С помощью чего производится обмен информацией между отдельными устройствами компьютера

Обновлено: 04.07.2024

Под архитектурой компьютера понимается его логическая организация, структура, ресурсы, т. е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. Архитектура современных ПК основана на магистрально-модульном принципе.

Модульный принцип позволяет потребителю самому подобрать нужную ему конфигурацию компьютера и производить при необходимости его модернизацию. Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. Магистраль или системная шина - это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.

Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули, - шине данных, шине адресов и шине управления.

Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает - это функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.

Разрядность шины данных задается разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт.

Данные по шине данных могут передаваться как от процессора к какому-либо устройству, так и в обратную сторону, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств , чтение данных с устройств ввода, пересылка данных на устройства вывода.

Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для ОЗУ - код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы передаются в одном направлении, от процессора к устройствам, т. е. эта шина является однонаправленной.

По шине управления передаются сигналы, определяющие характер обмена информацией, и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.

Внешние устройства к шинам подключаются посредством интерфейса. Под интерфейсом понимают совокупность различных характеристик какого-либо переферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором. В случае несовместимости интерфейсов (например, интерфейс системной шины и интерфейс винчестера ) используют контроллеры.

Чтобы устройства, входящие в состав компьютера, могли взаимодействовать с центральным процессором, в IBM-совместимых компьютерах предусмотрена система прерываний (Interrupts). Система прерываний позволяет компьютеру приостановить текущее действие и переключиться на другие в ответ на поступивший запрос, например, на нажатие клавиши на клавиатуре. Ведь с одной стороны, желательно, чтобы компьютер был занят возложенной на него работой, а с другой - необходима его мгновенная реакция на любой требующий внимания запрос. Прерывания обеспечивают немедленную реакцию системы.

Прогресс компьютерных технологий идет семимильными шагами. Каждый год появляются новые процессоры, платы, накопители и прочие периферийные устройства. Рост потенциальных возможностей ПК и появление новых более производительных компонентов неизбежно вызывает желание модернизировать свой компьютер . Однако нельзя в полной мере оценить новые достижения компьютерной технологии без сравнения их с существующими стандартами.

Разработка нового в области ПК всегда базируется на старых стандартах и принципах. Поэтому знание их является основополагающим фактором для (или против) выбора новой системы.

В состав ЭВМ входят следующие компоненты:

  • центральный процессор ( CPU );
  • оперативная память (memory);
  • устройства хранения информации ( storage devices );
  • устройства ввода ( input devices );
  • устройства вывода ( output devices );
  • устройства связи ( communication devices ).

Во всех вычислительных машинах до середины 50-х годов устройства обработки и управления представляли собой отдельные блоки, и только с появлением компьютеров, построенных на транзисторах, удалось объединить их в один блок, названный процессором.

Процессор - это мозг ЭВМ. Он контролирует действия всех остальных устройств (devices) компьютера и координирует выполнение программ. Процессор имеет свою внутреннюю память , называемую регистрами, управляющее и арифметико-логическое устройства .

Процесс общения процессора с внешним миром через устройства ввода-вывода по сравнению с информационными процессами внутри него протекает в сотни и тысячи раз медленнее. Это связано с тем, что устройства ввода и вывода информации часто имеют механический принцип действия (принтеры, клавиатура, мышь ) и работают медленно. Чтобы освободить процессор от простоя при ожидании окончания работы таких устройств, в компьютер вставляются специализированные микропроцессоры-контроллеры (от англ. controller - управляющий). Получив от центрального процессора компьютера команду на вывод информации, контроллер самостоятельно управляет работой внешнего устройства. Окончив вывод информации, контроллер сообщает процессору о завершении выполнения команды и готовности к получению следующей.

Число таких контроллеров соответствует числу подключенных к процессору устройств ввода и вывода. Так, для управления работой клавиатуры и мыши используется свой отдельный контроллер . Известно, что даже хорошая машинистка не способна набирать на клавиатуре больше 300 знаков в минуту, или 5 знаков в секунду. Чтобы определить, какая из ста клавиш нажата, процессор , не поддержанный контроллером, должен был бы опрашивать клавиши со скоростью 500 раз в секунду. Конечно, по его меркам это не бог весть какая скорость. Но это значит, что часть своего времени процессор будет тратить не на обработку уже имеющейся информации, а на ожидание нажатий клавиш клавиатуры.

Таким образом, использование специальных контроллеров для управления устройствами ввода-вывода, усложняя устройство компьютера, одновременно разгружает его центральный процессор от непроизводительных трат времени и повышает общую производительность компьютера.

Существует два типа оперативной памяти - память с произвольным доступом ( RAM или random access memory ) и память, доступная только на чтение ( ROM или read only memory ). Процессор ЭВМ может обмениваться данными с оперативной памятью с очень высокой скоростью, на несколько порядков превышающей скорость доступа к другим носителям информации, например дискам.

Оперативная память с произвольным доступом ( RAM ) служит для размещения программ, данных и промежуточных результатов вычислений в процессе работы компьютера. Данные могут выбираться из памяти в произвольном порядке, а не строго последовательно, как это имеет место , например, при работе с магнитной лентой. Память , доступная только на чтение ( ROM ) используется для постоянного размещения определенных программ (например, программы начальной загрузки ЭВМ). В процессе работы компьютера содержимое этой памяти не может быть изменено.

Оперативная память - временная, т. е. данные в ней хранятся только до выключения ПК. Для долговременного хранения информации служат дискеты, винчестеры , компакт-диски и т. п. Конструктивно элементы памяти выполнены в виде модулей, так что при желании можно сравнительно просто заменить их или установить дополнительные и тем самым изменить объем общей оперативной памяти компьютера. Основными характеристиками элементов (микросхем) памяти являются: тип, емкость, разрядность и быстродействие .

В настоящее время отдельные микросхемы памяти не устанавливаются на материнскую плату . Они объединяются в специальных печатных платах, образуя вместе с некоторыми дополнительными элементами модули памяти ( SIMM - и DIMM -модули).

Устройства хранения информации используются для хранения информации в электронной форме. Любая информация - будь это текст, звук или графическое изображение, - представляется в виде последовательности нулей и единиц. Ниже перечислены наиболее распространенные устройства хранения информации.

Винчестеры (hard discs)

Жесткие диски - наиболее быстрые из внешних устройств хранения информации. Кроме того, информация, хранящаяся на винчестере, может быть считана с него в произвольном порядке (диск - устройство с произвольным доступом).

Емкость диска современного персонального компьютера составляет десятки гигабайт. В одной ЭВМ может быть установлено несколько винчестеров.

Оптические диски (cdroms)

Лазерные диски, как их еще называют, имеют емкость около 600 мегабайт и обеспечивают только считывание записанной на них однажды информации в режиме произвольного доступа. Скорость считывания информации определяется устройством, в которое вставляется компакт-диск (cdrom drive).

Магнито-оптические диски

В отличие от оптических дисков магнито-оптические диски позволяют не только читать, но и записывать информацию.

Флоппи диски (floppy discs)

В основе этих устройств хранения лежит гибкий магнитный диск, помещенный в твердую оболочку. Для того чтобы прочитать информацию, хранящуюся на дискете, ее необходимо вставить в дисковод (floppy disc drive ) компьютера. Емкость современных дискет всего 1.44 мегабайта. По способу доступа дискета подобна винчестеру.

Zip and Jaz Iomega discs

Это относительно новые носители информации, которые призваны заменить гибкие магнитные диски. Их можно рассматривать, как быстрые и большие по емкости (100 мегабайт - Zip, 1 гигабайт - Jaz) дискеты.

Есть три основных способа организации межкомпьютерной связи :

объединение двух рядом расположенных компьютеров посредством специального кабеля ;

передача данных от одного компьютера к другому посредством модема с помощью проводных, беспроводных или спутниковых линий связи;

объединение компьютеров в компьютерную сеть

Часто при организации связи между двумя компьютерами за одним компьютером закрепляется роль поставщика ресурсов (программ, данных и т.д.), а за другим — роль пользователя этих ресурсов . В этом случае первый компьютер называется сервером , а второй — клиентом или рабочей станцией. Работать можно только на компьютере-клиенте под управлением специального программного обеспечения.

Сервер (англ. serve — обслуживать) — это высокопроизводительный компьютер с большим объёмом внешней памяти, который обеспечивает обслуживание других компьютеров путем управления распределением дорогостоящих ресурсов совместного пользования (программ, данных и периферийного оборудования).

Клиент (иначе, рабочая станция) — любой компьютер, имеющий доступ к услугам сервера.

Компьютерная сеть (англ. ComputerNetWork, от net — сеть, и work — работа) — это система обмена информацией между компьютерами.

Пользователи компьютерной сети получают возможность совместно использовать её программные, технические, информационные и организационные ресурсы.

Компьютерная сеть представляет собой совокупность узлов (компьютеров, рабочих станций и др.) и соединяющих их ветвей.

Ветвь сети — это путь, соединяющий два смежных узла.

Узлы сети бывают трёх типов:

оконечный узел — расположен в конце только одной ветви;

промежуточный узел — расположен на концах более чем одной ветви;

смежный узел — такие узлы соединены по крайней мере одним путём, не содержащим никаких других узлов.

Компьютеры могут объединяться в сеть разными способами. Способ соединения компьютеров в сеть называется её топологией .

Наиболее распространенные виды топологий сетей:

Линейная сеть (Шина). Содержит только два оконечных узла, любое число промежуточных узлов и имеет только один путь между любыми двумя узлами.

Кольцевая сеть. Сеть, в которой к каждому узлу присоединены две и только две ветви.

Древовидная сеть. Сеть, которая содержит более двух оконечных узлов и по крайней мере два промежуточных узла, и в которой между двумя узлами имеется только один путь.

Звездообразная сеть. Сеть, в которой имеется только один промежуточный узел.

Ячеистая сеть. Сеть, которая содержит по крайней мере два узла, имеющих два или более пути между ними.

Полносвязанная сеть. Сеть, в которой имеется ветвь между любыми двумя узлами.

Важнейшая характеристика компьютерной сети — её архитектура.

В современном мире, переживающем информационный бум, всё большее значение приобретает проводная связь - телефония и интернет, которая позволяет людям не только общаться друг с другом на огромном расстоянии, но и пересылать за какие-то доли секунды огромные объёмы информации.

Существует несколько типов проводных линий связи :

медная витая пара проводов

волоконно-оптическая линия связи

Самой распространённой, дешёвой и простой в монтаже и последующем техническом обслуживании является витая пара. Волоконно-оптическая линия связи, напротив, является наиболее сложной и дорогостоящей.

Несмотря на бурное развитие в последние годы всевозможных средств беспроводной связи, таких, как мобильные или спутниковые телефоны, проводная связь, видимо, будет сохранять свои позиции ещё долгое время.

Основными преимуществами проводной связи перед беспроводной являются простота устройства линий связи и стабильность передаваемого сигнала (качество которого, например, практически не зависит от погодных условий).

Прокладка проводных (кабельных) линий связи для предоставления услуг телефонии и интернет, связана со значительными материальными затратами, а также представляет собой весьма трудоёмкий процесс. Однако, несмотря на подобные сложности, инфраструктура проводной связи постоянно обновляется и совершенствуется.

Беспроводные сетевые технологии группируются в три типа, различающиеся по масштабу действия их радиосистем, но все они с успехом применяются в бизнесе.
1. PAN (персональные сети) — короткодействующие, радиусом до 10 м сети, которые связывают ПК и другие устройства — КПК, мобильные телефоны, принтеры и т. п. С помощью таких сетей реализуется простая синхронизация данных, устраняются проблемы с обилием кабелей в офисах, реализуется простой обмен информацией в небольших рабочих группах. Наиболее перспективный стандарт для PAN — это Bluetooth.
2. WLAN (беспроводные локальные сети) — радиус действия до 100 м. С их помощью реализуется беспроводной доступ к групповым ресурсам в здании, университетском кампусе и т. п. Обычно такие сети используются для продолжения проводных корпоративных локальных сетей. В небольших компаниях WLAN могут полностью заменить проводные соединения. Основной стандарт для WLAN — 802.11.
3. WWAN (беспроводные сети широкого действия) — беспроводная связь, которая обеспечивает мобильным пользователям доступ к их корпоративным сетям и Интернету.

На современном этапе развития сетевых технологий, технология беспроводных сетей Wi-Fi является наиболее удобной в условиях требующих мобильность, простоту установки и использования. Wi-Fi (от англ. wirelessfidelity - беспроводная связь) - стандарт широкополосной беспроводной связи, разработанный в 1997г. Как правило, технология Wi-Fi используется для организации беспроводных локальных компьютерных сетей, а также создания так называемых горячих точек высокоскоростного доступа в Интернет. Будущее развития телекоммуникационных услуг в немалой степени заключается в грамотном сочетании проводной и беспроводной связи, где каждый вид связи будет использоваться там, где это наиболее оптимально.

Контрольные вопросы и задания

Дайте определение компьютерной сети, серверу.

Что такое рабочая станция.

Перечислите основные типы узлов сети и опишите их.

Какие типы проводных линей связи вы знаете?

Оформите в виде таблицы типы беспроводные сетевые технологии. Таблица должна содержать два столбца (название типа и его описание).

Какие функциональные элементы входят в состав компьютера?

Из каких элементов состоят узлы компьютера?

Что такое электрические ячейки памяти и логические элементы?

Глоссарий по теме:

Микросхема-память – устройство, предназначенное для запоминания, хранения массивов информации.

Микросхема-процессор – устройство для обработки информации.

Ячейка памяти – минимальный адресуемый элемент запоминающего устройства ЭВМ. Ячейки памяти могут иметь разную ёмкость (число разрядов, длину).

Логическое устройство – это электронное устройство, реализующее функцию или систему функций алгебры логики в виде определенных уровней напряжений или токов.

Логический элемент – это электронные устройства, предназначенные для обработки информации представленной в виде двоичных кодов, отображаемых напряжением (сигналом) высокого и низкого уровня. Логические элементы реализуют логические функции И, ИЛИ, НЕ и их комбинации.

Генератор тактовых импульсов – устройство, которое генерирует электрические импульсы заданной частоты (обычно прямоугольной формы) для синхронизации различных процессов в цифровых устройствах —ЭВМ, электронных часах и таймерах, микропроцессорной и другой цифровой технике.

Основная и дополнительная литература по теме урока:

Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017. – §40, стр. 125-125

Информатика. Базовый курс / Под ред. СВ. Симоновича. — СПб.: Питер, 2005.

Теоретический материал для самостоятельного изучения

Сложно представить современную жизнь без технологий. Каждый день мы видим компьютер у себя на столе. Но далеко не все знают, что же таится под крышкой системного блока. С основными компонентами компьютера и их предназначением вы должны были ознакомиться на уроках информатики. Сегодня мы разберемся, как работают узлы компьютера с точки зрения преобразования электрических сигналов и что является элементарными составляющими компьютера?

Компьютер - это устройство для обработки информации, которое состоит из множества элементов: видеокарты, отвечающей за работу с изображением, оперативной памяти, отвечающей за временное хранение информации, постоянной памяти, предназначенной для длительного хранения данных, устройств ввода и вывода, материнской платы, через которую соединяются в единое целое все элементы ПК.


Микросхема-память и микросхема-процессор, расположены на одной или нескольких печатных платах.

Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал 1 или 0, а потом считывается информация. Ячейки памяти состоят их логических элементов.

Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. В зависимости от входных сигналов процессор передает сигналы на разные устройства.

Обратимся к ячейке памяти. Как мы уже знаем в ячейке памяти могут храниться только сигналы 0 или 1. Каждый из сигналов соответствует своему напряжению. Для «1» напряжение равно от 2.5 до 4.5 Вольт. Для «0» напряжение равно от 0 до 0,2 Вольт. Стоит отметить, что ячейки памяти могут иметь разную форму, но в любом случае содержат емкости, накапливающие заряд. Заряд, в свою очередь, задает напряжение при запоминании сигнала.

Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера. Тактовая частота — это количество тактов (операций) процессора в секунду.

Как правило, чем выше тактовая частота процессора, тем выше его производительность.

Логические элементы – это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Действие этих элементов можно понять, воспользовавшись таблицей.


Логические элементы состоят из транзисторов. Два параллельно включенных транзистора реализуют элемент ИЛИ-НЕ; два транзистора, включенных последовательно реализуют элемент И-НЕ. Транзистором называется преобразовательный полупроводниковый прибор, имеющий не менее трех выводов, предназначенный для усиления мощности электрического сигнала. Важную роль в цепи играют и диоды. Их основная задача - превращение переменного тока в постоянный. Диоды широко применяются в логических цепях, в которых необходимо обеспечить прохождение тока в нужном направлении. Диод - основной элемент всех блоков питания в нашем компьютере.

Резюме теоретической части:

Компьютер – это устройство для обработки информации, которое состоит из множества элементов: микросхем-память и микросхем-процессор, расположенных на одной или нескольких печатных платах. Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал, а потом считывается информация. Ячейки памяти состоят их логических элементов. Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера. Логические элементы – это простейшие «кубики», составные части цифровой микросхемы, выполняющие определённые логические функции. При этом, цифровая микросхема может содержать в себе от одного, до нескольких единиц, десятков, …и до нескольких сотен тысяч логических элементов в зависимости от степени интеграции. Логические элементы состоят из транзисторов. Два параллельно включенных транзистора реализуют элемент ИЛИ-НЕ; два транзистора, включенных последовательно реализуют элемент И-НЕ. Важную роль в цепи играют и диоды. Их основная задача – превращение переменного тока в постоянный. Диоды широко применяются в логических цепях, в которых необходимо обеспечить прохождение тока в нужном направлении. Диод – основной элемент всех блоков питания в нашем компьютере.

Примеры и разбор решения заданий тренировочного модуля:

1) Вставьте пропущенные слова.

1. Быстродействие компьютера определяет _____.

2. За запись сигнала и подсчет информации отвечает ______________.

Правильный вариант: Микросхема-процессор, Микросхема-память

Пояснение: 1. Микросхема-процессор состоит из нескольких логических устройств и нескольких регистров памяти. Управляет работой всех элементов генератор тактовых импульсов. Частота тактовых импульсов определяет быстродействие компьютера.

2. Микросхема-память состоит из множества ячеек памяти и логического устройства. В ячейки памяти записывается сигнал, а потом считывается информация. Ячейки памяти состоят их логических элементов.

2) Установите последовательность по мере возрастания размеров.

Первые компьютеры, Процессор, Клавиатура, Диод

Правильные варианты:

  1. Диод
  2. Процессор
  3. Клавиатура
  4. Первые компьютеры

Пояснение: 1. Размер диода до 8 мм 3. Размер клавиатуры до 500мм

2. Размер процессора до 50мм 4. Размер первых компьютеров более 17м

WiMAX ( англ. Worldwide Interoperability for Microwave Access)— телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован). Максимальная скорость — до 1 Гбит/сек на ячейку.

Область использования

WiMAX подходит для решения следующих задач:

  • Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.
  • Обеспечения беспроводного широкополосного доступа как альтернативы
  • Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.
  • Создания точек доступа, не привязанных к географическому положению.
  • Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели.

Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 150 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Широкополосный доступ

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И тому есть несколько причин.

Во-первых, технологии позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клиентам, но и расширять спектр услуг и охватывать новые труднодоступные территории.

Во-вторых, беспроводные технологии многим более просты в использовании, чем традиционные проводные каналы. WiMAX и Wi-Fi сети просты в развёртывании и по мере необходимости легко масштабируемы. Этот фактор оказывается очень полезным, когда необходимо развернуть большую сеть в кратчайшие сроки. К примеру, WiMAX был использован для того чтобы предоставить доступ в Сеть выжившим после цунами, произошедшего в декабре 2004 года в Индонезии (Aceh). Вся коммуникационная инфраструктура области была выведена из строя и требовалось оперативное восстановление услуг связи для всего региона.

В сумме все эти преимущества позволят снизить цены на предоставление услуг высокоскоростного доступа в Интернет как для бизнес структур, так и для частных лиц.

Читайте также: