Uart1 на материнской плате что это

Обновлено: 06.07.2024

Универсальный асинхронный приёмопередатчик (Univsersal Asynchronos Reciever-Transmitter) - это физическое устройство приёма и передачи данных по двум проводам. Оно позволяет двум устройствам обмениваться данными на различных скоростях. В спецификацию UART не входят аналоговые уровни на которых ведётся общение между устройствами, UART это протокол передачи единиц и нулей, электрическую спецификацию на себя берут другие стандарты, такие как TTL (transistor-transistor logic — транзисторно-транзисторная логика), RS-232, RS-422, RS-485 и другие (RS [англ.recommended standard] — рекомендованный стандарт). На данный момент в микроконтроллерах используется в основном TTL (или точнее CMOS) UART для соединения не более двух устройств. В наших примерах мы часто называем его последовательным портом.

Подключение:

У каждого устройства, поддерживающего UART обычно обозначены два вывода: RX и TX. TX — означает transmit (передаю), RX — receive (принимаю). Отсюда становится понятно что RX одного устройства нужно подключать к TX другого. Если Вы подключите RX одного устройства к RX другого, то оба устройства будут слушать друг друга, вы соединили их входы. Если соединить TX и TX - это уже более опасно, это выходы низкого сопротивления устройств и если на одном будет логическая единица, а на втором ноль — по проводу пойдёт ток короткого замыкания (это зависит от конкретной программной или аппаратной реализации). Хотя в современных чипах от этого есть защита, на всякий случай, не стоит на неё ориентироваться. Так же необходимо объединить референсные уровни двух устройств (GND-GND), если не подразумевается гальваническая развязка.


Пример соединения двух UNO:


UART на Arduino:

На Arduino и Arduino-совместимых платах аппаратный UART обозначается символами RX и TX рядом с соответствующими выводами. На Arduino UNO/Piranha UNO это 0 и 1 цифровые выводы:

Arduino UNO/Piranha UNO


В скетче инициализируется функцией begin() в коде функции setup():

Пример:

Piranha ULTRA

На Piranha ULTRA присутствуют два аппаратных UART. Один на тех же выводах, что и UNO, второй на 8 (RX) и 9 (TX) выводах:


В Arduino IDE второй аппаратный UART называется Serial1 (Сериал один), и инициализируется так же как и первый:

Arduino MEGA


На заметку: На многих Arduino и Arduino-совместимых платах UART0 используется для загрузки скетчей, так что если Ваш скетч не загружается, проверьте эти выводы. Во время загрузки скетча к ним ничего не должно быть подключено.

Отладка проектов при помощи UART

Пример:

Программный UART на Arduino

Помимо аппаратного UART в Arduino можно использовать программный. Программный порт хорошо подходит для простых проектов, не критичных к времени работы кода или для отладки проектов, позволяя не отключать модули использующие UART во время загрузки сетчей. При его использовании нужно лишь помнить что никакой другой код не может выполняться пока программа занимается считыванием данных из него и передача может осуществляться только в полудуплексном или симплексном режимах. Так же на программный RX можно назначать только те выводы, которые поддерживают прерывание по смене уровней. На UNO, например, это все цифровые выводы, кроме 13-го. Прежде чем собирать свой проект, проконсультируйтесь с инструкцией к конкретной плате.

Пример использования программного порта:

Далее к программному порту нужно обращаться через объект mySerial . Например: mySerial.write(data); .

UART на Raspberry Pi:

На Raspberry Pi UART находится на выводах колодки 8 - TX (GPIO14) и 10 - RX (GPIO15)


Перед работой с последовательным портом необходимо его включить. Сделать это можно из эмулятора терминала командой sudo raspi-config -> Interfacing options -> Serial -> No -> Yes -> OK -> Finish или из графической среды в главном меню -> Параметры -> Raspberry Pi Configuration -> Interfaces -> Serial Port

Пример работы с последовательным портом на Python:

Данный пример выводит строку "iArduino.ru" в последовательный порт Raspberry и ждёт данных из последовательного порта.

Подробнее о UART:

Параметры

При обозначении параметров UART принято использовать короткую запись ЦИФРА-БУКВА-ЦИФРА

  • ЦИФРА — количество бит в кадре
    • от 5 до 9 бит. Обычно 8.
    • N - None (Отсутствует) без бита чётности
    • E - Even (Чётный). Проверка данных на чётность. Перед стоп-битом в кадр добавляется бит: 0 если в кадре было нечётное количество единиц, 1 — если чётное.
    • O - Odd (Нечётный). Проверка данных на нечётность. Перед стоп-битом в кадр добавляется бит: 1 если в кадре было нечётное количество единиц, 0 — если чётное.
    • 1, 1.5, 2. Продолжительность стоп-бита (1, 1.5 или 2 битовых интервала)

    Кадрирование данных

    При приёме-передаче данных каждое устройство ориентируется на своё внутреннее тактирование. Обычно это тактирование от 8 до 16 раз быстрее скорости передачи данных и обычно отсчитывается от стартового бита. Именно поэтому необходимо чтобы оба устройства были настроены на одну и ту же скорость передачи.

    Так же при передаче данных присутствуют синхронизирующие биты, именуемые старт-бит и стоп-бит. Старт-бит сигнализирует о начале передачи данных и стоп-бит, соответственно об окончании.

    Рассмотрим кадр данных:

    При разговорах о серийный протоколах принято использовать такие слова как кадр и пакет. Кадр - интервал от старт-бита до стоп-бита. Пакет - количество кадров полезных данных. При этом не стоит путать кадр и байт: байт - это только сами данные, не включающие в себя синхронизирующие и проверочные биты.

    Старт-бит:

    При отсутствии передачи линия удерживается в состоянии логической единицы (в случае TTL Arduino это 5 вольт или Vcc). Как только передающее устройство притягивает линию к 0 (GND или 0 вольт в случае Arduino), это сигнализирует принимающему устройству о том что сейчас будет передача данных.

    Данные:

    При появлении старт-бита на линии принимающее устройство начинает отсчитывать время в соответствии с установленной скоростью и считывать состояния линии через определённые промежутки времени в соответствии с установленным количеством бит данных, после этого.

    Стоп-бит:

    По завершении передачи данных принимающее устройство ожидает стоп-бит, который должен быть на уровне логической единицы. Если по завершении кадра удерживается логический ноль, значит данные неверны. Если логический ноль удерживается время, превышающее длину кадра в 1,5 раза, такое состояние именуется break (разрыв линии, исторически пошло от устройств, использующих токовую петлю для передачи данных). Некоторые передатчики вызывают это состояния специально перед посылкой пакета данных. Некоторые приёмники считают такое состояние за неправильно выставленную скорость и сбрасывают свои настройки на установки "по умолчанию".

    Скорость передачи данных

    Скорость изменения логических уровней (импульсов) на линии принято измерять в бодах. Единица измерения названа так в честь французского изобретателя Жана Мориса Эмиля Бодо.

    Скорость при использовании UART может быть любой, единственное требование — скорости передающего и принимающего должны быть одинаковы. Стандартная скорость UART принята за 9600 бод. Arduino без проблем и лишних настроек может принимать и передавать данные на скоростях до 115200 бод.

    Методы связи

    UART позволяет одновременно передавать и принимать данные, однако не всегда это возможно или нужно. Например, если Вам нужно только получать не критические данные (которые можно проверить следующим пакетом, например расстояние, посылаемое лидаром каждые несколько сотен миллисекунд) от цифрового датчика или любого другого устройства и не нужно ничего передавать, такой метод называется симплексным. Всего различают три метода связи:

    Употребляя в своих статьях названия и определения: последовательный порт, serial port, communications port, COM-порт, интерфейс стандарта RS-232 я не был до конца уверен, что употребляю их в правильном контексте. Давайте разберёмся что, зачем, как и почему.

    Прежде чем перейти к последовательному порту, чуть-чуть общей теории.

    Классификация протоколов

    А какие протоколы бывают?

    По порядку передачи данных протоколы (шины данных) делятся на:

    О последовательных шинах речь пойдет ниже, но пару слов нужно сказать о параллельном соединении

    Параллельный протокол передачи данных (параллельная шина данных)

    Передача нескольких сигналов с данными одновременно по нескольким параллельным каналам.

    В последнее время предпочтение отдается последовательному соединению вместо параллельного, так как экономически более выгодно организовать передачу данных по одному (двум) проводам чем по нескольким параллельным, это касается и электрической разводки платы и внутренней разводки чипа, и соединение периферийных устройств. Но параллельное соединение из физического мира ушло в "мир эфира" в радиосвязь, вот там очень выгодно устанавливать и осуществлять параллельную передачу данных.

    Примеры чаще всего это устаревшие шины такие как: принтерный порт (IEEE 1284/Centronics), ISA, ATA (IDE), SCSI , PCI, FSB (Front Side Bus)

    По времени передачи и приему информации связь делится:

    • Симплексная связь - только передача или прием данных.
    • Полудуплексная связь прием и передача разнесены во времени. Сначала прием, а затем передача или наоборот.
    • Дуплекс - одновременно прием и передача.

    Перейдем сразу к последовательному протоколу, он делится на:

    Асинхронный протокол - данные передаются без внешнего тактирующего устройства. Данные можно передавать по двум проводам прием/передача. Но нужны дополнительные усилия для синхронизации (пример UART, RS-232, 1-Wire)

    Синхронный протокол - данные синхронизированы с тактирующим устройством (примеры SPI и I2C)

    И у меня вопрос к читателям, а протокол USB какой синхронный или асинхронный?

    UART

    Universal Asynchronous Receiver-Transmitter (UART), Универсальный асинхронный приёмопередатчик (УАПП)

    В 60-70годах в нашей стране не принято пользоваться англоязычными терминами поэтому UART получает свое, русское название - УАПП (Универсальный асинхронный приёмопередатчик) как и все остальные названия, например НГМД и так далее. Хорошее время было, все кратко и понятно, например скажешь УВК-1 и сразу всем все понятно, разговор идет о устройстве ввода координатном или о мышке.

    Что такое UART

    UART это физическая реализация интерфейса в виде логической схемы (микросхемы) которая обеспечивает прием и передачу информация в последовательном виде, в пределах одного чипа или одного устройства, на короткие дистанции. Он непригоден для приема, передачи данных на "длинные дистанции". Причем понятие длинные и короткие взяты в кавычки и это не зря. Так как все в мире относительно и в данном случае то же, но попробуем разобраться, что за такие "длинные и короткие дистанции". Когда микроконтроллеры и другие низкоуровневые ИС взаимодействуют между собой по последовательному протоколу, они делают это на уровне TTL (транзисторно-транзисторная логика). Последовательные сигналы TTL живут между диапазоном напряжения питания микроконтроллера - обычно от 0 до 5.0 вольт (так было раньше, это уже классика) ну или до 3,3 вольт (так сейчас или еще меньше до 1,8 и 1,6 вольт КМОП) Сигнал такого диапазона да еще и не защищенный передать далеко не получится иногда проблемы возникают тут сразу же, при передачи от одной микросхемы до другой, вспомним микросхемы серии К(К155, К1533, К153) из недостатков которых: высокие требования к напряжению питания, отклонение не более 0,5 В, низкая помехоустойчивость, высокие требование в правильной разводки шины земли. Так вот передать далеко эти сигналы не получится, а что делать? Самое простое тупо усилить - поднять напряжение питания так родился интерфейс RS-232

    Интерфейс RS-232

    (Recommended Standard 232, рекомендованный стандарт RS-232, EIA232)

    Это стандарт физического уровня, надстройка над UART для приема передачи данных другим устройствам, т. е. на "длинные дистанции

    В далекие годы 60 годы прошлого века (1962 год) особо не стали заворачивается с обработками сигнала, да и мощностей подходящих не было, а потом, видимо, вспомнили телеграф.

    Первый трансатлантический кабель обладал очень низкой скоростью передачи 103 слова за 16 часов, а все из за того, что на огромной дистанции (чудовищная ёмкость и сопротивление длиннющего кабеля) сигналы просто "размазывало" по длинному кабелю. Для повышения скорости увеличивали напряжение и в конце концов дошли до 2000 вольт после чего кабель благополучно сгорел.

    Вот и тут просто взяли да повысили напряжение логического сигнала, но на самом деле не совсем просто, а вот так, см. инже

    Электрический принцип работы RS-232

    Логический нуль RS-232 лежит в пределе от +3 до +12 вольт, а единица от -3 до -12, соответственно. Между -3 и +3 вольт зона ничего, не нуля и не единицы, зона неопределённости. Т. е. разработчики стандарта инвертировали сигнал, сделали отрицательное напряжение для единицы и повысили и понизили напряжение до -12, +12вольт (на самом деле до -15, +15 вольт, а иногда и до 25 вольт) Пишут даже, что в блоке питания компьютера именно поэтому и появилась -12 вольт. Хорошо же они поработали над стандартом для которого пришлось модифицировать и блок питания, сейчас бы такая фишка не прошла, хотя.

    Максимальная длинна кабеля по стандарту 20 метров, но нормально прием идет до 15 метров на скорости 19200 бод, но можно передать и на 900 метров снижая скорость (помните трансатлантический кабель) до 2400бод. А вообще максимальная скорость передачи составляет 115 200 бод

    Это единица измерения скорости передачи символов (символьной скорости) или скорости модуляции в символах в секунду или импульсах в секунду.

    С этими БОДами сплошная путаница, обратите внимание на определение, сколько ИЛИ, давайте разбираться.

    Символьная скорость

    Сначала БОД придумали для того чтобы определить сколько символов, букв можно передать за секунду по телетайпу, а кодировка тогда была 5 битная. Кодировка двоичная, импульс - единица, нет импульса - нолик. Все логично и понятно.

    Импульсах в секунду

    Потом по линиям связи стали общаться не только люди, но и машины и передавать не только символы - буквы, но и служебные биты например синхронизации, к чему их отнести к какой букве? А канал то они то же занимают. И вот тут и началась путаница, передавался не только символ, но и служебная информация. Как считать?

    Квадратурная амплитудная модуляция (КАМд)

    Но потом все еще больше запуталось, потому как в одном импульсе с помощью, например квадратурной амплитудной модуляции (КАМд), можно зашифровать не один бит, а например до 16 бит.

    В общем все в конце концов вообще перепуталось!

    Иногда в бодах выражают полную ёмкость канала.

    Полная ёмкость канала = служебная информация в бит/c + эффективная информация в бит/c.

    Преобразование UART в RS-232

    Самый известный преобразователь интерфейса – это микросхема, разработанная фирмой MAXIM, которая и получила от нее часть своего названия (MAX 232). Эта микросхема из 5 вольт генерирует отрицательное напряжение, чтобы сопрягать 5-вольтовый UART с RS-232.

    UART (Universal Asynchronous Transmitter Receiver) это наиболее распространенный протокол, используемый для полнодуплексной последовательной связи. Устройство отправляет и получает данные из одной системы в другую. В этом мануале мы подробно изучим основы связи и работу протокола UART, подробное описание интерфейса и распиновку разъёмов..


    Что такое UART

    UART означает универсальный асинхронный приемник-передатчик. Это периферийное оборудование, которое находится внутри микроконтроллера. Функция UART заключается в преобразовании входящих и исходящих данных в последовательный двоичный поток. Восьмибитные последовательные данные, полученные от периферийного устройства, преобразуются в параллельную форму с использованием последовательного преобразования в параллельное, а параллельные данные, полученные от ЦП, преобразуются с помощью преобразования из последовательного в параллельный. Эти данные представлены в модулирующей форме и передаются с определенной скоростью передачи.

    Почему используют UART

    Для быстрой связи используются такие протоколы, как SPI (последовательный периферийный интерфейс) и USB (универсальная последовательная шина). Но когда высокоскоростная передача данных не требуется, применяют протокол UART. Это дешевое устройство связи с одним передатчиком и приемником. Тут требуется лишь один провод для передачи данных и один для приема. О конвертере USB-ART прочитайте по ссылке.


    Его можно подключить к персональному компьютеру с помощью преобразователя RS232-TTL или USB-TTL. Сходство между RS232 и UART заключается в том, что им обоим не нужен таймер для передачи и приема данных. Кадр UART состоит из 1 стартового бита, 1 или 2 стоповых битов и бита четности для последовательной передачи данных.

    Блок-схема UART

    UART состоит из следующих основных компонентов: передатчик и приемник. Передатчик состоит из регистра удержания передачи, регистра сдвига передачи и логики управления. Точно так же приемник состоит из регистра удержания приема, регистра сдвига приемника и логики управления. Обычно и передатчик, и приемник снабжены генератором скорости передачи данных.


    Генератор скорости передачи данных формирует скорость, с которой передатчик и приемник должны отправлять и получать данные. Регистр удержания передачи содержит передаваемый байт данных. Регистр сдвига передачи и регистр сдвига приемника сдвигают биты влево или вправо, пока байт данных не будет отправлен или получен.

    В дополнение к этому, предусмотрена логика управления чтением или записью, указывающая когда читать и записывать. Генератор скорости передачи данных формирует скорости в диапазоне от 110 бит / с до 230400. В большинстве случаев микроконтроллеры предлагают более высокие скорости передачи, такие как 115200 и 57600 бит / с, но такие устройства как GPS и GSM, используют более низкую скорость в 4800 и 9600 бод.

    Как работает UART

    Передатчик и приемник используют стартовый бит, стоповый бит и параметры синхронизации для взаимодействия друг с другом. Исходные данные находятся в параллельной форме. Например есть 4-х битные данные, и чтобы преобразовать их в последовательную форму нужен преобразователь из параллельного в последовательный. Обычно для проектирования преобразователей используются D-триггеры.


    D-триггер, также известный как триггер данных, сдвигает один бит со стороны входа на сторону выхода только тогда, когда таймер изменяет переход из высокого состояния в низкое или из низкого состояния в высокое. Точно так же, если надо передать 4 бита данных, понадобится 4 триггера.

    Теперь спроектируем преобразователь из параллельного в последовательный и из последовательного в параллельный.

    Параллельное преобразование в последовательное


    Шаг 1: Возьмем 4 триггера. Количество триггеров эквивалентно количеству передаваемых битов. Точно так же поставим мультиплексоры перед каждым триггером, но исключая первый. Установлен мультиплексор для объединения данных и преобразования их в последовательные биты. Он имеет два входа: один параллельный бит данных, а другой - от предыдущего триггера.


    Шаг 2: Теперь загружаем данные за раз в D-триггеры. Он будет извлекать параллельные данные и перемещать последний бит последнего триггера - четвёртый, затем третий бит, второй и, наконец, первый бит. Теперь для преобразования параллельных данных в последовательную форму используется другой преобразователь.

    Последовательное преобразование в параллельное


    Шаг 1: Возьмем 4 триггера. Количество триггеров совпадает с количеством передаваемых битов.

    Шаг 2: Сначала отключим параллельную шину. Не включаем пока не будут загружены все биты. Сохраним данные на входе первого триггера. Теперь установим высокий уровень тактовой частоты, это сдвинет младший бит на вход второго триггера и выход первого. Точно так же сдвинем все биты один за другим, сделав тактовый импульс высоким. Преобразователь находится в состоянии удержания до тех пор, пока все биты не будут переданы на выход.

    Шаг 3: Теперь каждый триггер содержит один бит последовательных данных. Пока все биты передаются на выход триггера, активируем шину. Это заставит конвертер отправлять все биты за раз.


    Формат протокола UART

    Начинается связь со стартовым битом «0». Стартовый бит инициирует передачу последовательных данных, а стоповый бит завершает транзакцию данных.


    Он также имеет бит четности (четный или нечетный). Бит четности представлен как «0» (четное количество единиц), а бит нечетной четности представлен как «1» (нечетное количество).

    Передача данных

    Передача данных осуществляется по одной линии передачи (TxD). Здесь «0» рассматривается как пробел, а «1» - как состояние отметки.


    При передаче всегда сначала передается LSB (Least Significant Bit - младший значащий бит).

    Прием данных

    Для приема данных используется приёмная линия RxD.


    Пример интерфейса UART

    Этот пример демонстрирует взаимодействие ESP8266 UART с MAX232. Микросхема MAX232 питается от источника 5 В, и включает в себя генератор емкостного напряжения для управления напряжением 232 уровня. Она поставляется с двумя передатчиками, также называемыми драйвером (Tin, Tout) и приемниками (Rin и Rout).


    Здесь использовался ESP8266 (32-битный микроконтроллер) со встроенным UART. Связь может осуществляться с ESP8266 с использованием AT-команд через преобразователь уровня RS232 в TTL (MAX232). На схеме показано подключение ESP8266 к компьютеру.


    Запрашивая действительные AT-команды через ПК, микросхема Wi-Fi ответит подтверждением. Вот шаги для реализации последовательной связи с ПК.

    1. Подключить передатчик (TX) ESP8266 к приемнику (RX) преобразователя уровня RS232 в TTL (MAX232) и приемника ПК.
    2. Подключить приемник (RX) ESP8266 к TX ПК и RX преобразователя TTL.

    Команды ESP8266


    Далее показан ответ модуля ESP8266.


    UART и USART

    USART - это основная форма UART. Технически это не одно и то же, но определение для них одинаково. Это периферийные устройства микроконтроллера, которые преобразуют параллельные данные в последовательные биты и наоборот.

    UART USART
    Тайминги генерируются внутри микроконтроллера. Отправляющее устройство сгенерирует тайминг.
    Скорость передачи данных низкая. Скорость передачи данных выше из-за внешних таймингов.
    Автономный протокол Поддерживает несколько протоколов, таких как LIN, RS-485, IrDA, смарт-карта и т. д.
    Перед передачей необходимо знать скорость передачи. Нет необходимости знать скорость передачи заранее.
    Подходит для низкоскоростной связи Подходит для высокоскоростной связи.
    Сниженный энергетический след. Обеспечивает последовательную связь при высоком энергопотреблении

    Основное различие между UART и USART заключается в том, что UART поддерживает только асинхронную связь, тогда как USART поддерживает как синхронную, так и асинхронную. Вот сравнение между USART и UART:

    RS232 и UART

    Логические уровни представляют собой уровни рабочего напряжения, которые устройство может выдержать для работы в безопасной зоне. Вот уровни напряжения для RS232 и TTL:



    Логика TTL / CMOS

    UART работает по TTL логике.


    Первоначально последовательная линия находится в состоянии ожидания, обычно называемом статусом отметки (логическая 1). Теперь передача данных начинается со стартового бита (логический 0). Кроме того, по последовательной линии один за другим отправляются 8 бит данных, причем сначала младший бит LSB (Least significant bit - младший значащий бит). После завершения всей передачи идёт стоповый бит (логическая 1).

    Преимущества и недостатки UART

    • Преимущество UART в том, что протокол поддерживает полнодуплексную связь по двум проводам. Кроме того, для передачи данных не требуются внешний таймер. Он поддерживает проверку ошибок с помощью бита четности, а длину данных можно легко изменить.
    • Основным недостатком является то, что он не поддерживает конфигурацию с несколькими ведомыми или несколькими ведущими устройствами. И размер пакета данных ограничен 9 битами. UART не подходит для сложной последовательной связи при высоком энергопотреблении.


    Области применения протокола

    Последовательный порт отладки использует драйвер UART для печати данных, поступающих извне. Можем использовать этот протокол для отправки и получения команд на встроенные устройства и от них. Также выполняется связь в GPS, модеме GSM / GPRS, чипах Wi-Fi и других модулях работающих с UART. Используется в доступе к мэйнфрейму для подключения разных компьютеров.

    Форум по обсуждению материала UART ПРОТОКОЛ: ОПИСАНИЕ РАБОТЫ


    Как работает литий-ионный аккумулятор и чем он отличается по физико-химическим свойствам от других типов. Занимательная теория.


    Схема автоматического контроллера включения освещения в прихожей или во дворе. Основа: CD4001B и BT136-600D.


    Линейный светодиодный драйвер мощностью 3 Вт с кнопкой и резистором регулировки тока - схема на IS32LT3120.


    Инструкция новичкам как научиться паять паяльником - различные провода, платы, микросхемы и другие детали.

    UART - Схема последовательного интерфейса передачи данных

    В сегодняшней статье мы с вами разберемся с последовательным интерфейсом UART, узнаем его плюсы и минусы, а также научимся отлаживать программу с помощью Arduino IDE без применения программаторов. Вас заинтересовало? Тогда читайте дальше!

    Серьёзные среды разработки, типа IAR или ATMEL Studio, как правило, содержат в себе либо программный симулятор целевого микроконтроллера, либо имеют программные средства для работы с аппаратными отладчиками.

    Среда Arduino IDE не имеет ни того, ни другого, что значительно усложняет поиск ошибок в программе. Компилятор выявляет только синтаксические ошибки, наряду с которыми существуют еще и логические (написано-то правильно, только не то делает), не говоря уж о подсчёте различных коэффициентов… Программы не пишутся без ошибок!

    Существует множество методов отладки, но практически для всех необходимо физическое соединение с компьютером. Все платы Arduino (кроме Pro и Pro Mini) имеют «на борту» USB-разъём и специальную микросхему, которая преобразует интерфейс UART в USB. Так не будем же придумывать ничего лишнего и сделаем простейшую отладку с помощью интерфейса, который у нас уже есть!

    Монитор порта – не единственное средство для работы с ним, в сети можно найти множество программ-мониторов, которые позволяют не только принимать данные, но и стоить графики на их основе, записывать данные в таблицу и многое другое! Это значительно упростит отладку программы.

    Так как интерфейс UART выведен не только к преобразователю интерфейсов, его можно использовать и для связи между платами Arduino или, например, платой и датчиком, но это уже тема для другой статьи.

    UART интерфейс — описание

    Диаграмма работы интерфейса UART

    Каждый бит каждого байта передаётся в равный отведённый промежуток времени (фактически, тайм-слот). Стандартным размером данных в посылке является 8 байт, но помимо данных каждый пакет несёт и служебную информацию, а именно:

    • стартовый бит (Обязателен)
    • стоповый бит (Также обязателен, возможно использование 1, 1.5, 2 стоповых битов)
    • бит чётности (Необязателен. Бывает типов Odd, Even)

    Кратко параметры передаваемого сигнала записываются так:

    [кол-во бит данных] [тип чётности] [кол-во стоп-битов], то есть запись 8N1 характеризует сигнал с 8 битами данных, без бита чётности (N – Not) с 1 стоп-битом.

    Так как интерфейс асинхронный, то большую значимость имеет скорость передачи данных – и у приёмника, и у передатчика она должна быть одинаковой.

    Скорость измеряется в битах в секунду, или коротко – в бодах. Стандарт RS232 подразумевает скорости от 1200 до 115200 бод, хотя по факту существуют скорости и ниже, и выше, причём до десятков мегабод!

    Разумеется, точность везде относительна и скорость никогда не будет равняться 9600 бодам с точностью до единиц. Стандарт предусматривает возможную ошибку в скорости до 5% (не более 3% для уверенного приёма).

    Далее сведены основные сведения о сигнале:

    • в неактивном (IDLE) режиме обе линии данных подтянуты вверх
    • передачу начинает стартовый бит (логический ноль)
    • передачу заканчивает стоп-бит (логическая единица)
    • данные передаются в режиме LSB (младшим битом вперед)
    • для передачи байта требуется минимум 10 бит

    4800, 9600, 19200, 38400, 57600, 115200 бод.

    Скорость передачи (бод) Время передачи одного бита (мкс) Время передачи байта (мкс)
    4800 208 2083
    9600 104 1042
    19200 52 521
    38400 26 260
    57600 17 174
    115200 8,7 87

    UART может быть запущен как в полудуплексном (только приём или только передача) режиме, так и в полнодуплексном режиме, так как линии приёма и передачи разделены. Линия TXD отвечает за передачу, RXD – за приём, соответственно, линии от приёмника к передатчику перекрещиваются (TX-RX, RX-TX).

    Реализация UART в Arduino

    Все платы Arduino, построенные на основе оригинальных, имеют минимум один интерфейс UART, продвинутые же платы, типа Arduino Mega 2560 Или Arduino Due, имею сразу 4 аппаратных интерфейса! Они не загружают контроллер, так как они отделены от ядра; всё, что необходимо – это сконфигурировать порт и запихать данные в буфер, после чего операции передачи пойдут независимо от вас.

    Конечно, существуют и программные реализации UART, но они нагружают процессор. В любом случае, лучше использовать сначала аппаратные интерфейсы, а потом уже начинать придумывать что-то программное.

    Контроллеры Arduino используют логические уровни такие же, каким является питание, то есть для самой популярной платы Arduino UNO уровни будут равны – ноль = 0В, 1 = 5В.

    Выводы подключены к преобразователю интерфейсов через резисторы с сопротивлением 1 КОм, а к гребёнкам по бокам платы – напрямую, поэтому сигналы с гребёнок будут иметь больший приоритет. Периодически это мешает прошивать платы с подключенным датчиком по UART, так как для прошивки тоже используется UART.

    Микросхема преобразователя интерфейсов не делает из себя ещё один COM-интерфейс для компьютера, она лишь эмулирует его. Несмотря на это, все программы, которые работают с COM-портом посредством Windows API (Win32 API), не отличат порт от физического порта компьютера.

    Класс Serial – RS232 в лучших традициях Arduino

    Класс Serial – RS232

    Для удобной работы с последовательным портом разработчики Arduino написали целую библиотеку, которая значительно упрощает работу с портом, абстрагируя конечного пользователя от простой, «железной» работы с регистрами. Класс имеет множество функций, которые будут рассмотрены нами далее. Но сначала надо понять, как же компьютер примет и обработает, а точнее покажет то, что мы ему передали.

    Читайте также: