Сколько занимает памяти двоичный код

Обновлено: 03.07.2024

Для того чтобы сохранить на внешних носителях текстовый документ, созданный с помощью компьютера, он должен быть представлен двоичным кодом с помощью двух цифр – 0 и 1.

Самый удобный и понятный способ такого представления следующий:

1) записать алфавит;
2) пронумеровать все буквы по порядку;
3) номер буквы перевести в двоичную систему счисления;
4) составить таблицу соответствия символов двоичным или десятичным кодам.

  • Символов типа № % * ? – (не менее 15)
  • Букв латинского алфавита (строчных и прописных) – 52
  • Букв кириллицы (русский алфавит) – 66
  • Цифры – 10

Уже получилось 143 символа.
Чтобы закодировать такое количество символов необходимо не менее 8 бит (или 1 байт)
Теперь мы знаем, что для кодирования одного символа требуется один байт информации.
И так кодирование заключается в том, что каждому символу ставиться в соответствие уникальный двоичный код от 00000000 до 11111111 (или десятичный код от 0 до 255).
Важно, что присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется кодовой таблицей.
Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера (коды), называется таблицей кодировки.
Для разных типов ЭВМ используются различные кодировки.
С распространением IBM PC международным стандартом стала таблица кодировки ASCII (American Standart Code for Information Interchange) – Американский стандартный код для информационного обмена.
Стандартной в этой таблице является только первая половина, т.е. символы с номерами от 0 (00000000) до 127 (0111111). Сюда входят буква латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы.
Остальные 128 кодов используются в разных вариантах. Например, в русских кодировках размещаются символы русского алфавита.
Так же получил широкое распространение новый международный стандарт Unicode (Юникод), который отводит на каждый символ два байта. С его помощью можно закодировать 65 536 (216= 65 536) различных символов.

Решение задач

Пример1. Записать слово «stop» в двоичном и десятичном кодах.

Решение. Двоичный 001110011 01110100 01101111 01110000

Десятичный 115 116 111 112

Пример 2. Сколько бит памяти компьютера займет слово «Микропроцессор»?

Решение. Слово состоит из 14 букв. Каждая буква является символом компьютерного алфавита, поэтому занимает 1 байт памяти. Слово займет 14 байт (112 бит)

Пример 3. Текст занимает 0,25 Кбайт памяти компьютера, Сколько символов содержит этот текст?

Решение. 0,25 х 1024 = 256 (байт); 256 : 1 (байт) = 256 символов.

Пример 4. С помощью десятичных кодов зашифровано слово «stop» 115 116 111 112. Записать последовательность десятичных кодов для этого же слова, но записанного заглавными буквами.

Решение. При шифровке не обязательно пользоваться таблицей. Достаточно учесть, что разница между кодом строчных и прописных букв равна 32. 115 – 32 = 83; 116 – 32 = 84; 111 – 32 = 79; 112 – 32 = 80. Слову «STOP» соответствует последовательность кодов: 83 84 79 80.

Пример 5. Оценить информационный объем фразы, закодированной с помощью Юникода: Без труда не вытащишь и рыбку из пруда

Решение. В Юникоде 1 символ закодирован 2 байтами или 16 битами. Во фразе 38 символов (с учетом пробелов). В байтах – 38 х 2 = 76 байтов; в битах 38 х 16 = 608 бит.

Домашнее задание: Тема «Тексты в компьютерной памяти». Задание: Закодировать в двоичной форме свою фамилию, используя таблицу в учебнике.

Урок 2. Лабораторная работа

Цель: Познакомить учащихся с различными кодировками символов, используя текстовые редакторы.

Задача: Выполнить задания в различных текстовых приложениях

1. Текстовый редактор Блокнот

а) Используя клавишу Alt и малую цифровую клавиатуру раскодировать фразу: 145 170 174 224 174 255 170 160 173 168 170 227 171 235;

Технология выполнения задания: При удерживаемой клавише Alt, набрать на малой цифровой клавиатуре указанные цифры. Отпустить клавишу Alt, после чего в тексте появится буква, закодированная набранным кодом.

Ответ: скоро каникулы

б) Используя ключ к кодированию, закодировать слово – зима;

Технология выполнения задания: Из предыдущего задания выяснить, каким кодом записана буква а. Учитывая, что буквы кодируются в алфавитном порядке, выяснить коды остальных букв.

Ответ: 167 168 172 160

Что вы заметили при выполнении этого задания во время раскодировки? Запишите свои наблюдения.

Возможный вариант: в кодировочной таблице нет буквы ё.

2. Текстовый процессор MS Word.

Технология выполнения задания: рассмотрим на примере: представить в различных кодировках слово Кодировка

  • Создать новый текстовый документ в Word;
  • Выбрать – Команда – Вставка – Символ.
    В открывшемся окне «Символ» установить из: Юникод (шестн.),
  • В наборе символов находим букву К и щелкнем на ней левой кнопкой мыши (ЩЛКМ).
  • В строке код знака появится код выбранной буквы 041А (незначащие нули тоже записываем).
  • У буквы о код – 043Е и так далее: д – 0434, и – 0438, р – 0440, о – 043Е, в – 0432, к – 043А, а – 0430.
  • Установить Кириллица (дес.)
  • К – 0202, о – 0238, д – 0228, и – 0232, р – 0240, о – 0238, в –0226, к – 0202, а –0224.

Задание: Открыть Word.

Используя окно «Вставка символа» выполнить задания: Закодировать слово Forest

а) Выбрать шрифт Courier New, кодировку ASCII(дес.) Ответ: 70 111 114 101 115 116
б) Выбрать шрифт Courier New, кодировку Юникод(шест.) Ответ: 0046 006F 0072 0665 0073 0074
в) Выбрать шрифт Times New Roman, кодировку Кирилица(дес.) Ответ: 70 111 114 101 115 116
г) Выбрать шрифт Times New Roman, кодировку ASCII(дес.) Ответ: 70 111 114 101 115 116

Вывод: _________________________________________________________

Ответ вывода: код символа не зависит от типа шрифта. Предлагаемые MS Word кодировки кодируют символы одинаково.

3. Составьте 3 варианта объявления о наборе группы обучения работе в Текстовых приложениях.

а) в Текстовом редакторе Блокнот
б) в Текстовом процессоре Word
в) в Издательской системе Publisher (публикация)

Ответьте на вопрос: в чем отличительные особенности (положительные и отрицательные) каждого из использованных приложений. Оформите ответ в виде вывода.

Вывод: __________________________________________________________

Ответ вывода: блокнот – положительное: простота использования, отрицательные: ограничение возможностей
Word положительное: множество возможностей, отрицательные: сложность использования Publisher положительное : множество профессиональных возможностей, отрицательные: необходимость определенных навыков работы и знаний

2 этап (практика) – Лабораторная работа «Представление текстовой информации в компьютере»

Практическая работа «Вставка символов в тексте» (Приложение 3)

Выполнение лабораторной работы оформить в виде таблицы:

3 этап (контроль) – Тест по теме для 2-х вариантов (на 10-15 минут)

Тест, выполненный в MS Excel, содержит задания типа А и В для двух вариантов.

1. Буква Z имеет десятичный код 90, а z – 122. Записать слово «sport» в десятичном коде. Ответ: 115 112 111 114 116

2. С помощью десятичных кодов зашифровано слово «info» 105 110 102 111. Записать последовательность десятичных кодов для этого же слова, но записанного заглавными буквами. Ответ: 73 78 70 79

3. Текст занимает 0,5 Кбайт памяти компьютера, Сколько символов содержит этот текст? Ответ: 512

4. Сколько бит памяти компьютера займет слово «Антивирус»? Ответ: 72

5. Буква Б имеет код 193, а б – 295. Запишите через пробел коды букв Л и л. Ответ: 203 235

6. Оцените информационный объем фразы, закодированной с помощью Юникода: Делу время, потехе час Ответ: 352 бита

1. Буква Z имеет десятичный код 90, а z – 122. Записать слово «forma» в десятичном коде. Ответ: 102 111 114 109 97

2. С помощью десятичных кодов зашифровано слово «port» 112 111 114 116. Записать последовательность десятичных кодов для этого же слова, но записанного заглавными буквами. Ответ: 80 79 82 84

3. Текст занимает 0,75 Кбайт памяти компьютера, Сколько символов содержит этот текст? Ответ: 768

4. Сколько бит памяти компьютера займет слово «Информация»? Ответ: 80

5. Буква Я имеет код 223, а я – 255. Запишите через пробел коды букв Ш и ш. Ответ: 216 248

6. Оцените информационный объем фразы, закодированной с помощью Юникода: Делу время, потехе час Ответ: 44 байта

С помощью дополнительной цифровой клавиатуры при нажатой клавише ввести число 0224, отпустить клавишу , в документе появится символ «а». Повторить процедуру для числовых кодов от 0225 до 0233, в документе появится последовательность из 12 символов «абвгдежзий» в кодировке Windows.

С помощью дополнительной цифровой клавиатуры при нажатой клавише ввести число 224, в документе появится символ «р». Повторить процедуру для числовых кодов от 225 до 233, в документе появится последовательность из 12 символов «рстуфхцчшщ» в кодировке MS-DOS.

Таблица кодировки символов.

Символы с кодами от 0 до 127.

Символы с кодами от 128 до 255.

С точки зрения ЭВМ текст состоит из отдельных символов. К числу символов принадлежат не только буквы (заглавные или строчные, латинские или русские), но и цифры, знаки препинания, спецсимволы типа "=", "(", "&" и т.п. и даже (обратите особое внимание!) пробелы между словами. Да, не удивляйтесь: пустое место в тексте тоже должно иметь свое обозначение.

Множество символов, с помощью которых записывается текст, называется алфавитом .

Число символов в алфавите – это его мощность .

Формула определения количества информации: N = 2 b ,

где N – мощность алфавита (количество символов),

b – количество бит (информационный вес символа).

В алфавит мощностью 256 символов можно поместить практически все необходимые символы. Такой алфавит называется достаточным.

Т.к. 256 = 2 8 , то вес 1 символа – 8 бит.

Единице измерения 8 бит присвоили название 1 байт:

Двоичный код каждого символа в компьютерном тексте занимает 1 байт памяти.

Каким же образом текстовая информация представлена в памяти компьютера?

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.

Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.

Понятно, что это дело условное, можно придумать множество способов кодировки.

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.

Для разных типов ЭВМ используются различные таблицы кодировки.

Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).

Таблица кодов ASCII делится на две части.

Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).

Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.

Для букв русского алфавита также соблюдается принцип последовательного кодирования.

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 ("CP" означает "Code Page", "кодовая страница").

Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.

Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.

Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.

С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode . Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. 10 класса. Босова Л.Л. Оглавление

§14. Кодирование текстовой информации

Компьютеры третьего поколения «научились» работать с текстовой информацией.

Текстовая информация по своей природе дискретна, т. к. представляется последовательностью отдельных символов.

Для компьютерного представления текстовой информации достаточно:

1) определить множество всех символов (алфавит), требуемых для представления текстовой информации;
2) выстроить все символы используемого алфавита в некоторой последовательности (присвоить каждому символу алфавита свой номер);
3) получить для каждого символа n-разрядный двоичный код (n ≤ 2 n ), переведя номер этого символа в двоичную систему счисления.

В памяти компьютера хранятся специальные кодовые таблицы, в которых для каждого символа указан его двоичный код. Все кодовые таблицы, используемые в любых компьютерах и любых операционных системах, подчиняются международным стандартам кодирования символов.

14.1. Кодировка ASCII и её расширения

Основой для компьютерных стандартов кодирования символов послужил код ASCII (American Standard Code for Information Interchange) — американский стандартный код для обмена информацией, разработанный в 1960-х годах в США и применявшийся для любых, в том числе и некомпьютерных, способов передачи информации (телеграф, факсимильная связь и т. д.). Этот код 7-битовый: общее количество символов составляет 2 7 = 128, из них первые 32 символа — управляющие, а остальные — изображаемые, т. е. имеющие графическое изображение. К изображаемым символам в ASCII относятся буквы латинского алфавита (прописные и строчные), цифры, знаки препинания и арифметических операций, скобки и некоторые специальные символы. Кодировка ASCII приведена в табл. 3.8.

Таблица 3.8

Кодировка ASCII


Хотя для кодирования символов в ASCII достаточно 7 битов, в памяти компьютера под каждый символ отводится ровно 1 байт (8 битов), при этом код символа помещается в младшие биты, а в старший бит заносится 0.

Например, 01000001 — код прописной латинской буквы «А»; с помощью шестнадцатеричных цифр его можно записать как 41.

Впоследствии использование кодовых таблиц было несколько упорядочено: каждой кодовой таблице было присвоено особое название и номер. Для русского языка наиболее распространёнными стали однобайтовые кодовые таблицы CP-866, Windows-1251 (табл. 3.9) и КОИ-8 (табл. 3.10). В них первые 128 символов совпадают с ASCII-кодировкой, а русские буквы размещены во второй части таблицы. Обратите внимание на то, что коды русских букв в этих кодировках различны.

Таблица 3.9

Кодировка Windows-1251


Таблица 3.10

Кодировка КОИ-8


Мы выяснили, что при нажатии на алфавитно-цифровую клавишу в компьютер посылается некоторая цепочка нулей и единиц. В текстовых файлах хранятся не изображения символов, а их коды.

При выводе текста на экран монитора или принтера необходимо восстановить изображения всех символов, составляющих данный текст, причём изображения эти могут быть разнообразны и достаточно причудливы. Внешний вид выводимых на экран символов кодируется и хранится в специальных шрифтовых файлах. Современные текстовые процессоры умеют внедрять шрифты в файл. В этом случае файл содержит не только коды символов, но и описание используемых в этом документе шрифтов. Кроме того, файлы, создаваемые с помощью текстовых процессоров, включают в себя и такие данные о форматировании текста, как его размер, начертание, размеры полей, отступов, межстрочных интервалов и другую дополнительную информацию.

14.2. Стандарт Unicode

В Unicode на кодирование символов отводится 31 бит. Первые 128 символов (коды 0-127) совпадают с таблицей ASCII. Далее размещены основные алфавиты современных языков: они полностью умещаются в первой части таблицы, их коды не превосходят 65 536 = 2 16 .

Стандарт Unicode описывает алфавиты всех известных, в том числе и «мёртвых», языков. Для языков, имеющих несколько алфавитов или вариантов написания (например, японского и индийского), закодированы все варианты. В кодировку Unicode внесены все математические и иные научные символьные обозначения и даже некоторые придуманные языки (например, язык эльфов из трилогии Дж. Р. Р. Толкина «Властелин колец»).

Всего современная версия Unicode позволяет закодировать более миллиона различных знаков, но реально используется чуть менее 110 000 кодовых позиций.

Для представления символов в памяти компьютера в стандарте Unicode имеется несколько кодировок.

В операционных системах семейства Windows используется кодировка UTF-16. В ней все наиболее важные символы кодируются с помощью 2 байт (16 бит), а редко используемые — с помощью 4 байт.

В операционной системе Linux применяется кодировка UTF-8, в которой символы могут занимать от 1 (символы, входящие в таблицу ASCII) до 4 байт. Если значительную часть текста составляют цифры и латинские буквы, то это позволяет в несколько раз уменьшить размер файла по сравнению с кодировкой UTF-16.

Кодировки Unicode позволяют включать в один документ символы самых разных языков, но их использование ведёт к увеличению размеров текстовых файлов.

Мы уже касались этого вопроса, рассматривая алфавитный подход к измерению информации.

Оценим в байтах объём текстовой информации в современном словаре иностранных слов из 740 страниц, если на одной странице размещается в среднем 60 строк по 80 символов (включая пробелы).

Будем считать, что при записи используется кодировка «один символ — один байт». Количество символов во всем словаре равно:

80 • 60 • 740 = 3 552 000.

Следовательно, объём равен

3 552 000 байт = 3 468,75 Кбайт ≈ 3,39 Мбайт.

Если же использовать кодировку UTF-16, то объём этой же текстовой информации в байтах возрастёт в 2 раза и составит 6,78 Мбайт.

САМОЕ ГЛАВНОЕ

Текстовая информация по своей природе дискретна, т. к. представляется последовательностью отдельных символов.

В памяти компьютера хранятся специальные кодовые таблицы, в которых для каждого символа указан его двоичный код. Все кодовые таблицы, используемые в любых компьютерах и любых операционных системах, подчиняются международным стандартам кодирования символов.

В 1991 году был разработан новый стандарт кодирования символов, получивший название Unicode (Юникод), позволяющий использовать в текстах любые символы любых языков мира. Кодировки Unicode позволяют включать в один документ символы самых разных языков, но их использование ведёт к увеличению размеров текстовых файлов.

Вопросы и задания

1. Какова основная идея представления текстовой информации в компьютере?

2. Что представляет собой кодировка ASCII? Сколько символов она включает? Какие это символы?

3. Как известно, кодовые таблицы каждому символу алфавита ставят в соответствие его двоичный код. Как, в таком случае, вы можете объяснить вид таблицы 3.8 «Кодировка ASCII»?

4. С помощью таблицы 3.8:

5. Что представляют собой расширения ASCII-кодировки? Назовите основные расширения ASCII-кодировки, содержащие русские буквы.

6. Сравните подходы к расположению русских букв в кодировках Windows-1251 и КОИ-8.

7. Представьте в кодировке Windows-1251 текст «Знание — сила!»:

1) шестнадцатеричным кодом;
2) двоичным кодом;
3) десятичным кодом.

8. Представьте в кодировке КОИ-8 текст «Дело в шляпе!»:

1) шестнадцатеричным кодом;
2) двоичным кодом;
3) десятичным кодом.

9. Что является содержимым файла, созданного в современном текстовом процессоре?

10. В кодировке Unicode на каждый символ отводится 2 байта. Определите в этой кодировке информационный объём следующей строки:

Где родился, там и сгодился.

11. Набранный на компьютере текст содержит 2 страницы. На каждой странице 32 строки, в каждой строке 64 символа. Определите информационный объём текста в кодировке Unicode, в которой каждый символ кодируется 16 битами.

13. В текстовом процессоре MS Word откройте таблицу символов (вкладка Вставка ⇒ Символ ⇒ Другие символы):



В поле Шрифт установите Times New Roman, в поле из — кириллица (дес.).

Представление числовых данных в памяти ЭВМ

Для представления информации в памяти ЭВМ (как числовой, так и не числовой) используется двоичный способ кодирования.

Элементарная ячейка памяти ЭВМ имеет длину 8 бит (байт). Каждый байт имеет свой номер (его называют адресом ). Наибольшую последовательность бит, которую ЭВМ может обрабатывать как единое целое, называют машинным словом . Длина машинного слова зависит от разрядности процессора и может быть равной 16, 32, 64 битам и т.д.

Кодирование символов

Двоично-десятичное кодирование

Представление целых чисел в дополнительном коде

Вообще, разряды нумеруются справа налево, начиная с 0. Ниже показана нумерация бит в двухбайтовом машинном слове.

1514131211109876543210

Дополнительный код положительного числа совпадает с его прямым кодом . Прямой код целого числа может быть получен следующим образом: число переводится в двоичную систему счисления, а затем его двоичную запись слева дополняют таким количеством незначащих нулей, сколько требует тип данных, к которому принадлежит число.

Например, если число 37 (10) = 100101 (2) объявлено величиной типа Integer ( шестнадцатибитовое со знаком ), то его прямым кодом будет 0000000000100101, а если величиной типа LongInt ( тридцатидвухбитовое со знаком ), то его прямой код будет 00000000000000000000000000100101. Для более компактной записи чаще используют шестнадцатеричное представление кода. Полученные коды можно переписать соответственно как 0025 (16) и 00000025 (16) .

Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму:

Например, запишем дополнительный код числа -37, интерпретируя его как величину типа LongInt (тридцатидвухбитовое со знаком):

  1. прямой код числа 37 есть 00000000000000000000000000100101;
  2. инверсный код 11111111111111111111111111011010;
  3. дополнительный код 11111111111111111111111111011011 или FFFFFFDB(16).

При получении числа по его дополнительному коду прежде всего необходимо определить его знак. Если число окажется положительным, то просто перевести его код в десятичную систему счисления. В случае отрицательного числа необходимо выполнить следующий алгоритм:

  1. вычесть из кода числа 1;
  2. инвертировать код;
  3. перевести в десятичную систему счисления. Полученное число записать со знаком минус.

Примеры. Запишем числа, соответствующие дополнительным кодам:

  1. 0000000000010111. Поскольку в старшем разряде записан нуль, то результат будет положительным. Это код числа 23.
  2. 1111111111000000. Здесь записан код отрицательного числа. Исполняем алгоритм: 1) 1111111111000000(2) - 1(2) = 1111111110111111(2); 2) 0000000001000000; 3) 1000000(2) = 64(10).
    Ответ: -64.

Кодирование вещественных чисел

Несколько иной способ применяется для представления в памяти персонального компьютера действительных чисел. Рассмотрим представление величин с плавающей точкой.

Покажем преобразование действительного числа для представления его в памяти ЭВМ на примере величины типа Double.

Как видно из таблицы, величина это типа занимает в памяти 8 байт. На рисунке ниже показано, как здесь представлены поля мантиссы и порядка (нумерация битов осуществляется справа налево):

SСмещенный порядокМантисса
6362..5251..0

Можно заметить, что старший бит, отведенный под мантиссу, имеет номер 51, т.е. мантисса занимает младшие 52 бита. Черта указывает здесь на положение двоичной запятой. Перед запятой должен стоять бит целой части мантиссы, но поскольку она всегда равна 1, здесь данный бит не требуется и соответствующий разряд отсутствует в памяти (но он подразумевается). Значение порядка хранится здесь не как целое число, представленное в дополнительном коде. Для упрощения вычислений и сравнения действительных чисел значение порядка в ЭВМ хранится в виде смещенного числа, т.е. к настоящему значению порядка перед записью его в память прибавляется смещение. Смещение выбирается так, чтобы минимальному значению порядка соответствовал нуль. Например, для типа Double порядок занимает 11 бит и имеет диапазон от 2 -1023 до 2 1023 , поэтому смещение равно 1023(10) = 1111111111(2). Наконец, бит с номером 63 указывает на знак числа.

Таким образом, из вышесказанного вытекает следующий алгоритм для получения представления действительного числа в памяти ЭВМ:

Пример. Запишем код числа -312,3125.

  1. Двоичная запись модуля этого числа имеет вид 100111000,0101.
  2. Имеем 100111000,0101 = 1,001110000101 × 2 8 .
  3. Получаем смещенный порядок 8 + 1023 = 1031. Далее имеем 1031(10) = 10000000111(2).
  4. Окончательно
    1100000001110011100001010000000000000000000000000000000000000000
    6362..5251..0

Очевидно, что более компактно полученный код стоит записать следующим образом: C073850000000000(16).

Другой пример иллюстрирует обратный переход от кода действительного числа к самому числу.

Читайте также: