Usb накопитель d что это значит

Обновлено: 06.07.2024

Практически каждый человек, который работает за компьютером, знает о существовании девайса под названием «флешка» (USB накопитель). Изначально эти накопители стоили довольно дорого и считались экзотическими устройствами. Тогда они были мало распространены, а люди обменивались информацией при помощи дисков, винчестеров и дискет. Сегодня же эти накопители практически полностью вытеснили вышеперечисленные методы передачи информации.

USB накопитель представляет электронное устройство, которое применяется в качестве накопителя и носителя памяти. Он подключается к персональному компьютеру, ноутбуку и т.п. Главными преимуществами этого устройства являются простота эксплуатации, широкий модельный ряд и достаточно низкая цена. Среди его основных характеристик можно выделить компактность, значительный объем памяти, высокую скорость передачи данных. Накопитель является универсальным устройством и отлично защищен от механических воздействий. Его спокойно можно таскать в кармане, а при необходимости использовать.

Флешка по своему исполнению может быть совершенно разной. В магазинах можно приобрести широкое разнообразие накопителей, которые будут отличаться по емкости, дизайну, типу интерфейса и возможностям.

  • По объему памяти накопители могут достигать 1 терабайта, то есть 1024 Gb. Однако сегодня наибольшее распространение получили устройства емкостью 4-32 Gb. Их стоимость варьируется в пределах 150-3000 рублей. Кратность объема памяти соответствует цифре 2, то есть 32, 64, 128 Gb. Устройства до 4 ГБ отлично подходят для хранения и перемещения текстовых файлов. С целью хранения музыки, фотографий или видео небольшого размера вполне хватит накопителя объем 16 Гб. Устройство объемом 32 Gb хорошо подходит для хранения видео.
  • По стандартам USB-интерфейса накопители могут быть следующих видов:

Главная отличительная особенность данных видов накопителей заключается в скорости передачи данных. Так USB 1.1 передает данные со скоростью 600-800 Кб в секунду. При этом запись поддерживается до 700 Кб в секунду. USB 2.0 более прогрессивны, они могут передавать данные со скоростью 480 Мбит в секунду. USB 3.0 представляет новый вид накопителей, которые позволяют передавать данные со скоростью до 5 Гбит в секунду. Устройства стандарта USB 3.1 способны передавать данные со скоростью до 10-12 Гбит в секунду.

Однако не стоит обольщаться желанием обладать самым совершенным устройством. На самом деле накопитель USB 3.1 вряд ли будет поддерживать большинство ваших устройств. Дело в том, что на самих приемниках USB в большинстве случаев установлены устройств стандарта USB 2.0. В результате при подключении к USB порту стандарта 2.0 или в обратном порядке накопитель будет работать в режиме передачи информации USB 2.0, то есть скорость будет существенно ограничена.

  • Сегодня можно приобрести невероятно число накопителей самого разного дизайна, которые выполнены из различных материалов. Это может быть пластик, дерево, стекло, силикон, кожа, металл, резина и так далее. На корпусе накопителя могут быть нанесены различные рисунки, гравировки и другие дизайнерские элементы. Однако использование того или иного дизайнерского эффекта никак не влияет на технические показатели в виде скорости и объема передачи данных.
  • Наличие дополнительных функций. К примеру, флешка может иметь устройство ввода кода. Поэтому, чтобы начать работать с ней, будет необходимо ввести верный код. Это позволяет защитить от кражи данных. Также могут быть накопители со сканером отпечатков пальцев. В данном случае для возможности работы с устройством придется приложить палец к сканеру, который находится на корпусе.

Также могут быть накопители, работающие с помощью голосового управления. Такое устройство распознает голос владельца, после чего она разблокирует возможность работы с данными. Бывают устройства с антибактериальным покрытием. Корпус такого накопителя выполнен с применением специальных антибактериальных материалов, благодаря чему на нём не размножаются микробы.

Бывают и двусторонние накопители. Флешка имеет два USB-коннектора. С помощью такого накопителя можно отдельно хранить рабочую информацию и личную. Это удобно в случае, когда можно случайно затереть важный документ. Продаются устройства, которые объединяют в себе накопитель и цифровую камеру.

Устройство

В большинстве случаев флешка состоит из следующих основных элементов:

Разъем USB позволяет подключиться к компьютеру или другому электронному устройству. При помощи стабилизатора происходит конвертация и стабилизация напряжения, которая поступает от ПК непосредственно в контроллер и флеш-память.

Контроллер представляет схему, которая управляет памятью, а также передачей данных. Он имеет микросхему, которая содержит всю информацию о памяти, производителе. В нем также хранится служебная информация, которая требуется для нормальной работы накопителя. В ряде моделей контроллер может быть встроенным либо отсутствовать вовсе.

При помощи кварцевого резонатора происходит создание опорной частоты работы flash памяти и логики контроллера. Корпус служит для защиты от механических повреждений и размещения всех элементов накопителя. Переключатель необходим для включения режима записи или защиты от записи. Светодиод, который мигает, демонстрирует пользователю, что накопитель работает. В это время крайне не рекомендуется вытаскивать накопитель из USB разъема. Это может привести к потере данных и даже выходу устройства из строя.

Применение

Флешка является универсальным устройством, на котором можно хранить любую информацию, перезаписывать, стирать и передавать ее. На накопитель можно записывать текстовые документы, фотографии, видео, музыку, в том числе на нем можно читать, стирать и редактировать информацию. Особенность накопителя в том, что его можно подключать бесконечное число раз.

Устройство можно даже подключать в момент, когда компьютер работает. Корпус устройства помогает хорошо защищать все элементы устройства. Благодаря этому накопитель практически не боится падения, длительного ношения в карманах брюк и других механических воздействий. Накопителю не нужен внешний источник питания, ведь ему вполне достаточно электроэнергии, которая поступает к нему через USB порт.

Типы стандартов USB и разница между ними

Вроде мы слышали, что USB 3.0 — это круче, чем USB 2.0. Но чем именно — знают не все. А тут еще появляются какие-то форматы Gen 1, Gen 2, маркировки Superspeed. Разбираемся, что значат все эти маркировки и чем они отличаются друг от друга. Спойлер: версий USB всего четыре.

USB 2.0

Когда-то было слово только USB 1.0. Сейчас это уже практически архаика, которую даже на старых устройствах почти не встретить. Еще 20 лет назад на смену первопроходцу USB 1.0 пришел улучшенный USB 2.0. Как и первая версия, эта спецификация использует два вида проводов. По витой паре идет передача данных, а по второму типу провода — питание устройства, от которого и идет передача информации. Но такой тип подключения подходил только для устройств с малым потреблением тока. Для принтеров и другой офисной техники использовались свои блоки питания.

USB версии 2.0 могут работать в трех режимах:

  • Low-speed, 10–1500 Кбит/c (клавиатуры, геймпады, мыши)
  • Full-speed, 0,5–12 Мбит/с (аудио и видеоустройства)
  • High-speed, 25–480 Мбит/с (видеоустройства, устройства для хранения данных)

USB 3.0

Стандарт USB 3.0 появился в 2008 году и до сих пор используется во многих устройствах. Скорость передачи данных выросла с 480 Мбит/с до 5 Гбит/с. Помимо скорости передачи данных, USB 3.0 отличается от версии 2.0 и силой тока. В отличие от более ранней версии, которая выдавала 500 мА, USB 3.0 способен отдавать до 4.5 Вт (5 В, 900 мА).

Новое поколение USB обратно совместима с предыдущими версиями. То есть USB 3.0 может работать и с разъемами USB 2.0 и даже 1.1. Но в этом случае буду ограничения по скорости. Подключив USB 3.0 к устройству с USB 2.0 скорость, вы получите не больше 480 Мбит/с — стандарт для версии 2.0. И наоборот, кабель 2.0 не станет более скоростным, если подключить его в устройство с USB 3.0. Это связано с количеством проводов, используемых в конкретной технологии. В версии USB 2.0 всего 4 провода, тогда как у USB 3.0 их 8.

Если вы хотите получить скорость передачи, заявленную стандартом USB 3.0, оба устройства и кабель должны быть именно версии 3.0.

USB 3.1

В 2013 году появляется версия USB 3.1 с максимальной заявленной скорость передачи данных до 10 Гбит/с, выходной мощностью до 100 Вт (20 В, 5 А). С появлением USB 3.1 произошла революция в маркировках всех стандартов. Но с ней мы разберемся чуть позже. А пока запомним главное: пропускная способность USB 3.1 увеличилась вдвое по сравнению с версией 3.0. И одновременно с обновленным стандартом появился и принципиально новый разъем — USB type-С. Он навсегда решил проблему неправильного подключения кабеля, так как стал симметричным и универсальным, и теперь все равно, какой стороной подключать провод к устройству.

USB 3.2

В 2017 году появилась информация о новой версии — USB 3.2. Она получила сразу два канала (больше проводов богу проводов) по 10 Гбит/с в каждую сторону и суммарную скорость в 20 Гбит/с. Стандарт USB 3.2 также обратно совместим с режимами USB 3.1, 3.0 и ниже. Поддерживается типом подключения USB-C на более современных гаджетах.

Типы разъемов

Версий разъемов USB несколько, и для каждого есть свое предназначение.

  • type-А — клавиатуры, флешки, мышии т. п.
  • type-B — офисная техника (принтеры, сканеры) и т. п.
  • mini type-B — кардридеры, модемы, цифровые камеры и т. п.
  • micro type-B — была наиболее распространенной в последние годы . Большинство смартфонов использовали именно этот тип подключения, пока не появился type-C. До сих пор остается довольно актуальным.
  • type-C — наиболее актуальный и перспективный разъем, полностью симметричный и двухсторонний. Появился одновременно со стандартом USB 3.1 и актуален для более поздних версий стандартов USB.


Superspeed, Gen или как разобраться в маркировках стандартов USB

Как только в типах стандартов появилась USB 3.1, привычная цифровая маркировка изменилась и здорово запуталась. Вполне понятный и простой USB 3.0 автоматически превратился в USB 3.1 Gen 1 и ему была присвоена маркировка SuperSpeed. А непосредственно сам USB 3.1 стал называться USB 3.1 Gen 2 с маркировкой SuperSpeed +.

Но и это уже потеряло свою актуальность с выходом стандарта USB 3.2. Он получил название USB 3.2 Gen 2×2 и маркировку SuperSpeed ++. В итоге маркировка всех предшествующих стандартов опять меняется. Теперь USB 3.0, она же USB 3.1 Gen 1, превращается задним числом в USB 3.2 Gen 1 с прежней маркировкой SuperSpeed. А USB 3.1, ставшая USB 3.1 Gen 2, тоже поднялась до USB 3.2 Gen 2. При этом конструктивно все стандарты остались прежними — изменяются только названия. Если вы уже запутались во всех этих цифрах и маркировках, таблица ниже поможет внести ясность в актуальных названиях.


Если еще более кратко, то сейчас опознать стандарты USB можно так:

USB 3.0 — это USB 3.2 Gen 1, он же Superspeed
USB 3.1 — это USB 3.2 Gen 2, он же Superspeed+
USB 3.2 — это USB 3.2 Gen 2x2, он же Superspeed++

USB-накопитель - портативное устройство, содержащее энергонезависимую память Тип Flash , предназначен для работы с компьютером через USB и используется для передачи данных между компьютерами и устройствами, поддерживающими USB-память.

USB-накопитель - это портативное устройство типа « подключи и работай» , которое обычно подключается к компьютеру напрямую через разъем USB , поэтому для него не требуются дополнительные аксессуары ( док-станция , привод компьютера, блок питания).

Скорость зависит от версии USB (1.1, 2.0, 3.0 или 3.1) и скорости используемой флэш- памяти. Нынешние размеры современных устройств, называемых сериями «мини», не превышают в два раза размер USB-разъема и часто высовываются лишь на несколько миллиметров после вставки их в гнездо.

В старых моделях, как и в случае с гибкими дисками, обычно использовался внешний переключатель блокировки записи и стирания.

Типы и скорости

Упаковка продукта имеет маркировку USB 2.0 и USB 3.0, но более важной информацией для пользователя является фактическая скорость передачи. Эти устройства должны иметь информацию об их рабочих параметрах.

USB-флешки можно разделить на три группы из-за соответствия принятым спецификациям (значения даны как максимум, который должен быть достигнут в данном стандарте с учетом накладных расходов - фактически могут быть достигнуты гораздо меньшие передачи):

USB 1.1 ( Full Speed ) - устройства, которые соответствуют спецификациям этой спецификации, могут работать со скоростью 1,5 Мбит / с (0,1875 МБ / с) или 12 Мбит / с (1,5 МБ / с)

USB 2.0 ( High Speed ) - устройства, соответствующие новой спецификации, могут работать со скоростью 480 Мбит / с (60 МБ / с), но на практике они получают только 320 МБ / с (40 МБ / с). Устройства USB 2.0 полностью совместимы со старыми устройствами.

USB 3.0 ( SuperSpeed ) - устройства передают данные (при подключении к порту USB 3.0) со скоростью до 4,8 Гбит / с (600 МБ / с). Первые флэш-накопители такого типа появились в 2009 году.

В настоящее время они достигают более низких скоростей, чем предсказывает стандарт, из-за аппаратных ограничений внутренней архитектуры флэш-памяти - максимальная скорость записи и чтения такой памяти может быть намного ниже, чем интерфейс USB 3.0.

Еще одной причиной ограничения скорости являются поддерживаемые протоколы. Вы можете передавать данные с USB 3.0 через порты USB 3.0 и USB 2.0 (в последнем случае, соответственно, медленнее).

Флешка со съемной вилкой

Первоначально Pendrive предлагал емкости, сопоставимые с емкостью флоппи-дисков, но быстрое технологическое развитие флэш-памяти означало, что емкости быстро превосходили ZIP-диски , и теперь они сопоставимы с жесткими дисками.

В конце 2013 года появились флеш-накопители объемом 512 ГБ и даже 1 ТБ, а в 2019 году - 4 ТБ, но их цены были даже в несколько раз выше, чем у 2,5- дюймовых портативных накопителей .

Передача данных

Чаще всего эти воспоминания используются для передачи и хранения файлов (документов, приложений , фотографий, музыки, фильмов).

Ремонт компьютеров

Они успешно восстанавливают данные с ноутбуков с помощью портативных приложений для восстановления данных, а также удаляют вирусы или шпионское ПО с зараженного компьютера.

Аудио плееры

Флэш-память оснащена выходом на наушники, и почти во всех моделях используются ЖК-дисплеи или мини-дисплеи OLED . Они поддерживают MP3 , WMA , WAV , MIDI , MP4 , AIFF и аналогичные форматы.

Загрузка операционной системы

Эта функция аналогична live CD , которая позволяет загружаться с самого привода CD / DVD, например, операционной системы или конкретной программы, без ее установки - эта функция называется live USB .

Увеличение системной памяти

В последних операционных системах Microsoft ( Windows Vista и Windows 7 ) использование функции ReadyBoost позволяет увеличить оперативную память системы, используя определенное пространство неиспользуемой памяти подключенной флэш-памяти.

Максимально возможный размер зарезервированного пространства составляет 32 ГБ для одного подключенного устройства USB и всего 256 ГБ.

Pendrive подключен к операционной системе Linux, создает в нем файл определенного размера (dd), помеченный как swap (mkswap) и добавленный в пул подкачки (swapon).

Дополнительные возможности

Все больше и больше USB-накопителей включают дополнительные функции в виде MP3-плеера , диктофона , FM- радио, цифровой камеры и тому подобное.

Подключение SD-карты с выходом USB как 512 МБ PSd

Флэш-накопители используются большинством людей, которые используют компьютеры, поэтому они должны быть достаточно маленькими, чтобы положить их в карманы и взять с собой. Они производятся в различных формах, от прямоугольных брелоков до причудливых статуэток.

Наиболее распространенные емкости: 8 ГБ , 16 ГБ, 32 ГБ, 64 ГБ и 128 ГБ; реже 256 ГБ и 512 ГБ.

Безопасность данных.

Новейшие флешки становятся все более долговечными, устойчивыми к ударам и даже падениям с высоты нескольких десятков метров. Водонепроницаемые и огнестойкие версии также производятся.

Вы также можете купить pendrive, оснащенные встроенным программным обеспечением, которое требует ввода пароля перед считыванием данных с устройства (они часто шифруются с помощью соответствующих криптографических алгоритмов), а для более требовательных версий имеются устройства, снабженные устройством считывания отпечатков пальцев, что предотвращает несанкционированный доступ к сохраненным файлам. на такой подвеске.

Средство для вирусов и других типов вредоносных программ.

Флэш-накопители USB являются одним из носителей (как и ранее гибкие диски) распространения компьютерных вирусов , шпионских программ и других типов вредоносных программ.

Вирус распространяется из зараженной системы Microsoft Windows в переносную память, создавая свою копию и собственный файл, который позволяет заражать другие копии этой операционной системы .

Это можно сделать автоматически, просто поместив такую память в порт USB, без дальнейшего участия пользователя в процессе распространения вируса (например, нажав на зараженный файл)

Чтобы защитить себя от этих типов угроз, вы можете установить антивирусную программу или полностью отключить параметр автозапуска для носителей данных.

Вирусы, повреждающие системы MS Windows, безвредны для других операционных систем, например Linux , Solaris , BSD , macOS , поэтому зараженные компьютеры можно безопасно подключать и форматировать с помощью зараженной памяти USB


При выборе жесткого диска у «продвинутого» покупателя обычно не возникает особых проблем. Взять тот же WD6003FZBX на 6 ТБ: скорость вращения шпинделя 7200 оборотов в минуту, вместительный кэш в 256 мегабайт и наличие высокоскоростного интерфейса SATA III с пропускной способностью 6 Гбит/с красноречиво свидетельствуют о том, что перед нами высокопроизводительное решение, способное удовлетворить нужды как заядлых геймеров и энтузиастов, так и профессионалов. Единственный нюанс, который здесь необходимо учитывать, заключается в том, что показатель 6 Гбит/с — это пропускная способность самой шины: хотя скорость передачи информации из кэша в систему составляет 550 МБ/с, реальная скорость обмена данными между системой и накопителем для рассматриваемой модели достигает 227 МБ/с, что все равно является превосходным результатом для классических винчестеров. Впрочем, об этом и так знает практически любой технически подкованный пользователь ПК.

Когда же речь заходит о флеш-картах, в тупик может зайти даже бывалый админ. За примерами далеко ходить не надо: достаточно открыть страницу карты памяти SanDisk Extreme PRO UHS-I. Помимо привычных строк «скорость чтения: до 170 МБ/с» и «скорость записи: до 90 МБ/с», в спецификациях красуется таинственная надпись «скорость видео: C10, U3, A2, V30». Но позвольте, мы уже знаем скоростные характеристики продукта. Зачем нужны еще какие-то непонятные классы скорости, да еще и в количестве четырех штук? И в чем вообще состоит принципиальное отличие перечисленных показателей друг от друга? Именно в этих вопросах нам предстоит разобраться в сегодняшнем материале.

Форм-фактор карт памяти Secure Digital

Начнем с самого простого — форм-фактора. SD Specification предусматривает три типоразмера карт памяти:

  • SD — классическая флеш-карта с габаритными размерами 24×32×2,1 мм. Из интересных особенностей стоит выделить наличие механического переключателя защиты от перезаписи. Будучи установленным в положение Lock, он блокирует возможность записи на карту новых файлов, удаления имеющихся либо ее форматирования.


  • miniSD — более компактная версия флеш-карт, имеющая размеры 20×21,5×1,4 мм и ориентированная на использование в портативных устройствах. В настоящее время карты такого формата практически не выпускаются.


  • microSD — самая миниатюрная из существующих SD-карт, ее размеры составляют всего 11×15×1 мм. Она пришла на смену своей предшественнице miniSD. В настоящее время карты именно этого типа используются в смартфонах, планшетах, MP3-плеерах, фотоаппаратах, видеокамерах и другой переносной технике. Кстати, у microSD есть и другое, ныне устаревшее название — TransFlash (T-Flash или TF).


Помимо перечисленных, существует и еще один, уникальный в своем роде форм-фактор — nanoSD, представленный в октябре 2018 года компанией Huawei. По размеру данные карты памяти полностью идентичны nanoSIM и имеют габариты 12,3×8,8×0,67 мм, то есть оказываются практически на 45% миниатюрнее обычных microSD. Они были выпущены одновременно со смартфонами Huawei Mate 20 и Mate 20 Pro, поддерживающими работу исключительно с данным форматом флеш-карт, а также с фирменными двухпортовыми (USB + Type-C) кардридерами, позволяющими работать с другими моделями мобильных девайсов, настольными компьютерами и ноутбуками.


К сожалению, единственным козырем новых карт оказался миниатюрный размер, тогда как по цене и техническим характеристикам они существенно уступают классическим microSD. Например, Huawei Nano SD емкостью 128 ГБ и скоростью последовательного чтения 90 МБ/с, стоит в официальном магазине практически 6 тысяч рублей. Для сравнения, Sandisk Extreme аналогичной емкости, обладающая куда более впечатляющими характеристиками (скорость чтения/записи до 160/90 МБ/с соответственно, с защитой от воздействия воды, высоких и низких температур, ударов и рентгеновского излучения) обойдется вам в 2200–2500 рублей по данным «Яндекс.Маркета» (приведенные сведения актуальны на момент написания материала).

Поскольку новый формат до сих пор не был согласован с SD Card Association и не получил официального статуса, говорить о его дальнейшем распространении пока рано. А в свете санкций США против компании Huawei и торговой войны с Китаем, перспективы nanoSD становятся еще более туманными.

Стандарты карт памяти Secure Digital

Если с форм-фактором все достаточно очевидно, то со стандартами флеш-карт ситуация несколько более сложная. На сегодняшний день SD Specification описывает 5 поколений карт Secure Digital, различающихся объемом и другими техническими характеристиками. Рассмотрим каждое из них по отдельности.

Данный стандарт представлен в двух версиях: 1.0 и 1.1. Карты памяти SD 1.0 имеют объем от 8 МБ до 2 ГБ, тогда как емкость устройств, отвечающих спецификации 1.1, достигает уже 4 ГБ. SD-карты этого типа используют побайтную адресацию и 32-разрядные адреса (чем и объясняется максимальный предел емкости в 4 гигабайта), поддерживая файловые системы FAT16 и FAT32.

Карты памяти, удовлетворяющие SD Specification версии 2.0. Их главным отличием от предшествующих является поддержка посекторной адресации, что позволило увеличить максимальный объем флеш-карт до 32 гигабайт. Негативная сторона данного преимущества — отсутствие обратной совместимости с устройствами, ориентированными на работу с обычными SD-картами. В качестве файловой системы используют FAT32.

Стандарт, представленный SD Association в 2009 году в рамках профильной международной выставки International Consumer Electronics Show (CES). Аббревиатура расшифровывается как Secure Digital eXtended Capacity («SD-карты повышенной емкости»). Карты памяти SDXC могут иметь объем до 2 ТБ и используют файловую систему exFAT, а также получили шину UHS (о ней мы поговорим ниже), способную работать в четырехбитовом режиме и обеспечивать скорость передачи данных вплоть до 312 МБ/с. Еще одной особенностью нового стандарта является прямая и обратная совместимость с предшествующими стандартами: устройства с поддержкой SDXC способны работать с картами памяти SD и SDHC, а карты памяти SDXC могут работать в устройствах с поддержкой SDHC при условии, что были предварительно отформатированы в FAT32.

Этот стандарт вошел в перечень спецификаций SD Specification версии 7.0. Подобно SDXC, данные карты памяти используют файловую систему exFAT, однако их максимальная емкость может достигать уже 128 ТБ.

SD Express

Стандарт, представленный SD Association широкой общественности 27 июня 2018 года. В него вошли сразу три разновидности флеш-карт, отличающиеся друг от друга максимальной емкостью: SDHC Express (до 32 ГБ), SDXC Express (до 2 ТБ) и SDUC Express объемом до 128 ТБ. Новое поколение карт памяти принципиально отличается от своих предшественников, так как использует интерфейс PCI Express 3.0 и протокол NVMe 1.3 (на втором ряду контактов), что позволяет им развивать скорость передачи данных вплоть до 0,9 ГБ/с. При этом флеш-карты данного типа обратно совместимы с устройствами, поддерживающими работу с шиной UHS.

Что касается SDXC и SDUC, необходимо понимать, что SD Card Association при разработке стандартов играет на опережение, так как на создание соответствующих технологий и практическое внедрение принятых спецификаций требуется достаточно продолжительное время. На сегодняшний день самой вместительной и самой быстрой картой памяти является SanDisk Extreme емкостью 1 ТБ: в довесок к рекордному объему данная карта демонстрирует впечатляющую скорость последовательного чтения (до 160 МБ/с), при том что сам стандарт SDXC, как было сказано выше, предусматривает максимальную емкость карты до 2 ТБ и скорость передачи данных до 312 МБ/с, то есть потенциально флеш-карта SDXC может быть в 2 раза вместительнее и вдвое быстрее.


Скоростные характеристики SD-карт

Со стандартами разобрались, пришло время изучить скоростные классы. Однако для того чтобы в дальнейшем не возникало путаницы, необходимо разобраться с таким понятием, как UHS. Данная аббревиатура расшифровывается как Ultra High Speed — «сверхскоростная передача данных». Термин имеет два значения. Прежде всего это название шины, спецификация которой впервые появилась в третьей версии стандарта Secure Digital. Главным отличием UHS от предшественников стала поддержка 4-битового режима передачи информации, что позволило вывести производительность флеш-карт на принципиально новый уровень. Так, UHS-I, спецификации которой были определены в стандарте Secure Digital 3.01, поддерживает скорость обмена данными 50 или 104 МБ/с, а UHS-II (вошла в обновленную версию стандарта Secure Digital 4.0) — уже 156 МБ/с или 312 МБ/с, тогда как для SD-карт с интерфейсом High Speed пределом мечтаний были 25 МБ/с.

Кстати, запись «50 или 104 МБ/с» не является ошибкой. Здесь имеется в виду не диапазон скоростей, а два возможных режима работы. Карты UHS-I способны функционировать в режиме SDR50 или SDR104. В режиме SDR (Single Data Rate) за один такт передается одно слово данных и принимается одна управляющая команда. Таким образом, при частоте 100 МГц шина способна передавать 50 мегабайт в секунду, а при частоте 208 МГц — уже 104 МБ/с.

С интерфейсом UHS-II все несколько сложнее. Такие карты памяти имеют две строки контактов.


Верхняя обеспечивает обратную совместимость с интерфейсами High Speed и UHS-I, тогда как нижняя — возможность функционирования карты в двух дополнительных режимах: FD156 и HF312. Использование пары низковольтных (0,4 В) полос в дуплексном режиме (а FD означает не что иное, как Full Duplex) позволяет добиться честных 156 МБ/с при частоте 52 МГц, а полудуплексный режим (HD, то есть Half Duplex) — уже 312 МБ/с при той же частоте, однако при этом данные могут передаваться только в одном направлении в каждый конкретный момент времени.

Аббревиатура UHS также используется для обозначения класса скорости флеш-карт, снабженных данным интерфейсом (полное название — UHS Speed Class). Но, прежде чем перейти к его обсуждению, имеет смысл четко определиться с используемой терминологией. Для этого обратимся к техническим характеристикам карт памяти SanDisk Extreme PLUS SDHC/SDXC UHS-I.


Здесь цифры 90 и 60 МБ/с — это номинальная скорость, достижимая в определенных сценариях (последовательное чтение и запись соответственно) при идеальных условиях, в которых клиентское устройство полностью раскрывает потенциал конкретной карты. На практике подобные ситуации крайне редки: чаще всего карта работает в смешанном режиме, а сам девайс может являться «бутылочным горлышком». В связи с этим появилось понятие «класс скорости» — минимальный устойчивый показатель производительности в наихудших условиях тестирования на совместимом оборудовании. На сегодняшний день существуют 4 класса скорости:

  • Speed Class,
  • UHS Speed Class,
  • Video Speed Class,
  • Application Performance Class.

Наличие сразу трех классификаций, определяющих пригодность той или иной карты для работы с потоковым видео, объясняется как постоянным развитием самих флеш-карт, так и распространением новых форматов видеозаписи. Первой классификацией стала Speed Class, включающая 4 класса производительности (от 2 до 10 МБ/с). Классификация UHS Speed Class была введена специально для устройств с шиной UHS и включает всего два класса: 1 (10 МБ/с) и 3 (30 МБ/с). Video Speed Class была впервые представлена SD Card Association в ходе ежегодной выставки CP+, проведенной в Иокогаме в 2016 году, и вошла в спецификацию SD 5.0. Данная классификация учитывает поддержку записи потокового видео сверхвысоких разрешений (4K, 8K и 3D) и охватывает диапазон скоростей от 6 до 90 МБ/с.

Все перечисленные классификации используют единый формат сокращенных обозначений: XY, где X — литера, указывающая на тип используемой классификации, а Y — число, обозначающее собственно сам класс. Классам скорости флеш-карт соответствуют следующие латинские буквы:

Коротко о USB - откуда все начинается. D+ и D- это дифференциальная пара, данные передаются в противофазе с одной лишь целью уменьшить помехи. То есть линия передачи по сути одна ! Есть ведущее устройство (Хост) и ведомое (Device).

Ведущее и ведомое могут одновременно что-то посылать в канал. Поэтому протокол USB очень требовательно распределяет , что ведущий и когда посылает и что (и когда) ведомый должен ответить. Иначе никак нельзя.

Вот на картинке ниже все отчетливо видно (один пакет от ведомого):

фотка 1

Сначала все просто:

Пакет всегда начинается с SYN (10000000).

Завершается пакет всегда EOP (End Of Packet ) . На картинке выше видна единственная ассиметрия в конце пакета, когда : 2 линии DP и DM различаются.

Примерная последовательность пакетов.

Инициализацию устройства пропускаем (запрос дескриптора, интерфейсов , конечных точек и т.д.), чтобы не терять времени (переходим к сути).

Периодические пакеты "НЕ СПАТЬ" SOF (Start Of Frame) - это примерно 1раз/1мс посылка от хоста ведомому ("не спи"). Их лучше сразу как-то отфильтровывать для понимания.

Далее остается три типа пакетов типа . Ниже их PID (Packet Identificator) , он же токен :
SETUP это служебные пакеты стандартного протокола настройки устройства
OUT это хост передает данные
IN это хост запрашивает данные от девайса

Эти пакеты вкладываются между SYNK и EOP .

фотка 2

Получается примерно такая структура [SYNC] [PID] [Address(7 бит)] [EndPoint] (4 бит) [EOP ]. На картинке выше видно как девайс отвечает NAK практически сразу и это нормально. Это означает , что девайсу надо подумать и сразу он не может ответить на команду.

PID это токен или (Program Identificator) SETUP, IN , OUT.

Address - это адрес нашего устройства на шине USB . Сначала он всегда 0 после подключения USB. Потом хост перенумеровывает все устройства на шине и присваивает каждому устройству уникальный адрес (размер всего 1 байт).

EndPoint - хост всегда общается не просто с устройством по адресу , а еще и с конкретной конечной точкой (end-point) устройства , которых может быть несколько. Как же хост узнает какие значения у конечных точек (EP) ? Правильно для этого зарезервировано значение 0 (конечная точка EP0), служебный end-point , через который хост получает первичную информацию от других конечных точках. Как всегда все просто.

Допустим наш хост уже получил всю информацию о конечных точках , интерфейсах, конфигурациях через EP0.

Как происходит дальше работа на примере обычной клавиатуры

Хост долбит периодически PID IN по адресу устройства плюс Endpoint устройства (у нас EndP 0x01), который отвечает за прием данных от клавиатуры (IN для хоста).

фотка 3

Если никакая клавиша не нажата ведомый обязан ответить и отвечает NAK. Такие пакеты хост передает примерно 1 раз в 10ms и устройство если не нажата клавиша передает NAK.

А вот когда на клавиатуре нажимается какая-нибудь клавиша, ведомый ответит сначала DATA0 пакетом и следом пакет ACK.

фотка 4

Количество передаваемых байт в DATA0 зависит от типа клавиатуры, то есть каждый решает сколько использовать байт для передачи скан кода нажатой клавиши. Клавиатура сообщает по стандартному протоколу через EP0 о своих настройках.

Тут есть нюанс , что хост всегда посылает запрос устройству на конкретный EP. Если запрос идет на EP для передачи данных (у нас EP1 ) это одно , если запрос идет на служебный EP0 - это хост хочет подключить , настроить устройство. То есть хост всегда определяет логику обмена , а девайс обязан подстраиваться под запрос.

Вообще кто есть хост? Это драйвер например клавиатура или сетевого адаптера и у каждого драйвера соответственно свой протокол , своя логика.

Таким образом если вы разрабатываете USB устройство и ПК шлет вам все пакеты на EP0 , а до других EP не доходит дело, то значит что-то еще не закончено с настройками устройства, что-то хосту не нравится.

Хост вообще говоря может ждать ответ одновременно от 2 и более конечных точек . Это абсолютно нормально. Выглядит это в логах анализатора LA1010 примерно так:

Видно как хост тупо чередует EP0 и EP2.

Если не возникает какого-то прерывания у девайса

То есть если на шине пакеты бегут, а прерывание необходимое не возникает. Например тупо не возникает прерывание IN bulk у RNDIS адаптера (DataIn у EP2). То есть на шине вижу , что девайс отсылает NAK на IN EP2, но самого прерывания в девайсе не возникает.

Тут надо в регистры лезть и отсрочки уже не будет. Какие мысли возникают в первую очередь. Прерывания маскируются вроде (надо проверить).

Так как у нас есть один рабочий проект но без FreeRTOS , то сначала тупо начинаем сверять регистры USB ( OTG_FS_GLOBAL и OTG_FS_DEVICE ): после инициализации , после открытия конечных точек, после приема нужного пакета и т.д. Эти регистры кстати удобно просматривать на закладке SFRS (в Atollic true Studio), тут видна их внутренняя структура. И еще с момента последней точки остановки подсвечиваются изменения.

фотка 1

В процессе сверки регистров мы находим отличия в OTG_FS_GLOBAL, исправляем, заодно изучаем назначение регистров и в какой-то момент даже ловим __HAL_PCD_IS_INVALID_INTERRUPT (на картинке выше видно). Ура хоть что-то.

На самом деле не знач - не ведая мы подошли к главному моменту. Мы наконец-то обратили внимание на USBD_LL_Init, а точнее на загадочные функции HAL_PCDEx_SetRxFiFo(..) и HAL_PCDEx_SetTxFiFo(..) .

Момент истины

И выяснилось , что мы не понимаем и половины логики работы USB . Не зная регистры вообще нет возможности понять что делать. В данном случае HAL это вред.

Итак HAL_PCDEx_SetRxFiFo / HAL_PCDEx_SetTxFiFo создает таблицу во внутренней памяти контроллера USB. Да именно контроллера USB , а не контроллера STM32. Так как у STM32F имеется как-бы свой встроенный контроллер , отвечающий за USB. И у него есть своя память 512К, в которой надо создать таблицу с буферами приема / передачи для каждой конечной точки.

Где эта таблица, где ее адреса.

А вот сама структура USB_OTG_GlobalTypeDef .

HAL - кий код становится намного прозрачнее теперь.

Опять момент истины

Дальше , если интересно немного о передаваемых скан кода клавиатуры . Проводная клавиатура Low Speed

Скан коды USB HID клавиатур это не ASCII коды и не не коды PS/2 клавы.

Читайте также: