактор Paint находится в группе программ
а. утилиты
б. стандартные +
в. Microsoft Office

21.К какому типу компьютерной графики относится программа Paint
а. векторная
б. фрактальная
в. растровая +
г. трёхмерная

22. Способ хранения информации в файле, а также форму хранения определяет
а. пиксель
б. формат +
в. графика
г. гифка

23. С помощью растрового редактора можно:
а. Создать коллаж +
б. улучшить яркость +
в. раскрашивать чёрно белые фотографии +
г. печатать текст
д. выполнять расчёт

24. Для ввода изображения в компьютер используются
а. принтер
б. сканер +
в. диктофон
г. цифровой микрофон

25. Графический редактор это
а. устройство для создания и редактирования рисунков
устройство для печати рисунков на бумаге
в. программа для создания и редактирования текстовых документов
г. программа для создания и редактирования рисунков +

26. Графическим объектом НЕ является
а. чертёж
б. текст письма +
в. рисунок
г. схема

27.Растровым графическим редактором НЕ является
а. GIMP
б.Paint
в.Corel draw +
г.Photoshop

29.В модели СМУК используется
а. красный, голубой, желтый, синий
б. голубой, пурпурный, желтый, черный +
в. голубой, пурпурный, желтый, белый
г. красный, зеленый, синий, черный

30. В цветовой модели RGB установлены следующие параметры: 0, 255, 0. Какой цвет будет соответствовать этим параметрам?
а. красный +
б. чёрный
в. голубой
г. зелёный

Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

В растровой графике изображение представляется в виде набора окрашенных точек. Совокупность таких точек, образующих строки и столбцы, называют растр .

Применение растровой графики: обработка цифровых фотографий, сканированных изображений, создание коллажей, эмблем, логотипов. Растровые изображения чаще не создаются с помощью компьютера, а только обрабатываются. В Интернете используются только растровые изображения.

Pixel-example.jpg

  • Растровые изображения занимают большое количество памяти.
  • Резкое ухудшение качества при редактировании изображения.

Векторная графика описывает изображения с использованием прямых и изогнутых линий, называемых векторами, а также параметров, описывающих цвета и расположение.

В отличие от растровой графики в векторной графике изображение строится с помощью математических описаний объектов, окружностей и линий.

Ключевым моментом векторной графики является то, что она использует комбинацию компьютерных команд и математических формул для объекта. Это позволяет компьютерным устройствам вычислять и помещать в нужном месте реальные точки при рисовании этих объектов. Такая особенность векторной графики дает ей ряд преимуществ перед растровой графикой, но в тоже время является причиной ее недостатков.

1024px-Bitmap_VS_SVG_ru.svg.jpg

  • Векторная графика не позволяет получать изображения фотографического качества.
  • Векторные изображения описываются тысячами команд. В процессе печати эти команды передаются устройству вывода (принтеру). Иногда из–за проблем связи между двумя процессорами принтер не может распечатать отдельные детали рисунков.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании.

Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.

Краткая аннотация: Понятие "компьютерная графика ". Растровые изображения. Пиксели. Разрешение изображения. Размер изображения. Достоинства и недостатки растровой графики. Векторная графика . Достоинства и недостатки векторной графики. Сравнение растровой и векторной графики.

Цель: получить представление о базовых понятиях компьютерной графики.

Компьютерная графика - это область информатики, занимающаяся созданием, хранением и обработкой различных изображений (рисунков, чертежей, мультипликации) на компьютере.

Компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую .

Под растровым понимают способ представления изображения в виде совокупности отдельных точек (пикселей) различных цветов или оттенков.

При увеличении растрового рисунка в несколько раз становится видно, что изображение состоит из конечного числа "квадратиков" определенного цвета. Эти квадратики и называют пикселями .

В векторной графике все изображения описываются в виде математических объектов – контуров, т.е. изображение разбивается на ряд графических примитивов – точки, прямой , ломанной, дуги, многоугольника.

Оба этих способа кодирования графической информации имеют свои особенности и недостатки.

Растровая графика позволяет создать (воспроизвести) практически любой рисунок, с использованием более чем 16 млн. оттенков цветов, вне зависимости от сложности.

Растровое представление изображения естественно для большинства устройств ввода-вывода графической информации, таких как мониторы, матричные и струйные принтеры, цифровые фотоаппараты, сканеры.

Основной проблемой растровой графики является большой объем файлов, содержащих изображения: чем больше количество пикселей и чем меньше их размеры, тем лучше выглядит изображение.

Второй недостаток растровых изображений связан с невозможностью их увеличения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение изображения приводит только к тому, что эти точки становятся крупнее и напоминают мозаику. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается. Более того, увеличение точек растра визуально искажает иллюстрацию и делает её грубой. Этот эффект называется пикселизацией (от пиксель – самый маленький элемент изображения, точка (как атом в молекуле)).

Растровое изображение

У векторных изображений , напротив, размер файла не зависит от реальной величины объекта, что позволяет, используя минимальное количество информации , описать сколько угодно большой объект файлом минимального размера.

Описание объектов может быть легко изменено. Также это означает, что различные операции с рисунком, такие как перемещение, масштабирование, вращение, заполнение и т. д. не ухудшают его качества.

Векторное изображение

К недостаткам векторной графики относят следующие:

  1. Возможность изображения в векторном виде доступна далеко не для каждого объекта: для этого может потребоваться разбить объект на очень большое количество векторных линий, что сильно увеличивает количество памяти, занимаемой изображением, и время его прорисовки на экране.
  2. Векторный формат не дает возможность отобразить плавные переходы цветов, сохранить фотографическую точность изображения.

Выбор растрового или векторного формата зависит от целей и задач работы с изображением. Каждый из видов компьютерной графики был разработан для решения определенных задач и имеет свою заданную область применения.

Если нужна фотографическая точность цветопередачи, то предпочтительнее растр. Логотипы, схемы, элементы оформления удобнее представлять в векторном формате.

Пиксели, разрешение, размер изображения

Размеры растровых изображений выражают в виде количества пикселов по горизонтали и вертикали, например, 600?800. В данном случае это означает, что ширина изображения составляет 600, а высота — 800 точек. Количество точек по горизонтали и вертикали может быть разным для разных изображений.

При выводе изображения на поверхность экрана или бумаги, оно занимает прямоугольник определённого размера. Для оптимального размещения изображения на экране необходимо согласовывать количество точек в изображении, пропорции сторон изображения с соответствующими параметрами устройства отображения.

Степень детализации изображения, число пикселей (точек) отводимых на единицу площади называют разрешением .

Если пикселы изображения выводятся пикселами устройства вывода один к одному, размер будет определяться только разрешением устройства вывода. Соответственно, чем выше разрешение экрана, тем больше точек отображается на той же площади и тем менее зернистой и более качественной будет ваша картинка.

При большом количестве точек, размещённом на маленькой площади, глаз не замечает мозаичности рисунка. Справедливо и обратное: малое разрешение позволит глазу заметить растр изображения ("ступеньки").

Высокое разрешение изображения при малом размере плоскости отображающего устройства не позволит вывести на него всё изображение, либо при выводе изображение будет "подгоняться", например, для каждого отображаемого пиксела будут усредняться цвета попадающей в него части исходного изображения. При необходимости крупно отобразить изображение небольшого размера на устройстве с высоким разрешением приходится вычислять цвета промежуточных пикселей.

Следует четко различать: разрешение экрана; разрешение печатающего устройства; разрешение изображения.

Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны, пока не потребуется узнать, какой физический размер будет иметь картинка на экране монитора, отпечаток на бумаге или файл на жестком диске.

Разрешение экрана (экранного изображения) — это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком. Для измерения экранного разрешения используют обозначение ppi (pixel per inch).

Разрешение принтера (печатного изображения) — это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины (растра). Оно измеряется в единицах dpi (точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере. В зависимости от сорта бумаги выбирают следующие величины частоты растра: для газетной бумаги - 70-90 dpi, для бумаги среднего качества - 90-100 dpi, для глянцевой - 133 dpi и выше.

Разрешение изображения (оригинала) — это свойство самого изображения. Разрешение оригинала используется при вводе изображения в компьютер и измеряется в точках на дюйм (dots per inch – dpi), задается при создании изображения в графическом редакторе или с помощью сканера. Установка разрешения оригинала зависит от требований, предъявляемых к качеству изображения и размеру файла. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.

Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения — его физическим размером.

Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом.

Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет.

Читайте также: