С чем связан второй этап развития компьютерной техники

Обновлено: 03.07.2024

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

§ 6. История развития вычислительной техники.

Информатика. 10 класса. Босова Л.Л. Оглавление

6.1. Этапы информационных преобразований в обществе

Веками люди совершенствовали способы и методы передачи, накопления, обработки и хранения информации. При этом средства обработки информации, как и сама информация, видоизменялись и расширяли свои возможности настолько, что это приводило к переменам в общественных отношениях. Появился термин «информационная революция», которым принято обозначать кардинальные изменения инструментальной основы, способа передачи и хранения информации, а также объёма информации, доступной активной части населения.

Информационная революция — кардинальное изменение инструментальной основы, способов передачи и хранения информации, а также объёма информации, доступной активной части населения.

Принято выделять пять информационных революций, определяющих, по сути, пять этапов информационных преобразований в обществе (табл. 2.1).

Содержание первой информационной революции составляет распространение и внедрение в деятельность и сознание человека языка. Вторая информационная революция была связана с изобретением письменности. Сущность третьей информационной революции состоит в изобретении книгопечатания, сделавшего любую информацию, и особенно научные знания, продукцией массового потребления. Четвёртая информационная революция состояла в применении электрической аппаратуры для скоростного и массового распространения всех видов информации и знаний.

Таблица 2.1

Этапы информационных преобразований в обществе


Пятая, последняя, информационная революция связана с созданием сверхскоростных вычислительных устройств — компьютеров. С появлением и массовым распространением компьютеров человек впервые за всю историю развития цивилизации получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых является вычислительная техника.

6.2. История развития устройств для вычислений

В развитии устройств для вычислений можно выделить несколько этапов:

• «домеханический» этап — изобретение счётов, таблиц Непера и логарифмической линейки;
• «механический» этап, начало которого связывается с первыми попытками создания механической счётной машины, предпринятыми Леонардо да Винчи (1452-1519). К этому же этапу относится создание многочисленных вариантов счётных машин и арифмометров, а также проект аналитической машины Чарльза Беббиджа, которая должна была выполнять вычисления без участия человека;
• создание электрорелейных вычислительных машин (вычислительные машины Говарда Эйкена, Джона Атанасова, Конрада Цузе и др.);

• создание электронных вычислительных машин (ЭВМ):

Понятие «вычислительная техника» сегодня тесно связывается с компьютерами, которые до 80-х годов прошлого века у нас в стране называли электронными вычислительными машинами. В этом смысле в развитии вычислительной техники также можно выделить несколько этапов, связанных с возникновением разных поколений ЭВМ:

• 40-е — начало 50-х гг. XX в. (создание ЭВМ на электронных лампах);
• середина 50-х — 60-е гг. XX в. (разработка ЭВМ на дискретных полупроводниковых приборах);
• середина 60-х гг. XX в. — середина 70-х гг. XX в. (появление ЭВМ на интегральных микросхемах);
• середина 70-х гг. XX в. — наши дни (использование больших и сверхбольших интегральных схем).

Рассмотрим особенности и характеристики каждого из приведённых этапов более подробно.

6.3. Поколения ЭВМ

Первое поколение ЭВМ — ламповые машины 50-х годов. Скорость счёта самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), они, главным обра-зом, использовались для инженерных и научных расчётов, не связанных с переработкой больших объёмов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Первая ЭВМ ЭНИАК (ENIAC) была создана в конце 1945 г. в США; она весила 30 т и размещалась на 170 м 2 . В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — Малая Электронная Счётная Машина (рис. 2.1).


Рис. 2.1. ЭВМ первого поколения МЭСМ

К концу 40-х гг. XX в., когда вошли в строй первые большие электронные компьютеры, специалисты начали искать замену громоздким и хрупким, часто выходившим из строя лампам, на которых они были построены. В 1948 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надёжнее, менее энергоёмкими (рис. 2.2). Быстродействие большинства машин достигло нескольких сотен тысяч операций в секунду. Объём внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Это способствовало созданию на ЭВМ информационно-справочных, поисковых систем, нуждающихся в длительном хранении больших объёмов информации.

Во времена второго поколения ЭВМ активно начали развиваться языки программирования высокого уровня, одним из первых среди которых был Фортран (Fortran — сокращение от англ. FORmula TRANslation — трансляция формулы).


Рис. 2.2. ЭВМ второго поколения БЭСМ-6

Благодаря транзистору — германиевому кристаллу величиной с булавочную головку, заключённому в металлический цилиндр длиной около сантиметра, — электроника ступила на путь миниатюризации: один транзистор был способен заменить 40 электронных ламп.

Хотя транзистор был выдающимся научным изобретением, он не сразу получил широкое практическое применение в вычислительной технике. Германий, из которого изготавливали первые транзисторы, — довольно редкий химический элемент, поэтому стоимость транзисторов была очень высокой. Резко снизить стоимость транзисторов удалось только в середине 50-х гг. XX в.: в 1954 году был изготовлен первый транзистор из кремния — основного компонента обычного песка, — одного из самых распространённых на Земле химических элементов.

Третье поколение ЭВМ создавалось на новой элементной базе — сложные электронные схемы монтировались на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 . Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС, а затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производить во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. В ЭВМ третьего поколения широко использовались новые типы устройств ввода-вывода: дисплеи, графопостроители (рис. 2.3).


Рис. 2.3. Рабочее помещение с установленной ЕС-1060

В этот период были созданы операционные системы (ОС), позволявшие управлять большим количеством внешних устройств и выполнять на одной машине несколько программ одновременно. Широкое распространение получили ранее созданные языки программирования. Начали появляться пакеты прикладных программ для решения задач в конкретных областях. Это существенно расширило области применения ЭВМ.

Первая интегральная схема, представлявшая собой кристалл, в котором была размещена целая схема из нескольких транзисторов, была разработана в 1958 г. американским физиком Джеком Килби, удостоенным за это изобретение Нобелевской премии.

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора.

Микропроцессор — это СБИС, способная выполнять функции основного блока компьютера — процессора. Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера — микроЭВМ. Микро-ЭВМ относятся к машинам четвёртого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Сегодня самой популярной разновидностью ЭВМ являются персональные компьютеры (ПК). Первый ПК был создан в 1976 году в США. С 1980 года и на долгие годы вперёд на рынке ПК ведущей становится американская фирма IBM. Её конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). С точки зрения общественного развития появление и распространение ПК сопоставимы с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием компьютеров этого типа появилось такое понятие, как информационные технологии, без которых уже невозможно обойтись в большинстве областей человеческой деятельности.

Ещё одной линией в развитии ЭВМ четвёртого поколения являются суперкомпьютеры — мощные многопроцессорные компьютеры, выполняющие параллельную обработку данных (рис. 2.4).

Все компьютеры, используемые в настоящее время, по-прежнему построены на базе идей четвёртого поколения.


Рис. 2.4. Суперкомпьютер «Ломоносов»

В начале 90-х годов прошлого века в Японии начались работы по созданию компьютера пятого поколения. По замыслу японских специалистов основой работы этих компьютеров должны были стать не вычисления, а логические рассуждения, что означало переход от обработки данных к обработке знаний. Машину обещали научить воспринимать речь человека, рукописный текст и графические изображения. Окончательные результаты в этом направлении всё ещё не достигнуты. Исследования продолжаются.

Можно проследить несколько основных тенденций, имеющих место в развитии вычислительной техники:
• возрастание вычислительной мощности компьютеров от поколения к поколению;
• изменение целей использования компьютеров от сугубо военных и научно-технических расчётов к техническим и экономическим расчётам, коммуникационному и информационному обслуживанию, управлению;
• изменение в режиме работы компьютеров от однопрограммного к пакетной обработке, работе в режиме разделения времени, персональной работе и сетевой обработке данных;
• движение от машинного языка к языкам высокого уровня;
• повышение удобства работы пользователя за счёт усовершенствования аппаратного и программного обеспечения, возможности произвольного мобильного расположения;
• неуклонное расширение областей применения и круга пользователей компьютерной техники.

САМОЕ ГЛАВНОЕ

Веками люди совершенствовали способы и методы передачи, накопления, обработки и хранения информации. Информационная революция — кардинальное изменение инструментальной основы, способов передачи и хранения информации, а также объёма информации, доступной активной части населения.

Человечество прошло через несколько информационных революций, связанных с появлением речи, письменности, книгопечатания и средств коммуникации (телеграф, телефон, радио, телевизор). Пятая информационная революция связана с новыми информационными технологиями, основой которых является вычислительная техника.

Понятие «вычислительная техника» сегодня тесно связывается с компьютерами, которые до 80-х годов прошлого века у нас в стране называли электронными вычислительными машинами.

В развитии вычислительной техники также можно выделить несколько этапов, связанных с возникновением разных поколений ЭВМ:

1) 40-е — начало 50-х гг. XX в. (создание ЭВМ на электронных лампах);
2) середина 50-х — 60-е гг. XX в. (разработка ЭВМ на дискретных полупроводниковых приборах);
3) середина 60-х — середина 70-х гг. XX в. (появление ЭВМ на интегральных микросхемах);
4) середина 70-х гг. XX в. — наши дни (использование больших и сверхбольших интегральных схем).

Все компьютеры, используемые в настоящее время, по-прежнему построены на базе идей четвёртого поколения.

Вопросы и задания

1. Что понимают под информационными революциями? Какие информационные революции пережило человечество?

2. Выясните, когда отмечается День российской информатики. С чем связан выбор именно этой даты?

3. Дайте краткую характеристику «домеханического» периода развития вычислительных устройств, связанного с изобретением и использованием счётов, таблиц и логарифмической линейки.

4. Дайте краткую характеристику «механического» периода создания вычислительных устройств, связанного с именами таких изобретателей, как Леонардо да Винчи, Вильгельм Шиккард, Блез Паскаль, Готфрид Вильгельм Лейбниц, Филипп Маттеус Ган, Евна Якобсон и др.

5. Попытайтесь обнаружить «ткацкий след» в развитии вычислительной техники.

7. По какому принципу ЭВМ делятся на поколения? Дайте краткую характеристику каждому поколению компьютеров.

8. Предложите классификацию современных персональных компьютеров. Изобразите её в виде графа.

10. Что такое суперкомпьютеры? Для решения каких задач они используются?

11. Какое место в рейтинге суперкомпьютеров (Тор500) занимают российские разработки?

12. Назовите основные тенденции, прослеживаемые в развитии вычислительной техники.

Читайте также: