Ssd греется меньше hdd

Обновлено: 07.07.2024

HDD или SSD — что выбрать?

«На SSD всё летает» — слышали такое? Компактные, быстрые, современные — казалось бы, пора уже поменять старый жестак на новенький твердотельник. Но не торопитесь. Рассмотрим подробно оба вида накопителей и определим, для каких задач разумно использовать HDD, а где предпочтение лучше отдать SSD.

Жесткий диск

Жесткий диск (или HDD) — устройство хранения данных, принцип записи информации в котором заключается в намагничивании областей на поверхности магнитных дисков (пластин). Магнитный диск представляет собой поверхность, изготовленную из алюминия, керамики или стекла с нанесенным на нее слоем ферромагнетика.

Для организации хранения данных магнитный диск разбивается на дорожки и сектора, а совокупность дорожек, расположенных одна над другой (на нескольких магнитных дисках), называется цилиндром.


В зависимости от объема памяти, внутри корпуса HDD могут находиться до восьми пластин. Пластины крепятся к шпинделю, вращающемуся со скоростью от 4 до 15 тысяч оборотов в минуту (rpm). Запись и чтение информации с пластины осуществляется при помощи магнитной головки.

За управление работой HDD отвечает электронная плата управления. На ней размещены центральный процессор с интегрированной ПЗУ, сервоконтроллер, кэш-память. Объем кэш-буфера в современных HDD достигает 512 МБ.


В зависимости от типоразмера жесткие диски можно разделить на две группы: 2.5-дюймовые HDD и 3.5-дюймовые. Из-за меньших габаритных размеров первые нашли массовое применение в ноутбуках. Диски формата 3.5″ повсеместно применяются в персональных компьютерах, сетевых хранилищах и системах видеонаблюдения.



В зависимости от области применения жесткие условно делятся на несколько классов:

1) Жесткие диски для персонального компьютера

2) Диски для NAS

3) Серверные HDD

4) Для систем видеонаблюдения

Твердотельный накопитель

Твердотельный накопитель (или SSD) — устройство, использующее для хранения информации флеш-память.

Существует 4 типа флеш-памяти применяемых в SSD:

  1. SLC (Single-Level Cell) — память с одноуровневой структурой ячеек. В ячейке SLC памяти может храниться только 1 бит. SLC-память характеризуется высокой надежностью и скоростью доступа к данным, большим числом циклов перезаписи, а также высокой стоимостью (цена за 1 ГБ памяти).
  2. MLC (Multi-Level Cell) — память с многоуровневой структурой ячеек. В одной ячейке MLC памяти может храниться 2 бита. MLC память обладает меньшей надежностью и выносливостью (количество циклов перезаписи), но при этом и стоит дешевле чем SLC.
  3. TLC (Triple-Level Cell) — память с тремя битами в ячейке. Следующая ступень развития флеш-памяти. Обладает меньшим количеством циклов перезаписи и скоростью доступа к данным. Но цена за гигабайт памяти гораздо ниже, чем у MLC.
  4. QLC (Quad-Level Cell) — память с возможностью хранить 4 бита в одной ячейке. Последняя (на текущий момент) ступень развития флеш-памяти. По сравнению с предшественниками, обладает меньшей надежностью и скоростью доступа к данным, но гораздо привлекательнее по соотношению стоимость/объем памяти.


Помимо различных типов ячеек для флеш-памяти существует такое понятие, как многослойность. До определенного момента времени производитель наращивал емкость кристалла памяти за счет увеличения количества бит в одной ячейке и уменьшения физического размера ячейки (техпроцесс). Но бесконечно уменьшать размер ячеек нельзя, как и увеличивать их плотность.


Кроме типа флеш-памяти есть еще один важный момент, на который необходимо обратить внимание при выборе SSD накопителя — используемый контроллер.

Контроллер управляет операциями чтения/записи данных в ячейки памяти, следит за их состоянием, выполняет коррекцию ошибок, выравнивание износа ячеек, а также другие вспомогательные функции.

В зависимости от используемого контроллера, показатели скорости работы двух SSD, построенных на одной и той же памяти, могут значительно различаться в пользу накопителя с более современным контроллером.


1) SSD накопители SATA — подключаются по интерфейсу SATA3, скорость линейной записи достигает 500 Мбайт/с, чтения — 540 Мбайт/с. Данные накопители можно встретить в ПК и ноутбуках средней ценовой категории.


2) SSD накопители M.2.

2.1) Без поддержки NVMe — подключаются в M.2 разъем, скорость линейной записи достигает 530 Мбайт/с, чтения — 560 Мбайт/с.


2.2) С поддержкой NVMe — подключаются в M.2 разъем, скорость линейной записи достигает 2500 Мбайт/с, чтения — 3400 Мбайт/с. Встречаются в компьютерах и ноутбуках средне-высокого ценового диапазона.


3) SSD накопители PCI-E — подключение выполняется через разъем PCI-E(в большинстве своем это адаптер PCI-E в который установлен SSD M.2 с поддержкой NVMe), скорость линейной записи может достигать 3000 Мбайт/с, чтения — 3400 Мбайт/с.

Что лучше?

Несмотря на все прелести SSD, твердотельники пока не могут полностью вытеснить HDD с рынка. И вот почему:

SSD M.2 сильно греется — как охладить твердотельный накопитель

Нагрев комплектующих компьютера — вечная проблема. В то время, как мы уделяем внимание охлаждению процессора и видеокарты, оказывается, что и твердотельные накопители способны накаляться до 100 °C. Это не соответствует концепции «тихо и прохладно», которой придерживаются сборщики современных производительных систем. Стоит ли волноваться по этому поводу и как остудить пыл накопителя подручными средствами — разбираемся.

В игровых сборках в качестве системных дисков преобладают твердотельные накопители. Они быстрые, компактные, бесшумные и устойчивые к износу — SSD не имеют подвижных и механически взаимодействующих между собой элементов. Поэтому часто показателем долголетия накопителя становится лимит количества циклов перезаписи.


И все же, исчерпание ресурса микросхем — не единственная проблема. Пользователи часто сталкиваются с нагревом — некоторые узнают об этом из обзоров, другие «обжигаются» на собственном опыте. Тепловыделением обладает большинство комплектующих — процессор, видеокарта, оперативная память и даже модули беспроводной связи. Но перечисленные узлы работают с активной или пассивной системой охлаждения — радиаторы, вентиляторы и системы жидкостного охлаждения. В случае с SSD не все так радужно — они тоже греются, но редко комплектуются системой отвода тепла.

Горячие штучки

В конструкции твердотельных накопителей находятся несколько греющихся элементов — микросхемы памяти, чип кэш-памяти и контроллер. Причина нагрева одинакова для всех — протекающий через транзисторы ток, величина которого зависит от режима работы накопителя. Быстрее и сильнее всего нагревается контроллер — миниатюрный процессор, который управляет жизнью диска и информацией, попадающей в ячейки запоминающего устройства. Половина качественных и количественных характеристик SSD зависит от этого чипа — накопители с одинаковыми микросхемами памяти и разными контроллерами могут показывать отличные друг от друга результаты производительности и надежности. В то же время, замена чипов памяти на улучшенные может заставить один и тот же контроллер трудиться с удвоенной силой.

Удачный пример — Samsung 970 EVO и Samsung 970 EVO Plus. Оба накопителя устроены на идентичных контроллерах, но комплектуются разными микросхемами памяти — 970 EVO работает на 64-слойной V-NAND со скоростью 800 Мбит/с, а 970 EVO Plus получил в распоряжение 92-слойные NAND со скоростью обмена данными до 1,4 Гбит/с. С переходом на многослойную технологию компоновки транзисторов температурный режим новых чипов не изменился, так как они выполняются на усовершенствованном техпроцессе и работают на сниженном напряжении. Зато контроллеру приходится туго — вместе с увеличенными плотностью и скоростью обмена данными появилось больше работы. Отсюда не только возросшая производительность в IOPS и мегабайтах в секунду, но также и запредельные температуры.

Опасен ли перегрев?

В долговременной нагрузке некоторые твердотельные накопители нагреваются свыше 100 °C — в основном это касается устройств NVMe. Известно, что завышенные температуры приводят к деградации кремниевых компонентов, поэтому могут стать причиной преждевременного выхода накопителя из строя. В основном от перегрева страдает контроллер — даже в простое он всегда что-то делает, а в сильной нагрузке может разогреться до значений, при которых можно получить ожог. Естественно, это не идет на пользу окружающим компонентам, а также близлежащим микросхемам памяти, для которых и 60–70 °C оказываются испытанием.

Поэтому иногда производители кладут в комплект радиатор и термопрокладки, хотя это лишь частично решает проблему с сильным нагревом. Для правильного отвода тепла необходимо оголить микросхемы — снять наклейку с уникальными данными, которая мешает проводить тепло. Это автоматически лишает устройство гарантии, поэтому только усугубляет ситуацию с обслуживанием неисправных SSD.


Можно установить радиатор вместе с этикеткой и радоваться сохраненной гарантии. Конечно, в таком случае эффективность системы охлаждения окажется уменьшенной ровно до того уровня теплопроводности, которым обладает пластиковая наклейка. Для каждого материала это разное значение — пользователи отмечают, что прослойка из заводского «целлофана» скрадывает всего 3-4 °C.


Другое дело, если накопитель сутками трудится на износ и троттлит — скидывает тактовую частоту и напряжение, чтобы снизить нагрев. Троттлинг — это заводская технология защиты устройства от перегрева и выхода из строя. Он бьет по производительности, но не позволяет накопителю вылететь из системника с дымом и искрами. Тогда пользователю приходится идти на все, чтобы удержать скорость чтения и записи на максимуме — и даже на потерю гарантии.

Проверка боем

Проверим теорию на практике — нагреем твердотельный накопитель и попытаемся довести его до троттлинга. Интерес данного опыта заключается в том, что используемый SSD считается одним из самых горячих среди одноклассников и должен разогреться до красна. Или не должен — это мы и узнаем.


Для тестирования используется следующая система:

  • Материнская плата Asus Maximus VIII Hero — топовая модель с чипсетом Intel Z170. Обладает качественной подсистемой питания процессора и неплохим каскадом управления PCIe.
  • Процессор Intel Core i7 9700K — восьмиядерный процессор девятой серии. Пусть читателя не смущает тандем процессора и МП разных поколений — в народе это называют «кофемодом».
  • Твердотельный накопитель Samsung 970 EVO Plus 500 ГБ — средняя модель по рынку и просто хороший SSD с горячим нравом. То, что нужно для экспериментов.

Работая системным накопителем, Samsung 970 EVO Plus почти всегда находится в безопасном температурном режиме, даже учитывая то, что температура впускного воздуха равна 29 °C — об этом говорят показания выносного датчика T_Sensor. Как правило, в таком состоянии нагрев составляет 50–55 °C для микросхем памяти и 65–70 °C для контроллера.


Эта модель накопителя снижает производительность при температуре около 80 °C. Нагрузим диск и проверим, как быстро нагреваются чипы и контроллер без дополнительного охлаждения. Для этого воспользуемся встроенным тестом дисковой подсистемы AIDA64. Например, включим на 10 минут линейное чтение:


В таком режиме устройство нагрелось до 76°C, при этом микросхемы остались в пределах 58 °C. Слишком просто для скоростного накопителя — примерно 30–40 % места на диске занимают системные файлы, программы и игры. Это не дает микросхемам раскрыться, поэтому скорость чтения колеблется на уровне 140 МБ/с, и температура двигается неохотно.

Проверим нагрев во время записи 300 файлов общим объемом 100 ГБ:


Контроллер — 77 °C, микросхемы — 62 °C. Уже интереснее, но все еще не дотягивает до критических значений, при которых накопитель включит троттлинг. Вывод — NVMe не требует охлаждения, а зашкаливающие под 100 °C накопители оказались мифом? Проверим еще один сценарий.


Поймали — контроллер нагрелся до 98 °C, а микросхемы раскалились до 74 °C. Но, как мы убедились ранее, такой нагрев — редкость для накопителей, которые используются в работе, а не для издевательств. Работа — это повседневные задачи, а издевательство — это проверка производительности SSD с помощью бенчмарков или стресс-тестов, а также безостановочные чтение и запись терабайтов информации. Впрочем, в таком режиме диск скорее «убьется» из-за износа ячеек памяти, нежели плавящегося контроллера.

И все же, многих юзеров раздражает, если комплектующие нагреваются выше 36.6 °C. Для таких случаев предусмотрено решение — можно снизить температуру с помощью комплектного или универсального радиаторов. Или что-нибудь «приколхозить» — чем мы и займемся.

Kolhozim — проверим эффективность радиаторов

Нет специального радиатора, но есть подручные средства и желание что-то улучшить — время колхозинга.

Дано: нагревающийся накопитель до 68 °C в простое, до 76 °C в режиме офиса и под 100 °C в максимальной нагрузке.

Задача: снизить температуру контроллера и микросхем.

Используемые средства: то, что найдется под рукой — а именно, процессорный кулер в формате башни с тепловыми трубками, блэк-джеком и пряниками.


Попробуем установить его на горячую часть твердотельного накопителя через термопрокладку — применять термопасту в этом случае не имеет смысла, так как нормальной теплопроводности мешает гарантийная наклейка.


Освобождаем место в системнике под импровизированную систему охлаждения и продумываем способ крепления радиатора к SSD — как временное решение можно использовать денежные резинки или стяжки.


Наша «колхозная» система охлаждения несовершенна — теплосъемная подошва имеет ограниченную площадь и не накрывает собой все элементы накопителя. Поэтому придется выбирать самое горячее место и лепить этого монстра ближе к эпицентру нагрева.

Для этого взглянем на работающий диск через тепловизор. Объект найден — самым горячим оказался контроллер.


Позиционируем кулер в соответствии с тепловой картой — то есть, в районе контроллера. Перед нанесением термоинтерфейса не забываем обезжирить соприкасающиеся поверхности:


Радиатор установлен, накопитель на своем месте — пора тестов и сравнений.

Даже видеокарта поместилась.

Тестируем

Для честного сравнения будем использовать аналогичный набор тестов, а также вручную отключим вентиляторы видеокарты, которые «дышат» прямо над радиатором SSD. Включаем систему, пользуемся 10–15 минут и проверяем температуру накопителя:


Микросхемы памяти остановились на 36 °C, а контроллер нагрелся до 39 °C. Подозрительно — ранее накопитель в аналогичных условиях работал при 55 °C. Продолжим — включим тест чтения AIDA64 на десять минут:


41/45 °C — не так уж и горячо. В прошлый раз здесь было 58/76 °C. Минус 30 °C с контроллера и почти 20 с микросхем — аномалия? Пока без комментариев. Забросим на диск 100 ГБ мелкими файлами:


Снова аномалия — 45/46 °C. До установки радиатора задание на запись разогрело NAND до 62 °C, а контроллер — до 77 °C. Наверно, SSD просто не успел хорошо прогреться — сейчас бенчмарк DiskMark покажет настоящие цифры:


49/49 °C против 74/98 °C — импровизированная система охлаждения, которая накрывает подошвой только часть накопителя, позволила скинуть 50 °C с контроллера. При этом накопитель прочно держится на 49 °C и ни разу не нагрелся выше этого значения.

Для удобства восприятия информации перенесем результаты в таблицу:


В результате тестирования самодельной системы охлаждения мы пришли к выводу, что кулер, выполненный «на коленке», способен значительно снизить нагрев твердотельного накопителя. Разумеется, вместо топорного кустарного кулера можно использвоать готовый заводской радиатор, который продается в магазине.

Другие способы снизить нагрев

В некоторых сценариях охладить твердотельный накопитель с помощью радиаторов невозможно — этому может препятствовать характерное расположение устройства, выступающие рядом с SSD элементы или банальная нехватка места в корпусе. В таком случае остается плюнуть на нагрев и оставить все, как есть или оптимизировать ситуацию на свой лад.

  • Распределить нагрузку. Не загружать накопитель работой 24/7, оставлять время на отдых. Не устанавливать на SSD программы, которые усиленно используют ресурсы — майнеры, видеоконверторы, архиваторы, базы данных.
  • Выбрать «холодный» разъем. Если на материнской плате распаяно несколько разъемов, то самый нагруженный накопитель желательно установить в тот разъем, рядом с которым нет дополнительных источников нагрева. Например, подальше от радиатора чипсета или видеокарты.
  • Снизить напряжение. Если устройство приходится устанавливать рядом с горячими компонентами, то можно снизить нагрев комплектующих с помощью андервольтинга.
  • Настроить вентиляторы. Некоторые пользователи забывают настроить скорость вращения вентиляторов в системе. Правильная настройка впуска и выпуска поможет скинуть несколько градусов не только с накопителя, но и с других комплектующих.
  • Установить фильтры. Пыль — одна из причин перегрева техники. Чтобы исключить попадание «войлока» в систему охлаждения и на поверхность компонентов, можно приобрести корпус с защитой от пыли или установить фильтры самостоятельно.

Горячо или кажется?

В последнее время нагрев комплектующих больше всего беспокоит даже владельцев маломощных сборок. В некоторой степени гонка за десятыми долями градусов превратилась в моду и даже зависимость. Частично в этом замешаны и сами производители — системы охлаждения становятся частью дизайна с подсветкой и уникальными стилями.

В большинстве случаев нагрев — это субъективное ощущение. Среднестатистический пользователь измеряет температуру компонентов наощупь, поэтому даже 45 °C могут показаться опасным нагревом. На деле, кремний, из которого изготовлены микросхемы, выдерживает нагрев до 200 °C. Конечно, это не значит, что процессор или графический чип будут безопасно работать с таким нагревом — но «страшные» для пальцев 80 °C оказываются вполне прохладными для настольного процессора, а мобильные чипы, и вовсе, живут по десятку лет, нагреваясь до 90 °C в нагрузке.


В этой статье мы выясним как и в какой степени SSD влияет на работу в реальных условиях использования.

Если вы давно хотели увидеть реальную производительность SSD в сравнении с привычными HDD, или же, если вы задумывались перенести систему на SSD, но не знали стоит ли это того, эта статья для вас!

Смысла тестировать диск в идеальных условиях мало, т.к. в жизни такого не бывает, поэтому я намерено рассматриваю тесты на примерах из реальной жизни, когда диск заполнен тысячами файлов, играми, файлами кэша браузеров и программ обработки видео и тд.

В общем, запасайтесь попкорном, садитесь поудобнее, и давайте уже перейдем к делу.

В чем проблема HDD дисков?

Проблема в том, что обычные HDD диски, которые мы до сих пор используем в компьютерах, не изменялись c 1990x wiki годов, когда впервые было решено ref делать HDD, работающие на 4300 rpm и 5400 rpm (оборотов в минуту)

Шел 2016 год — 20-25 лет спустя, мы, все еще, имеем те же самые 5400 rpm диски, работающие на скорости 60-90 МБ/с, но потребности пользователей уже давно изменились, теперь мы работаем с огромными проектами и большим количеством файлов в многозадачном режиме, требующие большой пропускной способности и отзывчивости диска, даже если, на заднем плане уже выполняют работу несколько других программ.
Начиная с 2001, некоторые производители начали выпускать диски пользовательского сегмента работающие на скорости 7200 оборотов в минуту, вместо 5400, но это ничего не изменило, прирост с 90 МБ/с до 120 МБ/с (33% — 5400-7200) по-прежнему не дает значимого эффекта.

Тесты | синтетические (потенциальные скорости работы диска)

  • HDD медленее в 94 раза (0.68 МБ/с против 63.6 МБ/с), по сравнению с SSD
  • HDD медленее в 53 раза (0.36 МБ/с против 19 МБ/с), по сравнению с SSD
  • HDD медленее в 178 раз (0.78 МБ/с против 139 МБ/с), по сравнению с SSD
  • HDD медленее в 86 раз (0.64 МБ/с против 55 МБ/с), по сравнению с SSD

Почему нас интересует, в основном, результат работы диска с мелкими блоками данных?
Дело в том, что открываете ли вы браузер, или же, импортируете проект, состоящий из сотен файлов, в программу, вроде Unreal Engine, не важно, что вы делаете, во всех подобных случаях, компьютер обрабатывает огромное количество мелких блоков данных (преимущественно считывает, поэтому скорость чтения обычно важнее, чем скорость записи)
Секвенциальная скорость («Seq Q32T1» и «Seq» на скриншоте выше) важна при записи / чтении файлов больших размеров (МБ или ГБ), что происходит реже, и не влияет на отзывчивость системы, в такой же степени, как работа с тысячами мелких блоков.

Почему же Apple компьютеры намного отзывчивее обычных ПК и «никогда» не тормозят?

В мире компьютеров сложилось мнение, что вся беда в операционной системе — Mac OSX на компьютерах Apple «оптимизирована», «никогда не тормозит», «нету синих экранов сбоя системы»

Может быть, это потому, что:
Компьютеры Apple (не считая самые дешевые комплектации): имеют все те же компоненты, кроме одного — диск m.2 SSD / проприетарные аналоги:
— Работающий на скорости (700 — 1100 МБ/с) через NVMe, имея возможность обрабатывать 65000 потоков ожидания, выполняющие по 65000 команд каждый
— Имеющий системы предотвращения потери данных, системы защиты от перегрева, способствующие предотвращению появления ошибок и зависаний при работе с несколькими ГБ данных состоящих в основном из мелких блоков, в многозадачном режиме
— и тд. и тп.
В то время как, опыт работы с Windows пк формировался при работе с компьютерами, имеющими:
— Обычный HDD 5400 rpm (шумящий и вибрирующий при работе, из-за наличия движущихся частей) имеющий возможность обрабатывать 1 поток ожидания, выполняющий 32 команды
— Работающий на скорости (60 — 110 МБ/с)
— Постоянно заставляя всех пользователей наблюдать состояние — «Не отвечает», наблюдать за издевательски медленной реакцией при работе в многозадачном режиме, не только с мелкими, но и с относительно крупным блоками данных.

Оставив все остальные компоненты компьютера на местах, поменяте диски местами, поставив 5400 rpm HDD на Apple, а m.2 SSD на Windows ПК, и окажется, что диск действительно самая важная (для быстродействия и отзывчивости) часть компьютера, т.к. обычный HDD диск очень медленнен, и заставляет ждать всю систему пока он закончит обрабатывать все очереди задач от программ и ОС, что сильно замедляется при работе в многозадачном режиме, имея, к тому же, приложения, делающие работу на заднем плане, которых может быть довольно много — от авто-обновления зависимостей проектов, до задач, поставленных на обработку самим пользователем.

Теперь, перейдем к тестам!

Тестовая конфигурация | Тесты реальных условий использования

Все результаты тестов получены на ноутбуке, имеющем данные компоненты:
OS: Windows 10
CPU: i7 3610qm
RAM: 12 ГБ
Подопытные:
HDD: Toshiba MQ01ABF050 | 465 ГБ (SATA)
SSD: Kingston HyperX Fury | 120 ГБ (SATA)

| Обновление чистой Windows 7 на Windows 10

9 минут — Быстрее на 188% (в 2.9 раза)
HDD Общее время:

Первые 4 строки — процесс обновления Windows 10
Последняя строка — тест, чтобы убедиться в том, что процесс обновления закончен, и ПК готов к работе.


| Время запуска Windows 10

SSD Время запуска Windows и программ в трее: 0:16 | Общее время: 0:23 — Быстрее на 217% (в 3.17 раза)
HDD Время запуска Windows и программ в трее: 0:48 | Общее время: 1:13
PDF открывался сразу же после появления рабочего стола
Отсчет заканчивался после загрузки программ в трее и полного открытия PDF файла


| Время запуска приложений

SSD Время запуска приложений | Общее время: 1:44 — Быстрее на 274% (в 3.74 раза)
HDD Время запуска приложений | Общее время: 6:29


| Время выполнения задач в приложениях

SSD Выполнение задач в приложениях | Общее время: 2:29 — Быстрее на 175% (в 2.75 раза)
HDD Выполнение задач в приложениях | Общее время: 6:50


Результаты

Судя по тестам и ощущениям, наш подопытный HyperX Fury SSD обошел HDD по всем параметрам в 100% случаев, решив головную боль, во всех сферах, требующих высокой отзывчивости системы, таких как, создание игр, обработки видео / аудио, симуляции частиц, постобработка, работа с сотнями ГБ данных или тысячами OpenEXR.

После перехода на SSD диск, больше не заметно никаких проблем с подвисаниями, касается ли это проблемы скорости обработки в AE, из-за того, что ваш sublime text загружает апдейты зависимостей, используя 100% диска в это время, или же, остановки работы из-за того, что у вас на заднем плане просчитывается BVH перед рендером в blender, или же, пока Maya, в течении нескольких часов, создает alembic файлы кэша, не давая зайти даже в интернет без зависания.
Не заметно больше и никаких ожиданий пока отвиснет Audacity, после уменьшения звуковой дорожки, каждые 2 минуты и никаких ожиданий пока прогрузятся все HDR или EXR в папке каждый раз по 1-3 минуты (!). Больше не приходится останавливать работу одного приложения, для того, чтобы ускорить отзывчивость других, т.к. оно загружало диск под 100%. Не приходится и ждать по несколько секунд после каждого действия в Unreal Engine, при любом аспекте работы, от импорта фалов, до применения и тестирования ассетов.
Не говоря уже о скорости перезагрузки системы после обновлений, которая происходит за секунды, вместо минут, и открытии приложений, что происходит теперь «относительно» мгновенно.

И тд и тп., если вы со всем этим сталкивались, вы меня хорошо понимаете и смысла продолжать писать разрешенные проблемы, не имеет, если же вы не понимаете о чем речь, скорее всего вам станет скучно читать еще пару сотен проблем, разрешенных с помощью SSD, в любом случае.

По личному опыту, я заметил, что пока работаешь на компьютере с HDD, не замечаешь на сколько не продуктивна и раздражительна работа из-за постоянных ожиданий, и статуса «не отвечает», особенно если ваша работа за компьютером не ограничивается лазанием по интернету.


В серии статей SSD 101 мы рассмотрели SSD со всех сторон. А теперь проверим главный аргумент фанатов SSD — что эти устройства выходят из строя гораздо реже, чем старые добрые HDD. Они обычно объясняют, что в SSD нет движущихся частей, и предъявляют документы от производителей с мутными расчётами среднего времени до отказа (MTBF). Всё это хорошо для рекламы, но мы предпочитаем реальную статистику частоты отказов.

В своих ежеквартальных отчётах Drive Stats мы определяем отказ диска или как реактивный (диск не работает), или как проактивный (мы считаем, что отказ неизбежен). В случае HDD мы определяем проактивный отказ по специфической статистике SMART, которую сообщает сам диск и которую мы отслеживаем.

SMART, или S.M.A.R.T., расшифровывается как Self-monitoring, Analysis, and Reporting Technology и представляет собой систему мониторинга, встроенную в HDD и SDD. Основная функция — сообщать различные показатели, связанные с надёжностью диска, для предсказания отказов. Backblaze каждый день записывает атрибуты SMART всех работающих дисков.

То же самое для SSD. Различные модели сообщают разные показатели SMART, но некоторые совпадают. На сегодняшний день для SSD мы регистрируем 31 атрибут SMART-статистики. 25 из них перечислены ниже.

Оставшиеся шесть (16, 17, 168, 170, 218 и 245) мы не можем найти. Пожалуйста, напишите в комментариях, если у вас есть информация по отсутствующим атрибутам.

Мы только начинаем использовать статистику SMART для предупреждения отказов SSD. Многие атрибуты зависят от модели диска или производителя. Кроме того, у нас было пока мало отказов SSD, как вы увидите ниже. Это ограничивает количество данных для исследования. Так что в реальности мы пока не смогли предсказать ни одного отказа.

В серверах хранения данных в качестве загрузочных дисков работают и SSD, и HDD. В нашем случае называть их загрузочными неверно, поскольку они также хранят различные логи и т. д. Другими словами, регулярно читают, записывают и удаляют файлы, а не только выполняют загрузку сервера.

В первых серверах хранения данных мы использовали только HDD, поскольку они были дешёвыми и выполняли свою функцию. Так продолжалось до середины 2018 года, когда мы смогли купить SSD на 200 ГБ по цене около $50, что в нашем понимании было верхней ценовой границей для загрузочных дисков серверов хранения данных. Это был эксперимент, но всё получилось настолько хорошо, что с середины 2018 года мы перешли на использование только SSD и заменяли вышедшие из строя загрузочные HDD на SSD.

Итак, у нас две группы дисков — SSD и HDD — которые выполняют одинаковые функции, имеют одинаковую рабочую нагрузку и работают в одинаковых условиях в течение долгого времени. Естественно, мы решили сравнить частоту отказов загрузочных дисков SSD и HDD. Ниже приведены показатели отказов за весь срок службы для каждой группы по состоянию на II кв. 2021 года.

Годовая частота сбоев (AFR)

Количество дисков Средний возраст (мес.) Дней работы Всего сбоев AFR
SSD 1666 14,2 591 501 17 1,05%
HDD 1607 52,4 3 523 610 619 6,41%

Загрузочные диски. Отчётный период: апрель 2013 — июнь 2021

Всё понятно, SSD победили. Можно положить HDD на полку или на пол как ограничитель для двери. Но погодите, давайте сначала учтём несколько моментов, которые не вошли в таблицу.

  • Средний возраст SSD составляет 14,2 месяца, а средний возраст HDD — 52,4 месяца.
  • Возраст самых старых SSD — около 33 месяцев, а самых новых HDD — 27 месяцев.

Другим фактором является количество дней, сколько диски каждой группы проработали без сбоев. Большой разброс в количестве дней работы приводит к значительной разнице в доверительных интервалах двух групп, поскольку существенно различается количество наблюдений (т.е. дней работы).

Чтобы провести более точное сравнение, попробуем привести к общему знаменателю средний возраст и количество дней работы для SSD и HDD. Для этого можем перенестись назад во времени, когда группа HDD соответствовала группе SSD из II кв. 2021 года по среднему возрасту и количеству дней работы. Это позволит сравнить группы в один и тот же период жизненного цикла.

Взяв данные по HDD за IV кв. 2016 года, мы смогли сделать следующее сравнение.

Годовая частота сбоев (AFR)

Количество дисков Средний возраст (мес.) Дней работы Всего сбоев AFR
SSD на II кв. 2021 1666 14,2 591 501 17 1,05%
HDD на IV кв. 2016 1297 14,3 659 526 25 1,38%

Загрузочные диски. Отчётный период: апрель 2013 — указанный период

Неожиданно разница в AFR оказалась не такой уж большой. На самом деле статистика каждой группы находится в пределах 95%-ного доверительного интервала другой группы. Окно довольно широкое (плюс-минус 0,5%) из-за относительно небольшого количества дней работы накопителей.

Что же в итоге? Мы получили некоторые свидетельства, что в начале работы (в среднем до 14 месяцев в данном случае) SSD выходят из строя реже, но не намного. Но вы же покупаете диск не на 14 месяцев, а на годы. Что мы знаем об этом?

У нас есть данные по загрузочным HDD с 2013 года и по загрузочным SSD с 2018 года. На диаграмме показан Lifetime AFR каждого типа дисков до II кв. 2021 года.


Как видно, с 2018 года частота сбоев загрузочных HDD стала расти. Тенденция сохранялась в 2019 и 2020 годах, а в 2021 году (пока что) остановилась. Очевидно, что с увеличением возраста HDD увеличивается и частота отказов.

Интересно сравнить кривые в первых четырёх точках. Для флота HDD пятый год (2018) знаменовал резкий рост частоты отказов. Ждёт ли та же участь SSD в их пятый год? Хотя мы можем ожидать некоторого увеличения AFR по мере старения SSD, но будет ли оно таким же резким, как в случае с HDD?

Что же нам покупать: SSD или HDD? Учитывая то, что мы знаем на сегодняшний день, вряд ли можно использовать AFR как фактор при принятии решения. С учётом возраста и количества дней работы оба типа накопителей схожи, а разница недостаточна, чтобы оправдать дополнительные затраты на покупку SSD вместо HDD. На данном этапе лучше принимать решение на основе других факторов: стоимость, требуемая скорость, энергопотребление, требования к форм-фактору и так далее.

В ближайшие пару лет мы получим более полное представление об AFR для SSD. И тогда сможем решить, насколько велика разница в частоте отказов SSD и HDD. А сейчас мы не видим, чтобы она была значительной.

Читайте также: