Sk1 на плате hdd что это

Обновлено: 06.07.2024

Плата контроллера жесткого диска или PCB – Printed Circuit Board находится на нижней части жесткого диска. Обычно она зеленого цвета, но встречаются диски с синими или красными платами. Основные функции печатной платы - подавать питание на жесткий диск, поддерживать скорость и вращение шпинделя и управлять всеми внутренними операциями через прошивку. По сути, плата контроллера - это мозг жесткого диска, от которого сильно зависят все компоненты.

Зачем менять плату на жестком диске?

Если жесткий диск после подачи питания не раскручивается, большая вероятность, что у него неисправна плата контроллера.
Плата может быть повреждена в результате скачка напряжения, короткого замыкания, физического воздействия на интерфейс и т.д.

Возможно, у пользователя нет поблизости сервиса восстановления данных, он не хочет доверять свою конфиденциальную информацию третьим лицам или не может в данный момент оплатить работу сторонних сервисов, поэтому он предпочитает заменить ее самостоятельно.

В любом случае мы рекомендует начинать диагностику неисправностей жесткого диска именно с установки заведомо исправной платы.

Как найти подходящие платы PCB жесткого диска?

При подборе печатной платы необходимо сверить, прежде всего, следующие параметры:

  • Western Digital – должен совпадать номер, который вытравлен на печатной плате, он начинается обычно с 2060- или 8000-, например 2060-701960-001.
  • Seagate - должен совпадать номер, который вытравлен на печатной плате, он начинается обычно с 100-, например, 100731589 REV A. Кроме того надо обязательно сверить соответствие маркировок главной микросхемы контроллера и микросхемы, управляющей питанием шпиндельного двигателя (например основной чип - B5502D0, чип VCM - UM04.)
  • Maxtor – совпадение маркировки главной микросхемы (самый большой чип на плате), например 040111300. Некоторые диски Maxtor являются аналогами дисков Seagate, поэтому их необходимо подбирать по правилам Seagate.
  • Hitachi, HGST – совпадение первой строки кода, который находится на маленькой наклейке на плате. Обычно он начинается на 0A- или 0J-, например 0A72947.
  • Samsung – совпадение номера платы, который выгравирован на печатной плате, начинается с BF41-, например BF41-00354B.
  • Fujitsu - совпадение номера платы, который выгравирован на печатной плате, он обычно начинается с CA -.

Процесс замены платы жесткого диска

Удалите печатные платы с обоих жестких дисков с помощью отвертки. Замените поврежденную печатную плату на новую. Обратите внимание, что некоторые платы на жестких дисках Seagate НЕЛЬЗЯ устанавливать без переноса ПЗУ (ROM).

Если после установки новой платы двигатель диска вращается, но диск не определяется, вам необходимо перенести микросхему ПЗУ с исходной платы на новую. Если на печатной плате нет совместимого чипа ПЗУ, это значит, что ПЗУ интегрировано в основную микросхему контроллера. В этом случае понадобится перепайка главной микросхемы.

Если у вас возникают сложности с переносом микросхем – сделайте несколько тестовых паек на других печатных платах. Также вы можете обратиться к нам и мы проведем профессиональный перенос микросхемы или содержимого ПЗУ на новую плату.

Что такое микросхема ПЗУ?

Микросхему ПЗУ (ROM, NV-RAM, BIOS) можно легко найти на печатной плате. Чип имеет 8 ножек, его маркировка начинается обычно с 25- например 25F512, 25F1024. Его легко найти, потому что на печатной плате не так много чипов с 8 ножками.
В большинстве случаев вы должны переносить микросхему ПЗУ перед заменой платы жесткого диска. Для этого у вас должна быть подготовлены определенное оборудование и инструменты.

Где купить плату контроллера (PCB) жесткого диска онлайн?

ВАЖНО: вы должны знать, что сбои жесткого диска не всегда вызваны с неисправностями PCB, замена печатной платы (PCB) не может гарантировать устранение всех проблем с жестким диском. Но в большинстве случаев диагностику неисправностей жесткого диска необходимо начинать именно с установки исправной платы.

Примеры:

1. Для жестких дисков Western Digital необходимо сверить маркировку на печатной плате:



Номер печатной платы 2060-771640-004 REV A



Маркировка главного чипа 88i9045-TFJ2, маркировка чипа управления питанием L7251

Для жестких дисков WD микросхема ПЗУ хранит прошивку жесткого диска (прошивка для жесткого диска похожа на операционную систему для компьютера), вам необходимо перенести чип ROM с оригинальной платы на новую, чтобы сделать ее совместимой с вашим диском.

На некоторых моделях жестких дисков WD плата не содержит независимого чипа ПЗУ, прошивка находится внутри основного чипа. Для таких дисков нужны специальные инструменты для чтения ПЗУ с оригинальной печатной платы и записи на новую плату или замены основного чипа.

2. Для жестких дисков Hitachi, HGST необходимо сверить маркировку на наклейке печатной платы:



Код верхней строки наклейки 0J14078



Маркировка главного чипа 0J11389

Для жестких дисков Hitachi, HGST прошивку жесткого диска хранит микросхема NV-RAM. Вам необходимо перенести чип NV-RAM с оригинальной платы на новую, чтобы сделать ее совместимой с вашим диском.

3. Для жестких дисков Seagate необходимо сверить номер платы, маркировку главной микросхемы и микросхемы, управляющей питанием шпиндельного двигателя.

Для жестких дисков Seagate также необходимо заменить чип ПЗУ на плате. На некоторых моделях плат нет чипа ПЗУ, прошивка хранится в основной микросхеме.



Номер печатной платы 100710248 REV C



Маркировка главного чипа B5502D0, маркировка чипа управления питанием UM04
Внимание! Данная статья описывает только общие случаи неисправности накопителя и не является прямым руководством к работе.

Прежде чем приступить к самостоятельной работе по ремонту жесткого диска, помните, что все манипуляции выполняются вами на свой страх и риск и могут привести к невозможности в дальнейшем восстановить информацию с диска.

Поэтому мы настоятельно рекомендуем воспользоваться нашей услугой Адаптация печатной платы или доставить свой накопитель на диагностику в нашу лабораторию по адресу: г.Москва м.Белорусская ул.1-я Брестская д.66, 2 этаж, офис 2.

При заказе услуг восстановления информации вы можете получить скидку в размере 15%, сообщив администратору при передаче накопителя код CIFRIO15.

Жёсткие диски, SSD, флешки, RAID-массивы, ленты. Изучение, восстановление данных, ремонт.

В предыдущем посте по данной теме был обозначен список последовательных шагов диагностики.

В этой части мы раскроем подробности следующих пунктов:

повреждены элементы электроники (проверка платы электроники); механические повреждения.

Что делать раньше: осматривать плату, или искать вмятины — это пусть каждый решает сам. Чтобы поставить диагноз нужно собрать данные о всех видимых неполадках: от повреждений на корпусе, до проблем с элементами электроники. Так что, в любом случае, плату следует открутить и осмотреть, даже если нашлись вмятины.

Пример применения описанной ниже диагностики можно найти в видеоролике для диска Seagate Momentus 5400.6

Проверка платы электроники

Симптомы: Наличие горелых или отсутствующих электронных компонентов на плате контроллера.

Чтобы определить данную неполадку , нужно о тделит ь плату контроллера от гермоблока. Осмотр еть со всех сторон на предмет электрических и механических повреждений (горелых и отсутствующих электронных компонентов на плате контроллера), а также окислившихся разъёмов платы контроллера.

Возможные неисправности:

Защитные диоды. На дисках, начиная где-то с 2003 года, рядом с разъемом питания расположены один (2.5 ” ) или два (3.5 ” ) крупных диода. Обычно, явно видно, что такой диод прогорел. При подаче питания на жесткий диск с неисправным защитным диодом блок питания будет уходить в защиту от короткого замыкания. На накопителях Seagate (рис.1.) используются диоды фирмы ST и называются «transient voltage suppressor» (сокращенно TVS) или «Transil». На накопителях WD (рис. 2 .) используются диоды фирмы Onsemi и называются «Zener Transient Voltage Suppressors». П овреждени е защитных диодов происходит из-за превышающих номинальное напряжени е импульсов из блока питания, по причине его неисправности .

Данная неисправность встречается редко.

Рис. 1. Защитные диоды на плате Seagate Barracuda.

Рис. 1. Защитные диоды на плате Seagate Barracuda.

Рис. 2. Защитные диоды на плате WD.

Рис. 2. Защитные диоды на плате WD.

Данная неисправность встречается часто.

Рис. 3. Крупный план двух контактов разъема подключения усилителя/коммутатора с признаками «расползания» оксида серебра (черные чешуйки).

Рис. 3. Крупный план двух контактов разъема подключения усилителя/коммутатора с признаками «расползания» оксида серебра (черные чешуйки).

Прогорела микросхема. Микросхема у которой поврежден пластиковый корпус гарантированно не работает. Причин таких повреждений несколько. Перечислим наиболее частые из них: перегрев во время работы, замыкание в местах пайки внешним воздействием или из-за влаги, брак при изготовлении микросхемы, повышенные или отрицательные броски напряжения от блока питания.

При обнаружении горелых электронных компонентов на плате контроллера подавать питание на накопитель в таком состоянии нельзя. Помимо высокой вероятности того, что накопитель не запуститься, есть вероятность нанести дополнительные повреждения внутренностям гермоблока.

В видео примере в начале поста рассмотрен этот случай.

Данная неисправность встречается часто.

Рис.4. Прогоревшая микросхема управления шпиндельного двигателя.

Рис.4. Прогоревшая микросхема управления шпиндельного двигателя.

Отсутствуют/отбиты детали.

Чаще всего эта ситуация возникает когда у диска детали расположены«наружу». Это диски Samsung, Maxtor, “ классические ” Seagate и т.п. Определить отбитую деталь можно по припою: он не плавно растекается (как происходит в случае незадействованного контакта), а торчит острыми краями вверх. На рисунке 5 отбиты 3 детали: два резистора и конденсатор. Иногда бывает, что при попытке что-то паять на плате «сдули» детали — такое повреждение можно определить только по сравнению с такой же исправной платой. Так же возможно повреждение ножек микросхем, когда они согнуты и замкнуты друг с другом или оторваны от корпуса. Данная проблема возможна только для старых дисков так как у новых выводы расположены под самой микросхемой.

При обнаружении отсутствующих электронных компонентов на плате контроллера подавать питание на накопитель в таком состоянии нельзя. Помимо высокой вероятности того, что накопитель не запуститься, есть вероятность нанести дополнительные повреждения внутренностям гермоблока.

Данная неисправность встречается очень редко.

Рис. 5. Отбитые детали на плате жесткого диска Maxtor.

Рис. 5. Отбитые детали на плате жесткого диска Maxtor.

Оторвали разъем. Проблемы с разъемом встречаются обычно у PATA и USB дисков. Как в случае PATA, так и в случае USB дисков внимание следует обратить на места подпайки разъема к плате. Чаще всего один или несколько контактов просто отрываются от платы.

На рисунке 6 показан вид на место подпайки контактов разъема USB 3.0 к плате. В данном случае, разъем полностью исправен.

Данная неисправность встречается часто.

Рис. 6. Пример установки USB 3.0 разъема для диска WD.

Рис. 6. Пример установки USB 3.0 разъема для диска WD.

Повреждены дорожки на печатной плате.

Следует обратить внимание (рис. 7) на наличие глубоких царапин на плате электроники.

Данная неисправность встречается очень редко.

Рис. 7. Царапина на плате электроники жесткого диска WD.

Рис. 7. Царапина на плате электроники жесткого диска WD.

Нарушение работы из-за прокладки между платой и гермоблоком.

Данная неисправность встречается редко у старых дисков.

Видимых повреждений нет, но при подаче питания диск не раскручивается.

В этой ситуации возможности определить неисправность по внешним признакам нет. Возможные действия по уточнению состояние платы будут рассмотрены в следующей части.

Дальнейшие действия:

З ащитн ые диод ы . Чаще всего достаточно просто отпаять замкнутый/сгоревший защитный диод и плата начнет работать. Плата жесткого диска без него работать будет.

Окисление разъемов. Потемневшие (окислившиеся) разъёмы осторожно зачистить до блеска, например, канцелярским ластиком.

Прог о р ела микросхем а . Следует заменить плату на совместимую исправную. В большинстве случаев потребуется перепайка flash- ПЗУ с неисправной платы на исправную. Ремонт платы с заменой микросхемы в подавляющем большинстве случаев не имеет смысла.

В идео на нашем канале, посвященные замене платы:

Отсутствую т /отбиты детали. Произвести замену платы на совместимую. В большинстве случаев потребуется перепайка flash- ПЗУ с неисправной платы на исправную.

Оторвали разъем. Чинить разъем или менять плату. Можно сразу на SATA.

По вреждены дорожки на печатной плате . Произвести замену платы на совместимую. В большинстве случаев потребуется перепайка flash- ПЗУ с неисправной платы на исправную.

Нарушение работы из-за п рокладк и между платой и гермоблоком . Убрать прокладку.

Д ополнительная информация:

Проверка наличия на гермоблоке накопителя следов механических воздействий

Под мех аническими в оздействиями понимается: царапин ы на корпусе гермоблока , вмятин ы, изгиб корпуса гермоблока и т.п.

Симптомы: Наличие на корпусе следов падений, ударов, других сильных механический воздействий. Конечно, н е все механические воздействия оставляют следы, но, обычно, если диск поврежден именно механически, то это будет заметно.

Возможные неисправности:

Вмятина от удара. У жестких дисков форм-фактора 2.5 дюйма бывают вмятые крышки. Пример приведен на рисунке 8. Так как у этих дисков плотность размещения деталей в гермоблоке выше, а усилий для повреждения нужно меньше, то сравнительно небольшие следы повреждений приводят к фатальным нарушениям в работе диска.

Рис. 8. Вмятина на жестком диске Seagate со стороны наклейки.

Рис. 8. Вмятина на жестком диске Seagate со стороны наклейки.

Согнутый корпус.

Определить изгиб корпуса можно приложив к исследуемому диску похожий исправный диск другой стороной так, чтобы все места креплений прилегали друг к другу. Если 3 места креплений касаются (рис. 9), а одно не касается, то диск согнут.

Рис. 9. Определение согнутого корпуса.

Рис. 9. Определение согнутого корпуса.

Дальнейшие действия:

Восстановление работоспособности в случае механических повреждений не всегда возможно. По статистике успехом (восстановленными данными), завершаются около 20% случаев и это при наличии всех доступных инструментов и гарантированно подходящих дисков-доноров.

Всё началось с того, что привезли несколько старых винчестеров (рис.1) и сказали, что здесь рабочие вперемешку с «убитыми», хочешь – выбирай, не хочешь – делай что хочешь. Но если разберёшься, как их использовать в качестве небольшого наждака для правки инструмента, расскажи. Ну, вот – рассказываю…


Первый HDD – «Quantum» семейства «Fireball TM» с микросхемой привода TDA5147AK (рис.2). Посмотрим, что он из себя представляет.


Верхняя крышка крепится 4-мя винтами по углам и одним винтом и гайкой, находящимися сверху, под наклейками. После снятия крышки видны сам жёсткий диск, считывающие головки и магнитная система управления положением головок (рис.3). Шлейф отсоединяем, магнитную систему откручиваем (здесь понадобиться специально заточенный шестигранный ключ «звёздочка»). При желании диск тоже можно снять, если открутить три винта на шпинделе двигателя (также нужен шестигранник).


Теперь ставим крышку на место для того, чтобы можно было перевернуть HDD для экспериментов с электроникой и подаём в разъём питания напряжения +5 В и +12В. Двигатель разгоняется, работает примерно 30 секунд, а затем останавливается (на печатной плате есть зелёный светодиод – он горит при вращении двигателя и мигает при его остановке).

В сети легко находится даташит на микросхему TDA5147K, но по нему не удалось разобраться с сигналом разрешения/запрета вращения. При «подтягивании» сигналов POR к шинам питания добиться нужной реакции не удалось, но при просмотре сигналов осциллографом выяснилось, что при касании щупом 7-го вывода микросхемы TDA5147АK происходит её сброс и перезапуск двигателя. Таким образом, собрав простейший генератор коротких импульсов (рис.4, нижнее фото) с периодом в несколько секунд (или десятков секунд), можно заставить двигатель вращаться более-менее постоянно. Возникающие паузы в подаче питания длятся около 0,5 секунды и это не критично, если двигатель используется с небольшой нагрузкой на валу, но в других случаях это может быть неприемлемо. Поэтому, способ хоть и действенный, но не совсем правильный. А «правильно» запустить его так и не удалось.


Следующий HDD – «Quantum» семейства «Trailblazer» (рис.5).


При подаче напряжений питания привод никаких признаков жизни не подаёт и на плате электроники начинает сильно греться микросхема 14-107540-03. В середине корпуса микросхемы заметна выпуклость (рис.6), что говорит о её явной неработоспособности. Обидно, но не страшно.


Смотрим микросхему управления вращением двигателя (рис.7) - HA13555. Она при подаче питания не греется и видимых повреждений на ней нет. Прозвонка тестером элементов «обвязки» ничего особенного не выявила – остаётся только разобраться со схемой «включения».


Поисковики даташит на неё не находят, но есть описание на HA13561F. Она выполнена в таком же корпусе, совпадает по ножкам питания и по «выходным» выводам с HA13555 (у последней к проводникам питания двигателя подпаяны диоды – защита от противо-ЭДС). Попробуем определиться с необходимыми выводами управления. Из даташита на HA13561F (рис.8) следует, что на вывод 42 (CLOCK) должна подаваться тактовая частота 5 МГц с уровнем TTL-логики и что сигналом, разрешающим запуск двигателя, является высокий уровень на выводе 44 (SPNENAB).


Так как микросхема 14-107540-03 нерабочая, то отрезаем питание +5 В от неё и от всех остальных микросхем, кроме HA13555 (рис.9). Тестером проверяем правильность «порезов» по отсутствию соединений.


На нижнем фото рисунка 9 красными точками показаны места подпайки напряжения +5 В для HA13555 и резистора «подтяжки к плюсу» её 44 вывода. Если же резистор от вывода 45 снять с родного места (это R105 по рисунку 8) и поставить его вертикально с некоторым наклоном к микросхеме, то дополнительный резистор для подтяжки к «плюсу» вывода 44 можно припаять к переходному отверстию и к висящему выводу первого резистора (рис.10) и тогда питание +5 В можно подавать в место их соединения.


На обратной стороне платы следует перерезать дорожки, как показано на рисунке 11. Это «бывшие» сигналы, приходящие от сгоревшей микросхемы 14-107540-03 и старая «подтяжка» резистора R105.


Организовать подачу «новых» тактовых сигналов на вывод 42 (CLOCK) можно с помощью дополнительного внешнего генератора, собранного на любой подходящей микросхеме. В данном случае была использована К555ЛН1 и получившаяся схема показана на рисунке 12.


После «прокидывания» проводом МГТФ напряжения питания +5 В прямо от разъёма к выводу 36 (Vss) и других требуемых соединений (рис.13), привод запускается и работает безостановочно. Естественно, если бы микросхема 14-107540-03 была исправна, вся доработка заключалась бы только в «перетяжке» 44-го вывода к шине +5 В.


На этом «винте» была проверена его работоспособность при других тактовых частотах. Сигнал подавался с внешнего генератора прямоугольных импульсов и минимальная частота, с которой привод работал устойчиво - 2,4 МГц. На более низких частотах циклично происходил разгон и остановка. Максимальная частота – около 7,6 МГц, при дальнейшем её увеличении количество оборотов оставалось прежним.

Количество оборотов также зависит и от уровня напряжения на выводе 41 (CNTSEL). В даташите на микросхему HA13561F есть таблица и она соответствует значениям, получаемым у HA13555. В результате всех манипуляций удалось получить минимальную скорость вращения двигателя около 1800 об/мин, максимальную – 6864 об/мин. Контроль проводился с помощью программы SpectraPLUS, оптопары с усилителем и кусочка изоленты, приклеенного к диску так, чтобы он при вращении диска перекрывал окно оптопары (в окне анализатора спектра определялась частота следования импульсов и затем умножалась на 60).

Третий привод – «SAMSUNG WN310820A».

При подаче питания микросхема-драйвер – HA13561 начинает сильно греться, двигатель не вращается. На корпусе микросхемы заметна выпуклость (рис.14), как и в предыдущем случае. Проводить какие-либо эксперименты не получится, но можно попробовать запитать двигатель от платы с микросхемой HA13555. Длинные тонкие проводники были подпаяны к шлейфу двигателя и к выходным контактам разъёма платы электроники – всё запустилось и работало без проблем. Если бы HA13561 была целой, доработка для запуска была бы такой же, как и для «Quantum Trailblazer» (44-й вывод к шине +5 В).


Четвёртый привод - «Quantum» семейства «Fireball SE» с микросхемой привода AN8426FBP (рис.15).


Если отключить шлейф блока головок и подать питание на HDD, то двигатель набирает обороты и, естественно, через некоторое время останавливается. Даташит на микросхему AN8426FBP есть в сети и по нему можно разобраться, что за запуск отвечает вывод 44 (SIPWM) (рис.16). И если теперь перерезать дорожку, идущую от микросхемы 14-108417-02 и «подтянуть» вывод 44 через резистор 4,7 кОм к шине +5 В, то двигатель не будет останавливается.


И напоследок, вернувшись немного назад, были сняты формы сигналов на выводах W и V микросхемы HA13555 относительно общего провода (рис. 17).


Самое простое прикладное применение старого HDD – небольшой наждак для правки свёрл, ножей, отвёрток (рис.18). Для этого достаточно наклеить на магнитный диск наждачную бумагу. Если «винт» был с несколькими «блинами», то можно сделать сменные диски разной зернистости. И здесь хорошо бы иметь возможность переключения скорости вращения шпиндельного двигателя, так как при большом количестве оборотов очень легко перегреть затачиваемую поверхность.


Наждак, конечно, не единственное применение для старого HDD. В сети легко находятся конструкции пылесосов и даже аппарата для приготовления сладкой ваты…

В дополнении к тексту находятся упомянутые даташиты и файлы печатных плат внешних генераторов импульсов в формате программы Sprint-Layout 5-ой версии (вид со стороны печати, микросхемы устанавливаются как smd, т.е. без сверловки отверстий).

меняются только числа в квадратных скобках. проблема с хардом, вотолько вопрос в чем именно. я так понял проблема чтения из конкретных секторов? то есть они битые? если возможность что ошибка в чем то другом? если проблема в секторах, есть ли возможность проверить какие именно сектора битые и сделать так что бы к ним не обращалась система?

=== START OF READ SMART DATA SECTION ===
SMART overall-health self-assessment test result: PASSED

General SMART Values:
Offline data collection status: (0x00) Offline data collection activity
was never started.
Auto Offline Data Collection: Disabled.
Self-test execution status: ( 0) The previous self-test routine completed
without error or no self-test has ever
been run.
Total time to complete Offline
data collection: ( 645) seconds.
Offline data collection
capabilities: (0x5b) SMART execute Offline immediate.
Auto Offline data collection on/off support.
Suspend Offline collection upon new
command.
Offline surface scan supported.
Self-test supported.
No Conveyance Self-test supported.
Selective Self-test supported.
SMART capabilities: (0x0003) Saves SMART data before entering
power-saving mode.
Supports SMART auto save timer.
Error logging capability: (0x01) Error logging supported.
General Purpose Logging supported.
Short self-test routine
recommended polling time: ( 2) minutes.
Extended self-test routine
recommended polling time: ( 52) minutes.
SCT capabilities: (0x003d) SCT Status supported.
SCT Error Recovery Control supported.
SCT Feature Control supported.
SCT Data Table supported.

SMART Error Log Version: 1
ATA Error Count: 559 (device log contains only the most recent five errors)
CR = Command Register [HEX]
FR = Features Register [HEX]
SC = Sector Count Register [HEX]
SN = Sector Number Register [HEX]
CL = Cylinder Low Register [HEX]
CH = Cylinder High Register [HEX]
DH = Device/Head Register [HEX]
DC = Device Command Register [HEX]
ER = Error register [HEX]
ST = Status register [HEX]
Powered_Up_Time is measured from power on, and printed as
DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,
SS=sec, and sss=millisec. It "wraps" after 49.710 days.

Error 559 occurred at disk power-on lifetime: 3500 hours (145 days + 20 hours)
When the command that caused the error occurred, the device was active or idle.

Error 558 occurred at disk power-on lifetime: 3500 hours (145 days + 20 hours)
When the command that caused the error occurred, the device was active or idle.

Error 557 occurred at disk power-on lifetime: 3500 hours (145 days + 20 hours)
When the command that caused the error occurred, the device was active or idle.

Error 556 occurred at disk power-on lifetime: 3500 hours (145 days + 20 hours)
When the command that caused the error occurred, the device was active or idle.

Error 555 occurred at disk power-on lifetime: 3500 hours (145 days + 20 hours)
When the command that caused the error occurred, the device was active or idle.

SMART Self-test log structure revision number 1
No self-tests have been logged. [To run self-tests, use: smartctl -t]


SMART Selective self-test log data structure revision number 1
SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS
1 0 0 Not_testing
2 0 0 Not_testing
3 0 0 Not_testing
4 0 0 Not_testing
5 0 0 Not_testing
Selective self-test flags (0x0):
After scanning selected spans, do NOT read-scan remainder of disk.
If Selective self-test is pending on power-up, resume after 0 minute delay.

Не определяется ни через USB-мосты, ни при подключении к SATA-выводам компьютера.

при подаче питания неритмично хрустит, как будто идет многочисленное чтение чего-то с разных мест диска в хаотичном порядке.

Как это обычно бывает, на диске - фотографии, документы, которые просто так из инета не найдешь, не скачаешь. Семейный архив, все такое, общий объем важного, по прикидкам - гигов 200-250.

Слева убитый, справа исправный.


Читайте также: