Принципы представления мультимедиа в компьютере звук в компьютере

Обновлено: 07.07.2024

Презентация на тему: " Что такое мультимедиа? Представление звука в памяти компьютера." — Транскрипт:

1 Что такое мультимедиа? Представление звука в памяти компьютера

2 Мультимедиа Мультимедиа это интерактивные (диалоговые) системы, обеспечивающие одновременную работу со звуком, анимированной компьютерной графикой, видеокадрами, статическими изображениями и текстами.

3 Применение мультимедийных технологий Применение Образование Электронный учебник Мультимедийная энциклопедия Мультимедийный справочник Виртуальная лаборатория Наука Система компьютерного моделирования Бизнес Реклама Компьютерные игры Культура и искусство Компьютерный гид Виртуальные экскурсии по музеям (Эрмитаж)Виртуальные экскурсии по миру (Нью-Йорк)Цифровая коллекция живописи Цифровая коллекция музыкальных произведений Экскурсии Экспертные медицинские системы

4 ИСТОРИЯ ЗВУКОЗАПИСЫВАЮЩЕЙ ТЕХНИКИ Эдисон ( ) и его фонограф Первый фонограф Эдисона (1877 г.) Фонограф

5 ИСТОРИЯ ЗВУКОЗАПИСЫВАЮЩЕЙ ТЕХНИКИ Модель граммофона Эдисона, созданная в 1905 г. Граммофон

6 Патефон Ленинградской артели "Граммофон" ИСТОРИЯ ЗВУКОЗАПИСЫВАЮЩЕЙ ТЕХНИКИ Патефон

7 ИСТОРИЯ ЗВУКОЗАПИСЫВАЮЩЕЙ ТЕХНИКИ Электрофон Электрофон «Вега-109 с» Электрофон «Юность-301» Электропроигрыватель ''Электроника ЭП-017С''

8 АНАЛОГОВОЕ ПРЕДСТАВЛЕНИЕ ЗВУКА Портативный граммофон завода "Молот" е годы. Виды механической записи: 1-глубинная; 2-поперечная Звуковая дорожка грампластинки – это пример непрерывной формы записи звука

9 АНАЛОГОВОЕ ПРЕДСТАВЛЕНИЕ ЗВУКА В электрофоне колебания движущейся по звуковой дорожке иглы превращаются в непрерывный электрический сигнал. t I Осциллограмма Электрический сигнал передается на динамик электрофона и превращается в звук.

10 АНАЛОГОВОЕ ПРЕДСТАВЛЕНИЕ ЗВУКА В ХХ веке был изобретен магнитофон – устройство для записи звука на магнитную ленту. Здесь также используется аналоговая форма хранения звука. Только теперь звуковая дорожка – это линия с непрерывно изменяющейся намагниченностью. С помощью считывающей магнитной головки создается переменный электрический сигнал, который озвучивается акустической системой. Кассетный магнитофон «Легенда-404» Катушечный магнитофон «Маяк-202»

11 АНАЛОГОВОЕ ПРЕДСТАВЛЕНИЕ ЗВУКА До недавнего времени вся техника передачи звука была аналоговой. Телефонная связь Первый в мире радиоприемник, который А.С.Попов демонстрировал на заседании физического отделения РФХО 25 апреля (7 мая) 1895 г. Радиосвязь 150-метровая башня на Шаболовке с радиоантенной Ламповый радиоприёмник «ЗВЕЗДА» Транзисторный радиоприемник ''ВЭФ-202''

12 ЦИФРОВОЕ ПРЕДСТАВЛЕНИЕ ЗВУКА Современные компьютеры умеют работать со звуком. Запись звука происходит через микрофон, который создает непрерывный электрический сигнал, а воспроизведение – через динамики, которые звучат также под действием непрерывного электрического сигнала.

13 ЦИФРОВОЕ ПРЕДСТАВЛЕНИЕ ЗВУКА Звук в памяти компьютера хранится в дискретной форме, т. е. в виде цифр, поэтому необходимо преобразование аналоговой формы представления звука в дискретную и обратное преобразование. Первый процесс называется аналого-цифровым преобразованием (АЦП), второй – цифро-аналоговым преобразованием (ЦАП). Аналого-цифровое и цифро-аналоговое преобразование


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности



2. Раздавайте видеоуроки в личные кабинеты ученикам.


3. Смотрите статистику просмотра видеоуроков учениками.

Конспект урока "Представление звука в компьютере"

· оцифровка вводимого звукового сигнала;

· качество цифрового звука;

· виды кодирования звуковых файлов.

С начала 90-ых годов персональные компьютеры получили возможность работать со звуковой информацией.


Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.


С помощью специальных программных средств (редакторов звукозаписей) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи и, в результате, появляется возможность управления компьютером при помощи голоса.


А как же представляется звук в компьютере?

Вообще звук – это процесс колебания воздуха или любой другой среды, в которой он распространяется. Звук характеризуется амплитудой (силой) и частотой (количеством колебаний в секунду).

Под звукозаписью понимают процесс сохранения звуковой информации на каком-либо носителе с помощью специальных устройств.

Ввод звука в компьютер производится с помощью звукового устройства, микрофона или радио, выход которого подключается к порту звуковой карты.


Рассмотрим подробнее процесс ввода звука в компьютер.

Звуковые сигналы непрерывны. С помощью микрофона звуковой сигнал превращается в непрерывный электрический сигнал. Но, как вы помните компьютер может работать только с цифровой информацией, поэтому если нам нужно обработать звук на компьютере, то его необходимо дискретизировать – то есть превратить в прерывистую, состоящую из отдельных частей, последовательность нулей и единиц.

Процессом преобразования звука из непрерывной формы в дискретную при записи и из дискретной в непрерывную при воспроизведении занимается звуковая карта или аудио адаптер.


Звуковая карта – это устройство для записи и воспроизведения звука на компьютере. То есть задача звуковой карты — с определённой частотой производить измерения уровня звукового сигнала и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

Промежуток времени между двумя измерениями называется периодом измерений — обозначается буквой Т и измеряется в секундах.

Таким образом на качество преобразования звука влияет несколько условий:

• Частота дискретизации, то есть сколько раз в секунду будет измерен исходный сигнал.

• Разрядность дискретизации – количество битов, выделяемых для записи каждого результата измерений.


Результаты таких измерений представляются целыми положительными числами с конечным количеством разрядов. Как мы уже говорили, в таком случае получается дискретное конечное множество значений в ограниченном диапазоне.

Размер этого диапазона зависит от разрядности ячейки — регистра памяти звуковой карты.


То есть обратите внимание, снова работает главная формула информатики:


здесь i — это разрядность регистра. Также число i называют разрядностью дискретизации. Записанные данные сохраняются в файлах специальных звуковых форматов.

Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации ровна 22050 Герц. Нужно найти разрядность аудиоадаптера.


При воспроизведении звукового файла цифровые данные преобразуются в электрический аналог звука. К звуковой карте подключаются наушники или звуковые колонки. С их помощью электрические колебания преобразуются в механические звуковые волны, которые воспринимают наши уши.

Таким образом, чем больше разрядность и частота дискретизации, тем точнее представляется звук в цифровой форме и тем больше размер файла, хранящего его.

Рассмотрим такой пример: Нужно определить качество звука (то есть какое это качество радиотрансляции или качество аудио-CD) если известно, что объём моноаудиофайла длительностью звучания в 10 секунд равен 940 Кб. Разрядность аудиоадаптера ровна 16 бит.


Рассмотрим ещё один пример. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Нужно найти во сколько раз различаются информационные объёмы оцифрованного звука?


Для работы со звуковой информацией на компьютере используются различные программы. Одни из них позволяют записать звук на цифровой носитель, другие — воспроизвести. Существуют программы, которые выполняют более сложную обработку звука. Такие программы называются редакторы звука. Например, можно вырезать фрагмент музыкального произведения или речи, объединить фрагменты, изменить тембр звучания, длительность воспроизведения создавать различные музыкальные эффекты, очищать звук от шумов, согласовывать с изображениями для создания мультимедийных продуктов и так далее.

При хранении оцифрованного звука приходится решать проблему уменьшения объёма звуковых файлов. Существует два способа кодирования звука: кодирования данных без потерь, позволяющего осуществлять стопроцентное восстановление данных из сжатого потока. А также кодирование данных с потерями. Позволяет добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных. Здесь используются различные алгоритмы, сжимающие оригинальный сигнал путём выкидывания из него слабо слышимых элементов.

Существует множество различных аудио форматов. Наиболее часто используются такие форматы как WAV и MP3. Тип формата обычно определяется расширением файла (то, что идёт после точки в имени файла mp3, wav, ogg, wma)

WAV – один из первых аудио-форматов. Обычно используется для хранения несжатых аудиозаписей, идентичных по качеству звука записям на компакт-дисках. В среднем одна минута звука в формате wav занимает около 10 Мб.


MP3 – наиболее распространённый в мире звуковой формат. MP3, как и многие другие форматы кодирует звук с потерей качества, то есть урезает звук, который не слышится человеческим ухом, тем самым уменьшая размер файла.


На текущий момент mp3 не является лучшим форматом по соотношению размера файла к качеству звучания, но в силу своей распространённости и поддерживаемости большинством устройств, многие хранят свои записи именно в нём.


Звуковая карта – это устройство для записи и воспроизведения звука на компьютере. Задача звуковой карты — с определённой частотой производить измерения уровня звукового сигнала и результаты измерения записывать в память компьютера. Этот процесс называют оцифровкой звука.

Качество оцифрованного звука зависит от:

• Частоты дискретизации, то есть сколько раз в секунду будет измерен исходный сигнал.

• и Разрядности дискретизации – то есть от количества битов, выделяемых для записи каждого результата измерений.

Существует два способа кодирования звука:

• кодирования данных без потерь, здесь осуществляется стопроцентное восстановление данных из сжатого потока;

• кодирование данных с потерями. Это способ позволяет добиться схожести звучания восстановленного сигнала с оригиналом при максимальном сжатии данных.

Звук — физическое явление , представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных.

Звукозапись — процесс записи звуковой информации с целью ее сохранения и последующего воспроизведения. Звукозапись производится по схеме: микрофон - усилитель электрических колебаний — устройство, воздействующее на носитель записи.

1. Понятие и основные характеристики цифрового звука.

Цифровой звук — это аналоговый (т.е. непрерывный) звуковой сигнал, представленный посредством дискретных (т.е. отдельных) численных значений его амплитуды.

Характеристика цифрового звука:

1. Частота дискретизации - это количество измерений громкости звука за одну секунду. Чем выше частота, тем выше звучание. Высота звука измеряется в герцах (Гц, Hz) или килогерцах (КГц, KHz). 1 Гц = 1/с. То есть колебание в 1 Гц соответствует волне с периодом в 1 секунду.

2. Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука (измеряется в битах).

Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука.

2. Преобразование и воспроизведение звуковой информации.

Процесс преобразования звуковых волн в двоичный код в памяти компьютера:

Аудиоадаптер (звуковая плата) – специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в регистр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера.

Частота дискретизации – это количество измерений входного сигнала за 1 секунду. Частота измеряется в герцах (Гц). Одно измерение за 1 секунду соответствует частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц) = 1000 Гц. Характерные частоты дискретизации аудиоадаптеров: 11 кГц, 22 кГц и др.

Разрядность регистра – число бит в регистре аудиоадаптера. Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8 (16), то при измерении входного сигнала может быть получено 2 8 = 256 (2 16 = 65536) различных значений. Очевидно, что 16 – разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8 – разрядный.

Процесс воспроизведения звуковой информации, сохраненной в памяти ЭВМ:

Звуковой фай л – файл, хранящий звуковую информацию в числовой двоичной форме. Как правило, информация в звуковых файлах подвергается сжатию.

Процесс оцифровки звука выполняется аналогово-цифровыми преобразователями (АЦП).

Аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) — устройство, преобразующее входной аналоговый сигнал в дискретный код (т.е. цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя).

Как правило, АЦП — электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным АЦП является компаратор.

3. Принципы оцифровки звука.

Оцифровка звука — технология преобразования аналогового звукового сигнала в цифровой вид. Заключается в осуществлении замеров амплитуды сигнала с определенным временным шагом и последующей записи полученных значений в численном виде. Другое название оцифровки звука — аналогово-цифровое преобразование звука.

Оцифровка звука включает в себя два процесса:

· процесс дискретизации (осуществление выборки) сигнала по времени

· процесс квантования по амплитуде.

Процесс дискретизации по времени — процесс получения значений сигнала, который преобразуется, с определенным временным шагом — шагом дискретизации. Количество замеров величины сигнала, осуществляемых в одну секунду, называют частотой дискретизации или частотой выборки, или частотой сэмплирования (от англ. «sampling» — «выборка»). Чем меньше шаг дискретизации, тем выше частота дискретизации и тем более точное представление о сигнале будет получено. Основная трудность оцифровки заключается в невозможности записать измеренные значения сигнала с идеальной точностью.

Линейное (однородное) квантование амплитуды

Отведём для записи одного значения амплитуды сигнала в памяти компьютера N бит. Значит, с помощью одного N -битного слова можно описать 2 N разных положений. Пусть амплитуда оцифровываемого сигнала колеблется в пределах от −1 до 1 некоторых условных единиц. Представим этот диапазон изменения амплитуды — динамический диапазон сигнала — в виде 2 N −1 равных промежутков, разделив его на 2 N уровней — квантов. Теперь, для записи каждого отдельного значения амплитуды, его необходимо округлить до ближайшего уровня квантования. Этот процесс носит название квантования по амплитуде. Квантование по амплитуде — процесс замены реальных значений амплитуды сигнала значениями, приближенными с некоторой точностью. Каждый из 2 N возможных уровней называется уровнем квантования, а расстояние между двумя ближайшими уровнями квантования называется шагом квантования. Если амплитудная шкала разбита на уровни линейно, квантование называют линейным (однородным).
Точность округления зависит от выбранного количества (2 N ) уровней квантования, которое, в свою очередь, зависит от количества бит (N), отведенных для записи значения амплитуды. Число N называют разрядностью квантования (подразумевая количество разрядов, то есть бит, в каждом слове), а полученные в результате округления значений амплитуды числа — отсчетами или сэмплами (от англ. «sample» — «замер»). Принимается, что погрешности квантования, являющиеся результатом квантования с разрядностью 16 бит, остаются для слушателя почти незаметными.

Таким образом, способ оцифровки сигнала — дискретизация сигнала во времени в совокупности с методом однородного квантования — называется импульсно-кодовой модуляцией, ИКМ (англ. Pulse Code Modulation — PCM).

Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM (Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

Задача 1. Определить информационный объем стерео аудио файла длительностью звучания 1 секунда при высоком качестве звука (16 битов, 48 кГц).

Одной из основных задач информатики является представление данных в виде удобном для хранения и передачи. Эти данные могут быть разного типа – звуковые, текстовые, графические и т.д. В этой статье мы расскажем про кодирование звуковой информации. Из этой статьи Вы узнаете основные принципы и определения. Также после прочтения сможете посчитать объем аудио файла. Читайте!

Основные определения

Для того чтобы разобраться в теме надо знать, что представляет собой звуковая информация (звук).

Звук – это непрерывная аналоговая волна, которая распространяется в окружающей среде. В роли среды может выступать воздух, жидкость, твердое тело, электричество и т.д.

Звук, как непрерывную волну, характеризуют две характеристики – частота и амплитуда.

От амплитуды зависит громкость аудио сигнала . Чем выше амплитуда, тем громкость больше.

Частота же характеризует тональность аудиоинформации . Чем больше частота, тем тональность выше. Человеческий слух улавливает волны от 20 Гц до 20 кГц. 1 Гц равен 1 колебанию аудио сигнала в секунду.

Представление и кодирование звуковой информации в компьютере

Для представления и кодирования звука используются специальное оборудование и программы. Рассмотрим весь процесс более подробно.

  1. Аудиоинформация, поступая из окружающей среды (например, по воздуху), преобразуется в электрический сигнал. Для этого используется такое устройство, как микрофон.
  2. После этого звук поступает на АЦП (аналого-цифровой преобразователь), где подвергается оцифровке.
  3. На последнем этапе информация (уже в двоичном виде) кодируется при помощи специальной программы – аудиокодека. На выходе получается файл в специальном формате (например, mp3), который можно хранить, воспроизводить и передавать.

Кодирование звуковой информации

Наибольший интерес представляет процесс оцифровки, также называемым аналого-цифровым преобразованием. В результате него аналоговый сигнал заменяется на цифровой.

Основной принцип аналогово-цифрового преобразования заключается в том, что через равные промежутки времени измеряется амплитуда волны. Также этот процесс называется дискретизация.

Дискретизация – это процесс в результате, которого непрерывная функция представляется в виде дискретной последовательности её значений. Схематично дискретизацию можно представить так:

Кодирование звуковой информации

Дискретизация характеризуется двумя такими величинами, как:

  • Частота шага по времени;
  • Шаг квантования.

Первая величина отображает, как часто берутся дискреты и измеряется в Герцах (количество измерений за одну секунду). Частота шага по времени находится по теореме Котельникова.

Шаг квантования характеризуется количеством уровней , до которых округляются величины амплитуды волны.

Количество уровней (ступенек) до которых округляются значения сигнала, зависит от аналого-цифрового преобразователя. На данный момент используются 16, 32 и 64 битные устройства.

Количество бит, затрачиваемое для номеров уровней, называется глубиной кодирования звуковой информации.

Глубина кодирования связано с количеством уровней по формуле:

Где i разрядность АЦП в битах.

Чем чаще берутся дискреты за единицу времени и больше глубина кодирования, тем выше качество звуковых данных на выходе и дороже АЦП.

Расчет объема аудио файла

​ \[V = 60*1*8000*8=3840000 \ бит \] ​

Форматы аудио

Форматов для хранения аудио много, однако, все они делятся на две большие группы в зависимости от того, какой из методов сжатия используется – LOSELESS или LOSSY.

  1. LOSELESS – метод сжатия без потерь. Качество звуковой информации остается без изменений, однако за него приходится платить большим объемом компьютерной памяти. Используется для хранения музыки и других данных, где важно качество. Форматы, которые основаны на данном методе сжатия: FLAC, APE, TAC, ALAC и другие. На данный момент зарабатывают все большую популярность в связи с увеличением дискового пространства.
  2. LOSSY – сжатие с потерями. При таком методе файл сохраняются с искажениями относительно оригинала. В основном эти искажения не воспринимаются человеческим слухом, а также не замечаются при плохом аудио оборудовании. LOSSY позволяет существенно сэкономить дисковое пространство. На данный момент этот метод сжатия является доминирующим.

Форматы кодирования использующие алгоритмы LOSSY:

  • MP3 (MPEG-1,2,2.5) – самый популярный аудио формат. Проигрывается на всех аудио и видео системах, по умолчанию поддерживается всеми операционными системами. Искажения заметны на высокоточной дорогостоящей аппаратуре.
  • AAC – формат, который разрабатывался и позиционировался, как приемник mp3. Не получил широкого распространения. Преимущества перед mp3: большая гибкость кодирования, возможность использовать до 48 звуковых каналов.
  • HE-AAC (High-Efficiency Advanced Audio Coding) – используется в цифровом радио и телевиденье.

Заключение

Читайте также: