Sata express что это

Обновлено: 02.07.2024

На сайте AnandTech появилась обширная статья озаглавленная "Тестирование SATA Express и почему мы нуждаемся в быстрых SSD". Текста много, по делу почти всё, но мы постараемся сделать наиболее интересные выжимки из этой заметки и донести главное. Начнём с того, что перейдя с жёсткого диска на SSD многие считают, что счастье наступило и большего не надо. Наши коллеги на пальцах пытаются донести мысль, что это не так. Когда "вау-эффект" от обладания SSD проходит, обнаруживаются задачи, решить которые можно только с помощью более производительных твёрдотельных накопителей. Ниже приведём несколько примеров.

реклама

Во-первых, более производительные накопители смогут быстрее выполнять возникшую задачу и дольше находиться в режиме простоя, что снизит среднее потребление и увеличит продолжительность автономной работы от батарей (в статье этот тезис подкреплён теоретическими расчётами). Во-вторых, работа с видеопотоками разрешением 4K (3840 x 2160, 12-бит RGB) в случае несжатого видео требует пропускной способности на уровне 900 Мбайт/с. В случае обработки нескольких потоков сразу даже сжатое видео превысит возможности современных интерфейсов. Конечно, всегда есть RAID, но это дороже, чем один скоростной SSD. В-третьих, необходим переход с программного интерфейса AHCI (Advanced Host Controller Interface) на интерфейс NVMe (Non-Volatile Memory Express). Главное при этом, что будет достигнуто, это снижение задержек при обращении к SSD с 6 мкс до 2,8 мкс. Также за счёт NVMe будет полнее использоваться процессор, поскольку глубина очереди и команды расширены до 64 тысяч операций.


В ближайшей перспективе SSD станут быстрее за счёт перехода на интерфейс SATA Express (SATAe). Ресурс получил для тестирования опытную материнскую плату компании ASUS — модификацию Z87 Deluxe с контроллером SATAe ASMedia ASM106SE. В качестве тестового SSD использовался накопитель Plextor 256GB M6e PCIe SSD (контроллер Marvell 88SS9183), который имеет интерфейс PCIe 2.0 x2. Для имитации интерфейса SATAe использовалась специальная дочерняя плата. Как показало тестирование, задержек при обращении процессора к накопителю практически не было. Обе задействованные линии PCI Express 2.0 работали на скорости, близкой к эффективной. И это не смотря на то, что между SSD и центральным процессором был мост ASMedia (подробно см. в оригинальной статье).


Добавим, для организации интерфейса SATAe на опытной плате был использован составной кабель из трёх независимых разъёмов, который в финальной версии превратится в кабель с одной общей колодкой. Для SATA-накопителей совместимость кабелей сохранится, тогда как для PCIe-накопителей в стандарте SATAe понадобятся расширенные кабели. Также такие кабели получат дополнительный разъём для подключения внешнего питания, поскольку в стандарте SATAe не предусмотрена подача напряжения через общий интерфейс, как это сделано в случае привычного интерфейса PCI Express. Это означает, что кабели SATAe будут несколько дороже кабелей SATA.

SATAe-подключение

Стандарт SATA Express поддерживает как SATA, так и PCIe для хранения данных, к сожалению, вы не можете работать одновременно в тандеме. По сути, это означает, что если вы подключите устройство SATA, которое будет использовать только SATA, и если вы подключите устройство PCIe, вы будете работать только через PCIe. Накопитель сообщает хосту, является ли он PCIe SATA. Если вы используете устройство PCIe, будет доступно 2 линии PCI Express, а это означает, что вы сможете обеспечить производительность до 16 Гбит/с (1970 МБ/с) (8 Гбит/с на линию) на PCIe Gen 3.0 или до 10 Гбит/с (1000 МБ/с) на PCIe Gen 2.0. Шина PCI Express, на которой вы работаете, и то, какую шину поддерживает контроллер PCIe на устройстве хранения.

Чипсеты серии Intel 9 будут изначально поддерживают одно устройство SATA Express, так что будьте готовы услышать всё о SATA Express в течение многих лет. Реализация Intel SATA Express использует пару линий PCH PCIe Gen 2 вместе с двумя портами SATA III для SATA Express. Это означает, что скорость передачи данных ограничена 10 Гбит/с (1000 МБ / с). Также это означает, что вы не будете использовать всю мощь спецификации SATA Express прямо сейчас, так как линии PCIe Gen 3 не используются, но это на 67% быстрее, чем у одного SATA III. Когда речь заходит о реальной производительности последовательного чтения/записи, вы получаете до 745/809 МБ/с на диске SATA Express, таком как ASUS Hyper Express, который использует пару SSD-дисков mSATA в RAID для получения этой производительности. ASUS говорит, что пользователи их плат с SATA Express и приводом Hyper Express смогут переместить файл с фильмом размером 10 ГБ примерно за 10 секунд. Запуск пары SSD-дисков SATA III в RAID, которые способны насыщать шину SATA III, аналогичен этому, но он находится в том же парке, что и устройство SATAe, способное максимально использовать шину.



В связи с тем, что SATA Express поддерживает как сигнализацию SATA, так и PCIe, а также устаревшие разъемы SATA, существует множество вариантов конфигурации, доступных производителям материнских плат и устройств, когда речь идёт о разъемах. Вы также можете увидеть, что производители плат используют сторонние контроллеры, позволяющие использовать более одного разъема SATA Express на материнских платах.

На изображении выше показан разъём, который предназначен для подключения к устройству PCIe. Разъем (b) будет частью кабельной сборки для приема этого разъёма или стандартного разъема SATA, а разъем (c) будет подключаться к объединительной плате или материнской плате для приема разъёма (a) или стандартного разъема SATA. Два последних разъема представляют собой сопряженную пару, предназначенную для подключения кабеля (e) к системным платам настольного ПК (d).

Вот пример настоящего кабеля SATA Express и накопителя, на которые мы потратили немного времени.




Одна из действительно полезных особенностей разъёма для данных SATA Express заключается в его обратной совместимости. Таким образом, если вы не используете стандартный 3,5-дюймовый разъём данных SATA, вы можете использовать два стандартных порта данных SATA для подключения устаревших устройств к системе. Следует отметить, что кабель SATA Express обеспечивает питание, поэтому есть конец, который необходимо подключить к источнику питания через 15-контактный разъем SATA или 4-контактный разъем Molex, поскольку для устройств SATAe потребуется питание. Похоже, что кабели SATA Express не будут поставляться с материнской платой, а скорее будут поставляться с устройством SATA Express, либо на данный момент их придётся приобретать самостоятельно.


SATA Express также поддерживает различные интерфейсы хост-контроллера. У вас есть обычная поддержка AHCI (Advanced Host Controller Interface), но SATA Express также поддерживает энергонезависимую память Express (NVMe). NVMe выглядит действительно многообещающе, так как он был спроектирован с нуля для твёрдотельных накопителей и систем хранения PCIe.

Мы надеемся, что это поможет ответить на некоторые вопросы, которые у вас есть о SATA Express, и если у вас всё ещё есть открытые вопросы, пожалуйста, задавайте их, и мы постараемся ответить на них для Вас!


В прошлой части цикла «Введение в SSD» мы рассказали про историю появления дисков. Вторая часть расскажет про интерфейсы взаимодействия с накопителями.

Общение между процессором и периферийными устройствами происходит в соответствии с заранее определенными соглашениями, называемыми интерфейсами. Эти соглашения регламентируют физический и программный уровень взаимодействия.

Интерфейс — совокупность средств, методов и правил взаимодействия между элементами системы.

Физическая реализация интерфейса влияет на следующие параметры:

  • пропускная способность канала связи;
  • максимальное количество одновременно подключенных устройств;
  • количество возникающих ошибок.

Параллельные и последовательные порты

По способу обмена данными порты ввода-вывода делятся на два типа:

Последовательные порты — противоположность параллельным. Отправка данных происходит по одному биту за раз, что сокращает общее количество сигнальных линий, но усложняет контроллер ввода-вывода. Контроллер передатчика получает машинное слово за раз и должен передавать по одному биту, а контроллер приемника в свою очередь должен получать биты и сохранять в том же порядке.


Small Computer Systems Interface (SCSI) появился в далеком 1978 году и был изначально разработан, чтобы объединять устройства различного профиля в единую систему. Спецификация SCSI-1 предусматривала подключение до 8 устройств (вместе с контроллером), таких как:

  • сканеры;
  • ленточные накопители (стримеры);
  • оптические приводы;
  • дисковые накопители и прочие устройства.
Изначально SCSI имел название Shugart Associates System Interface (SASI), но стандартизирующий комитет не одобрил бы название в честь компании и после дня мозгового штурма появилось название Small Computer Systems Interface (SCSI). «Отец» SCSI, Ларри Баучер (Larry Boucher) подразумевал, что аббревиатура будет произноситься как «sexy», но Дал Аллан (Dal Allan) прочитал «sсuzzy» («скази»). Впоследствии произношение «скази» прочно закрепилось за этим стандартом.

В терминологии SCSI подключаемые устройства делятся на два типа:

Используемая топология «общая шина» накладывает ряд ограничений:

  • на концах шины необходимы специальные устройства — терминаторы;
  • пропускная способность шины делится между всеми устройствами;
  • максимальное количество одновременно подключенных устройств ограничено.


Устройства на шине идентифицируются по уникальному номеру, называемому SCSI Target ID. Каждый SCSI-юнит в системе представлен минимум одним логическим устройством, адресация которого происходит по уникальному в пределах физического устройства номеру Logical Unit Number (LUN).


Команды в SCSI отправляются в виде блоков описания команды (Command Descriptor Block, CDB), состоящих из кода операции и параметров команды. В стандарте описано более 200 команд, разделенных в четыре категории:

  • Mandatory — должны поддерживаться устройством;
  • Optional — могут быть реализованы;
  • Vendor-specific — используются конкретным производителем;
  • Obsolete — устаревшие команды.
  • TEST UNIT READY — проверка готовности устройства;
  • REQUEST SENSE — запрашивает код ошибки предыдущей команды;
  • INQUIRY — запрос основных характеристик устройства.

Дальнейшее усовершенствование SCSI (спецификации SCSI-2 и Ultra SCSI) расширило список используемых команд и увеличило количество подключаемых устройств до 16-ти, а скорость обмена данными по шине до 640 МБ/c. Так как SCSI — параллельный интерфейс, повышение частоты обмена данными было сопряжено с уменьшением максимальной длины кабеля и приводило к неудобству в использовании.

Начиная со стандарта Ultra-3 SCSI появилась поддержка «горячего подключения» — подключение устройств при включенном питании.

Первым известным SSD диском с интерфейсом SCSI можно считать M-Systems FFD-350, выпущенный в 1995 году. Диск имел высокую стоимость и не имел широкой распространенности.

В настоящее время параллельный SCSI не является популярным интерфейсом подключения дисков, но набор команд до сих пор активно используется в интерфейсах USB и SAS.

ATA / PATA


Интерфейс ATA (Advanced Technology Attachment), так же известный как PATA (Parallel ATA) был разработан компанией Western Digital в 1986 году. Маркетинговое название стандарта IDE (англ. Integrated Drive Electronics — «электроника, встроенная в привод») подчеркивало важное нововведение: контроллер привода был встроен в привод, а не на отдельной плате расширения.

Решение разместить контроллер внутри привода решило сразу несколько проблем. Во-первых, уменьшилось расстояние от накопителя до контроллера, что положительным образом повлияло на характеристики накопителя. Во-вторых, встроенный контроллер был «заточен» только под определенный тип привода и, соответственно, был дешевле.


ATA, как и SCSI, использует параллельный способ ввода-вывода, что отражается на используемых кабелях. Для подключения дисков с использованием интерфейса IDE необходимы 40-жильные кабели, также именуемые шлейфами. В более поздних спецификациях используются 80-жильные шлейфы: более половины из которых — заземления для уменьшения интерференции на высоких частотах.

На шлейфе ATA присутствует от двух до четырех разъемов, один из которых подключается в материнскую плату, а остальные — в накопители. При подключении двух устройств одним шлейфом, одно из них должно быть сконфигурировано как Master, а второе — как Slave. Третье устройство может быть подключено исключительно в режиме «только чтение».



Положение перемычки задает роль конкретного устройства. Термины Master и Slave по отношению к устройствам не совсем корректны, так как относительно контроллера все подключенные устройства — Slaves.

Особенным нововведением в ATA-3 считается появление Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.). Пять компаний (IBM, Seagate, Quantum, Conner и Western Digital) объединили усилия и стандартизировали технологию оценки состояния накопителей.

Поддержка твердотельных накопителей появилась с четвертой версии стандарта, выпущенной в 1998 году. Эта версия стандарта обеспечивала скорость обмена данными до 33.3 МБ/с.

Стандарт выдвигает жесткие требования к шлейфам ATA:

  • шлейф обязательно должен быть плоским;
  • максимальная длина шлейфа 18 дюймов (45.7 сантиметров).


Стандарт Serial ATA (SATA) был представлен 7 января 2003 года и решал проблемы своего предшественника следующими изменениями:

  • параллельный порт заменен последовательным;
  • широкий 80-жильный шлейф заменен 7-жильным;
  • топология «общая шина» заменена на подключение «точка-точка».

Шестнадцать сигнальных линий для передачи данных в ATA были заменены на две витые пары: одна для передачи, вторая для приема. Коннекторы SATA спроектированы для большей устойчивости к множественным переподключениям, а спецификация SATA 1.0 сделала возможным «горячее подключение» (Hot Plug).

Некоторые пины на дисках короче, чем все остальные. Это сделано для поддержки «горячей замены» (Hot Swap). В процессе замены устройство «теряет» и «находит» линии в заранее определенном порядке.

Чуть более, чем через год, в апреле 2004-го, вышла вторая версия спецификации SATA. Помимо ускорения до 3 Гбит/с в SATA 2.0 ввели технологию Native Command Queuing (NCQ). Устройства с поддержкой NCQ способны самостоятельно организовывать порядок выполнения поступивших команд для достижения максимальной производительности.



Последующие три года SATA Working Group работала над улучшением существующей спецификации и в версии 2.6 появились компактные коннекторы Slimline и micro SATA (uSATA). Эти коннекторы являются уменьшенной копией оригинального коннектора SATA и разработаны для оптических приводов и маленьких дисков в ноутбуках.

Несмотря на то, что пропускной способности второго поколения SATA хватало для жестких дисков, твердотельные накопители требовали большего. В мае 2009 года вышла третья версия спецификации SATA с увеличенной до 6 Гбит/с пропускной способностью.



Особое внимание твердотельным накопителям уделили в редакции SATA 3.1. Появился коннектор Mini-SATA (mSATA), предназначенный для подключения твердотельных накопителей в ноутбуках. В отличие от Slimline и uSATA новый коннектор был похож на PCIe Mini, хотя и не был электрически совместим с PCIe. Помимо нового коннектора SATA 3.1 мог похвастаться возможностью ставить команды TRIM в очередь с командами чтения и записи.

Команда TRIM уведомляет твердотельный накопитель о блоках данных, которые не несут полезной нагрузки. До SATA 3.1 выполнение этой команды приводило к сбросу кэшей и приостановке операций ввода-вывода с последующим выполнением команды TRIM. Такой подход ухудшал производительность диска при операциях удаления.

Спецификация SATA не успевала за бурным ростом скорости доступа к твердотельным накопителям, что привело к появлению в 2013 году компромисса под названием SATA Express в стандарте SATA 3.2. Вместо того, чтобы снова удвоить пропускную способность SATA, разработчики задействовали широко распространенную шину PCIe, чья скорость превышает 6 Гбит/с. Диски с поддержкой SATA Express приобрели собственный форм-фактор под названием M.2.


«Конкурирующий» с ATA стандарт SCSI тоже не стоял на месте и всего через год после появления Serial ATA, в 2004, переродился в последовательный интерфейс. Имя новому интерфейсу — Serial Attached SCSI (SAS).

Несмотря на то, что SAS унаследовал набор команд SCSI, изменения были значительные:

  • последовательный интерфейс;
  • 29-ти жильный кабель с питанием;
  • подключение «точка-точка»

Максимальное количество одновременно подключенных устройств в SAS-домене по спецификации превышает 16 тысяч, а вместо SCSI ID для адресации используется идентификатор World-Wide Name (WWN).

WWN — уникальный идентификатор длиной 16 байт, аналог MAC-адреса для SAS-устройств.



Несмотря на схожесть разъемов SAS и SATA, эти стандарты не являются полностью совместимыми. Тем не менее, SATA-диск может быть подключен в SAS-коннектор, но не наоборот. Совместимость между SATA-дисками и SAS-доменом обеспечивается при помощи протокола SATA Tunneling Protocol (STP).

Первая версия стандарта SAS-1 имеет пропускную способность 3 Гбит/с, а самая современная, SAS-4, улучшила этот показатель в 7 раз: 22,5 Гбит/с.


Peripheral Component Interconnect Express (PCI Express, PCIe) — последовательный интерфейс для передачи данных, появившийся в 2002 году. Разработка была начата компанией Intel, а впоследствии передана специальной организации — PCI Special Interest Group.

Последовательный интерфейс PCIe не был исключением и стал логическим продолжением параллельного PCI, который предназначен для подключения карт расширения.

PCI Express значительно отличается от SATA и SAS. Интерфейс PCIe имеет переменное количество линий. Количество линий равно степеням двойки и колеблется в диапазоне от 1 до 16.

Термин «линия» в PCIe обозначает не конкретную сигнальную линию, а отдельный полнодуплексный канал связи, состоящий из следующих сигнальных линий:

  • прием+ и прием-;
  • передача+ и передача-;
  • четыре жилы заземления.


«Аппетиты» твердотельных накопителей растут очень быстро. И SATA, и SAS не успевают увеличивать свою пропускную способность, чтобы «угнаться» за SSD, что привело к появлению SSD-дисков с подключением по PCIe.

Хотя PCIe Add-In карты прикручиваются винтом, PCIe поддерживает «горячую замену». Короткие пины PRSNT (англ. present — присутствовать) позволяют удостовериться, что карта полностью установлена в слот.

Твердотельные накопители, подключаемые по PCIe регламентируются отдельным стандартом Non-Volatile Memory Host Controller Interface Specification и воплощены в множестве форм-факторов, но о них мы расскажем в следующей части.

Удаленные накопители

При создании больших хранилищ данных появилась потребность в протоколах, позволяющих подключить накопители, расположенные вне сервера. Первым решением в этой области был Internet SCSI (iSCSI), разработанный компаниями IBM и Cisco в 1998 году.

Идея протокола iSCSI проста: команды SCSI «оборачиваются» в пакеты TCP/IP и передаются в сеть. Несмотря на удаленное подключение, для клиентов создается иллюзия, что накопитель подключен локально. Сеть хранения данных (Storage Area Network, SAN), основанная на iSCSI, может быть построена на существующей сетевой инфраструктуре. Использование iSCSI значительно снижает затраты на организацию SAN.

У iSCSI существует «премиальный» вариант — Fibre Channel Protocol (FCP). SAN с использованием FCP строится на выделенных волоконно-оптических линиях связи. Такой подход требует дополнительного оптического сетевого оборудования, но отличается стабильностью и высокой пропускной способностью.

Существует множество протоколов для отправки команд SCSI по компьютерным сетям. Тем не менее, есть только один стандарт, решающий противоположную задачу и позволяющий отправлять IP-пакеты по шине SCSI — IP-over-SCSI.

Большинство протоколов для организации SAN используют набор команд SCSI для управления накопителями, но есть и исключения, например, простой ATA over Ethernet (AoE). Протокол AoE отправляет ATA-команды в Ethernet-пакетах, но в системе накопители отображаются как SCSI.

С появлением накопителей NVM Express протоколы iSCSI и FCP перестали удовлетворять быстро растущим требованиям твердотельных накопителей. Появилось два решения:

  • вынос шины PCI Express за пределы сервера;
  • создание протокола NVMe over Fabrics.

Протокол NVMe over Fabrics стал хорошей альтернативой iSCSI и FCP. В NVMe-oF используются волоконно-оптическая линии связи и набор команд NVM Express.


Стандарты iSCSI и NVMe-oF решают задачу подключения удаленных дисков как локальные, а компания Intel пошла другой дорогой и максимально приблизила локальный диск к процессору. Выбор пал на DIMM-слоты, в которые подключается оперативная память. Максимальная пропускная способность канала DDR4 составляет 25 ГБ/с, что значительно превышает скорость шины PCIe. Так появился твердотельный накопитель Intel® Optane™ DC Persistent Memory.

Для подключения накопителя в DIMM слоты был изобретен протокол DDR-T, физически и электрически совместимый с DDR4, но требующий специального контроллера, который видит разницу между планкой памяти и накопителем. Скорость доступа к накопителю меньше, чем к оперативной памяти, но больше, чем к NVMe.

Протокол DDR-T доступен только с процессорами Intel® поколения Cascade Lake или новее.

Заключение

Почти все интерфейсы прошли долгий путь развития от последовательного до параллельного способа передачи данных. Скорости твердотельных накопителей стремительно растут, еще вчера твердотельные накопители были в диковинку, а сегодня NVMe уже не вызывает особого удивления.


Современные тенденции развития таковы, что шина PCI Express должна вскоре прийти на смену интерфейсу SATA 6 Гбит/с повсеместно – это уже заложено в версии спецификации SATA 3.2. Дальнейшее развитие SATA предполагает, что SSD для настольных систем сохранят своё привычное исполнение, но будут подключаться по специальному интерфейсу SATA Express, который введёт в обращение новый тип разъёмов и кабелей. При этом SATA Express объединяет два интерфейса SATA 6 Гбит/с (они нужны для обратной совместимости со старыми накопителями) и несколько линий PCI Express. Порты SATA Express первого поколения, которые могут присутствовать в настоящее время на материнских платахна базе набора логики Intel Z97 (рис. 1), предполагают использование двух линий PCI Express второго поколения, что означает рост пиковой пропускной способности современной реализации SATA Express до 1 Гбайт/с.

Второй, предусмотренный спецификацией вариант подключения накопителей по шине PCI Express – это специализированные слоты M.2 (также известные как NGFF), ориентированные в первую очередь на мобильные применения. Такие слоты, имеющие сравнительно небольшой размер, и потому идеально подходящие для тонких и ультратонких ноутбуков, объединяют один интерфейс SATA 6 Гбит/с и несколько линий PCI Express. В первом варианте, который находит сейчас массовое распространение на материнках, основанных на интеловских наборах логики девятого поколения, опять-таки, используется две линии PCI Express 2.0. Иными словами, слоты M.2 можно рассматривать как простое мобильное переложение интерфейса SATA Express.

QIP Shot - Image: 2016-04-11 11:28:03

Рис. 1. Oбновленная система Intel Rapid Storage Technology, позволяет работать с PCIe-накопителями, подключаемыми через интерфейсы M.2 и SATA Express ( активирует функции технологии хранения Intel® Rapid с помощью твердотельных накопителей на основе интерфейса PCI Express*).

По сути SATA Express и M.2 предназначены для решения одной задачи — подключения через интерфейс PCI Express скоростных накопителей, для которых производительность SATA уже недостаточна. Однако архитектура этих интерфейсов заметно различается.

Другое дело M.2 — серийных устройств с этим интерфейсом выпущено уже достаточно. Но если SATA Express ориентирован на настольные ПК и позволяет подключать традиционные SSD и жесткие диски, то M.2 предназначен для применения в мобильных устройствах, таких как ноутбуки и планшеты, вместе с накопителями, выполненными в виде платы расширения и вставляемыми непосредственно в разъем. Так же как и SATA Express, интерфейс М.2 обеспечивает обратную совместимость с SATA, но так как больше одного устройства одновременно к нему подключить нельзя физически, предусмотрен только один канал SATA 3.0. Зато это дало возможность реализовать большее количество линий PCI Express — в распоряжении М.2-устройств четыре таких канала с суммарной пропускной способностью 32 Гбит/с. Интерфейс обеспечивает и питание подключаемой платы расширения, которая, кстати, совсем не обязательно должна быть накопителем — М.2 позволяет подключать Wi-Fi- и Bluetooth-контроллеры, GPS-модули, NFC и другие типы устройств. Стоит отметить также, что, помимо SATA 3.0 и PCI Express x4, интерфейс M.2 обеспечивает работу и USB 3.0, так что реализовать перечисленные выше устройства в формате платы расширения M.2 совсем несложно.

Новый чипсет Z97 позволяет использовать физические контактные линии в различных конфигурациях и, в зависимости от типа подключенного устройства, коммутировать их на порты SATA, PCI Express или USB. Обновленная версия Intel Rapid Storage Technology отвечает за работу SSD, включая высокоскоростные, гарантирует работу штатных и специализированных функций, в том числе в составе RAID-массивов. Кроме того, чипсет Z97 обеспечивает совместимость с процессорами следующего поколения (Haswell Refresh) без обновления BIOS материнской платы.

QIP Shot - Image: 2016-04-11 11:29:15

Рис. 2. Высокоскоростные интерфейсы M.2 и SATA Express для подсистемы хранения данных. Схема подключения всех контроллеров слотов и разъемов к чипсету Intel Z97.

Читайте также: