Ускорение свободного падения в экселе

Обновлено: 07.07.2024

Оборудование: компьютеры с установленной программой MS Excel, презентация, листы с заданиями, проектор.

Ход урока

1. Организационный момент

Взаимное приветствие учителя и учащихся. Фиксация отсутствующих, проверка состояния классного помещения.

2. Актуализация знаний

Учитель: На прошлых уроках мы с вами познакомились средствами MS Excel: правилами записи соотношений, построение диаграмм и графиков. Повторим пройденный материал:

Запись выражения осуществляется в одну сроку, без надстрочных и подстрочных знаков;

Для обозначения операций используется определенный набор символов;

1. Вычисляются значения функций

2. Возводится в степень

3. Умножение и деление

(Можно проецировать на экран)

1. Формула вычисления скорости при отсутствии начальной скорости

2. Формула вычисления скорости при равноускоренном движении

3. Формула вычисления координаты при равноускоренном движении

4. Формула вычисления силы всемирного тяготения

5. Формула первой космической скорости

6. Формула второй космической скорости.

3. Объяснение нового материала:

(Объяснение ведется в ходе показа слайдов. Ученики следят за ходом объяснения). Приложение 1

Учитель Программная система MS Excel является удобным средством решения разнообразных расчетных задач. Электронные таблицы, первоначально использовавшиеся для финансовых расчетов, все шире применяются для сложных многошаговых технических расчетов.

На уроках физики мы познакомились с равномерным и равноускоренным движениями и изучили закон всемирного тяготения. Программная система MS Excel позволяет наглядно демонстрировать траектории движения и позволяет быстрее решить трудоемкие задачи

Рассмотрим этапы решения задачи при помощи слайдов.

И так, тема нашего урока: Решение задач по физике средствами MS Excel (1 слайд)

Рассмотрим использование электронных таблиц в процессе решения задачи

Задача 1. Тело брошено горизонтально над поверхностью земли с некоторой начальной скоростью. Ускорение свободного падения равно 9,8 м/с 2. . Сопротивлением воздуха пренебречь. Рассчитать траекторию движения тела. (2 слайд)

Решим задачу графически: На тело действуют две силы: в горизонтальном направлении действует сила инерции, под действием которой тело движется равномерно, а в вертикальном – сила тяжести, под действием которой тело падает с ускорением. Горизонтальный путь подсчитываем как скорость, умноженное на время, а вертикальную составляющую – по формуле, умноженной на -1, чтобы указать направление оси на графике. (3 слайд)

Формулы, по которым выполняются вычисления, представлены на фрагменте таблицы (4. слайд)

По результатам вычислений заполним таблицу и построим диаграмму, в нашем случае это график, где видна траектория движения тела (5 слайд). По графику видим, что траектория движения – это часть параболы.

При помощи средств MS Excel, можно решить задачи на вычисления силы всемирного тяготения, первой и второй космической скорости, периодов вращения планет вокруг Солнца и др. А теперь решим задачи при помощи подготовленных шаблонов. Приложение 2

4. Практическая работа учащихся.

(На каждом листе представлены задания, которые должны выполнить учащиеся. По ходу работы учащиеся переходят из одного листа в другой, объясняют процесс выполнения, отвечают на вопросы).

  1. Изучение движения тел под действием силы тяжести. Заполнить цветные прямоугольники значениями ускорения свободного падения и начальной скорости: в первом случае V0=0 м/с, а во втором случае V0=10 м/с. Проследить за изменениями скорости и координаты, объяснить формулы.
  2. Изучение движения тел, брошенных горизонтально. Заполнить цветные прямоугольники соответствующими значениями и проследить за изменением значений.
  3. Использование закона всемирного тяготения.
    Задания: 1) Используя формулы, заполнить ячейки и вычислить скорость движения планет в км/с.
    2) Построить диаграмму, характеризующую сил притяжения планет к Солнцу.
    3) Дополнительное: Найти периоды вращения планет вокруг Солнца.
  4. Нахождение первой и второй космических скоростей и ускорения свободного падения. Используя формулы, заполнить пустующие ячейки. Объяснить эти формулы.

5. Заключение.

На нашем уроке мы использовали среду MS Excel для решения физических задач. При помощи программы мы облегчили свою работу, сделали процесс решения более наглядно и интереснее. Электронные таблицы позволяют автоматизировать процесс решения не только физических, но и математических, химических задач, а диаграммы очень удобны при изучении тем по географии. Все вы справились хорошо. Спасибо вам за работу. (Оценивание работ учащихся)

6. Домашнее задание

При помощи калькулятора найти силы притяжения Луны – Солнца и Луны – Земли, сравнить результаты вычислений. (Справочный материал находится в тетрадях учащихся.)

До конца финального матча баскетбольного турнира Олимпиады в Мюнхене 1972-ого года оставалось 3 секунды. Американцы – сборная США — уже во всю праздновали победу! Наша команда – сборная СССР – выигрывала около 10-и очков у великой dream Team.

. за несколько минут до окончания матча. Но, растеряв в концовке все преимущество, уже уступала одно очко 49:50. Дальше произошло невероятное! Иван Едешко бросает мяч из-за лицевой линии через всю площадку под кольцо американцев, где наш центровой Александр Белов принимает мяч в окружении двух соперников и вкладывает его в корзину. 51:50 – мы олимпийские чемпионы.

Я, будучи тогда ребенком, испытал сильнейшие эмоции – сначала разочарование и обиду, затем сумасшедший восторг! Эмоциональная память об этом эпизоде врезалась в мое сознание на всю жизнь! Посмотрите видео в Интернете по запросу «золотой бросок Александра Белова», не пожалеете.

Американцы тогда не признали поражения и отказались от получения серебряных медалей. Возможно ли за три секунды сделать то, что совершили наши игроки? Вспомним физику!

В этой статье мы рассмотрим движение тела, брошенного под углом к горизонту, составим в Excel программу решения этой задачи при различных сочетаниях исходных данных и попытаемся ответить на поставленный выше вопрос.

Это достаточно широко известная задача в физике. В нашем случае тело, брошенное под углом к горизонту – это баскетбольный мяч. Мы рассчитаем начальную скорость, время и траекторию полета мяча, брошенного через всю площадку Иваном Едешко и попавшего в руки Александра Белова.

Математика и физика полета баскетбольного мяча.

Представленные ниже формулы и расчет в excel являются универсальными для широкого круга задач о телах, брошенных под углом к горизонту и летящих по параболической траектории без учета влияния трения о воздух.

Расчетная схема представлена на рисунке, расположенном ниже. Запускаем программу MS Excel или OOo Calc.

Траектория полета мяча и система координат

Исходные данные:

1. Так как мы находимся на планете Земля и рассматриваем баллистическую задачу – движение тел в поле тяжести Земли, то первым делом запишем основную характеристику гравитационного поля – ускорение свободного падения g в м/с 2

в ячейку D3: 9,81

2. Размеры баскетбольной площадки – 28 метров длина и 15 метров ширина. Расстояние полета мяча почти через всю площадку до кольца от противоположной лицевой линии по горизонтали x в метрах впишем

в ячейку D4: 27,000

3. Если принять, что бросок Едешко совершил с высоты около двух метров, а Белов поймал мяч как раз где-то на уровне кольца, то при высоте баскетбольного кольца 3,05 метра расстояние между точками вылета и прилета мяча составит по вертикали 1 метр. Запишем вертикальное перемещение y в метрах

в ячейку D5: 1,000

4. По моим замерам на видеозаписи угол вылета мяча α0 из рук Едешко не превышал 20°. Введем это значение

в ячейку D6: 20,000

Таблица Excel №1. Движение тела, брошенного под углом к горизонту.

Результаты расчетов:

Основные уравнения, описывающие движение тела, брошенного под углом к горизонту без учета сопротивления воздуха:

x = v0 *cos α0 * t

y = v0 *sin α0 * t - g * t 2 /2

5. Выразим время t из первого уравнения, подставим во второе и вычислим начальную скорость полета мяча v0 в м/с

в ячейке D8: =(D3*D4^2/2/COS (РАДИАНЫ(D6))^2/(D4*TAN (РАДИАНЫ (D6)) -D5))^0,5 =21,418

v0 =( g * x 2 /(2*(cos α0 ) 2 *( x *tg α0 - y )) 0,5

6. Время полета мяча от рук Едешко до рук Белова t в секундах рассчитаем, зная теперь v0 , из первого уравнения

в ячейке D9: =D4/D8/COS (РАДИАНЫ(D6)) =1,342

t = x /( v0 *cos α0 )

7. Найдем угол направления скорости полета мяча αi в интересующей нас точке траектории. Для этого исходную пару уравнений запишем в следующем виде:

y = x *tg α0 - g * x 2 /(2* v0 2 *(cos α0 ) 2 )

Это уравнение параболы – траектории полета.

Нам необходимо найти угол наклона касательной к параболе в интересующей нас точке – это и будет угол αi . Для этого возьмем производную, которая представляет собой тангенс угла наклона касательной:

y’ =tg α0 - g * x /( v0 2 *(cos α0 ) 2 )

Рассчитаем угол прилета мяча в руки Белова αi в градусах

в ячейке D10: =ATAN (TAN (РАДИАНЫ(D6)) -D3*D4/D8^2/COS (РАДИАНЫ (D6))^2)/ПИ()*180 =-16,167

αi = arctg y ’ =arctg(tg α0 — g * x /( v0 2 *(cos α0 ) 2 ))

Расчет в excel, в принципе, закончен.

Иные варианты расчетов:

Используя написанную программу, можно быстро и просто при других сочетаниях исходных данных произвести вычисления.

Пусть, даны горизонтальная x =27 метров, вертикальная y =1 метр дальности полета и начальная скорость v0 =25 м/с.

Требуется найти время полета t и углы вылета α0 и прилета αi

Воспользуемся сервисом MS Excel «Подбор параметра». Я неоднократно в нескольких статьях блога подробно рассказывал, как им пользоваться. Детальнее об использовании этого сервиса можно почитать здесь.

Устанавливаем в ячейке D8 значение 25,000 за счет изменения подбором значения в ячейке D6. Результат на рисунке внизу.

Исходные данные в этом варианте расчета в excel (как, впрочем, и в предыдущем) выделены синими рамками, а результаты обведены красными прямоугольными рамками!

Таблица Excel №2. Движение тела, брошенного под углом к горизонту.

Устанавливая в таблице Excel некоторое интересующее значение в одной из ячеек со светло-желтой заливкой за счет подбора измененного значения в одной из ячеек со светло-бирюзовой заливкой, можно получить в общем случае десять различных вариантов решения задачи о движении тела, брошенного под углом к горизонту при десяти разных наборах исходных данных.

Ответ на вопрос:

Ответим на вопрос, поставленный в начале статьи. Мяч, посланный Иваном Едешко, долетел до Белова по нашим расчетам за 1,342с. Александр Белов поймал мяч, приземлился, подпрыгнул и бросил. На все это у него было «море» времени – 1,658с! Это действительно достаточное с запасом количество времени! Детальный просмотр по кадрам видеозаписи подтверждает вышесказанное. Нашим игрокам хватило трех секунд, чтобы доставить мяч от своей лицевой линии до щита соперников и забросить его в кольцо, вписав золотом свои имена в историю баскетбола!

Прошу уважающих труд автора скачивать файл после подписки на анонсы статей!

Математическая модель свободного падения тела Глава 3.2 §3.2.1 10 класс

Вы часто наблюдали падение тел, то есть движения тяжелого тела, падающего с некоторой высоты. Над закономерностями свободного падения размышляли многие великие умы - Аристотель, Галилео Галилей, Исаак Ньютон. Свободное падение — движение, при котором на тело не действуют никакие силы (силы сопротивления, реактивные силы, и т. п.), кроме силы тяжести. В частности парашютист, в течении прыжка, до раскрытия парашюта, находится практически в свободном падении. Под действием силы, тело движется с ускорением. Силиванов А.А.

Аристотель (384-22 до н.э.) – древнегреческий философ и ученый. Родился в Стагире. В 367-347 до н.э. учился в академии Платона в Афинах, в 343-335 у царя Македонии Филиппа был воспитателем его сына Александра. В 335 возвратился в Афины, где основал свою философскую школу – перипатептиков. Аристотель утверждал, что в реальных условиях движение конечно и тела падают с разной скоростью. Он полагал, что чем тяжелее тело, тем быстрее оно падает.

Галилео Галилей (1564-1642) – выдающийся итальянский физик и астроном, один из основателей точного естествознания, член Академии деи Линчеи. Родился в Пизе. В 1581 поступил в Пизанский университет, где изучал медицину. Но, увлекся геометрией и механикой, оставил университет и вернулся во Флоренцию, где четыре года самостоятельно изучал математику. С 1589 – профессор Пизанского университета, в 1592-1610 – Падуанского, а в дальнейшем – придворный философ герцога Козимо II Медичи. Будучи в Пизе, Галилей опроверг учение о пропорциональности скорости падения тела силе тяжести. Он наблюдал за колебаниями маятника в Пизанском соборе, изучал скатывания шаров по наклонной плоскости (с разной амплитудой). Сбрасывал шары со знаменитой Пизанской башни (деревянный и чугунный, одинакового размера упали практически одновременно). Галилео Галилей в результате тщательно проведенных опытов и размышлений сделал вывод о том, что ускорения всех свободно падающих тел одинаковы и постоянны, если пренебречь сопротивлением воздуха.

Ньютон Исаак (1643-1727) – выдающийся английский ученый, заложивший основы современного естествознания, создатель классической физики, член Лондонского королевского общества (16720, президент ( с 1703). Родился в Вулсторпе. Окончил Кембриджский университет. В 1669-1701возглавлял в нем кафедру. С 1695 – смотритель, с 1699 – директор Монетного двора. Вскоре после Галилея были созданы воздушные насосы, позволяющие проводить опыты со свободным падением в вакууме. С этой целью Ньютон откачал из длинной стеклянной трубки воздух и бросал сверху одновременно птичье перо и монету. Оба тела падали с одной скоростью. Именно этот опыт дал решающую проверку предположению Галилея.


В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.


Разница между силой тяжести и весом тела

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Ускорение свободного падения на разных планетах

Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.

Для этого нам понадобятся следующие величины:

  • Гравитационная постоянная
    G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
  • Масса Земли
    M = 5,97 × 10 24 кг
  • Радиус Земли
    R = 6371 км

Подставим значения в формулу:




Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .

Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.

На днях с удивлением обнаружил, что на Хабре почти нет статей по Scilab. Между тем это достаточно мощная система компьютерной математики, открытая и кроссплатформенная, покрывающая широкий спектр инженерных и научных задач. В ряде ВУЗов (к примеру, УрФУ, ИТМО) ее используют для обучения студентов. Одной из самых насущных инженерных задач является решение дифференциальных уравнений (далее — ДУ). В данной статье я покажу как при помощи Scilab решать системы обыкновенных ДУ на примере моделирования знаменитого стратосферного прыжка Феликса Баумгартнера.

Баумгартнер в свободном падении

Как известно, свободное падение — это равнопеременное движение под действием силы тяжести, когда другие силы, действующие на тело отсутствуют или пренебрежимо малы. В быту часто свободным падением также называют движение в атмосфере Земли, когда на ускорение тела не влияют никакие силы, кроме силы сопротивления воздуха и силы тяжести. Именно таким расширенным пониманием мы и будем пользоваться в дальнейшем.

Задача

Составить диф.уравнения (ДУ), описывающие существенные свойства полета Баумгартнера, решить их средствами Scilab и получить в явном виде зависимости дистанции и скорости от времени свободного падения.

Исходные данные

Т.к. основная задача статьи — все-таки показать, как Scilab умеет решать ОДУ, а не получить идеально точную модель, увлекаться анализом экспериментальных данных (телеметрии), погрешностей и подгонкой мы особенно не будем. Однако для проверки адекватности модели несколько значений все же необходимо взять. Итак:

  • Высота прыжка — 39000м.
  • Дистанция свободного падения — 36402.6м.
  • Время свободного падения — 4 мин 20 сек.
  • За первые 20сек Баумгартнер набрал скорость 194 м/сек, через 50сек падения (на высоте 8447м) он развил рекордную скорость в 377м/сек, а к моменту раскрытия парашюта (т.е. через 260 сек полета) скорость падения снизилась до 77 м/сек.

Модель-1 (без учета сопротивления воздуха)

Начнем с простейшей модели, в которой есть только одна сила — сила притяжения Земли. Полагаем, что падение идет строго вертикально, начало координат размещено в точке начала прыжка, ось-y направлена вниз.


Ускорение экстремала, соответственно, равно ускорению свободного падения.

При этом по определению скорости:


Получили систему из двух обыкновенных ДУ. Решаем.

Воспользуемся функцией ode(), входящей в стандартный дистрибутив Scilab-а.
Согласно документации, ode решает явные обыкновенные дифференциальные уравнения, определенные как:

Прямо как в нашем случае. Слева должны быть производные 1го порядка.

Если же ДУ содержит производную 2го, 3го и пр. порядков, то нужно ввести замену(ы) и преобразовать одно уравнение с систему нескольких. Как мы на самом деле и сделали. Ведь ускорение — это 2я производная координаты по времени, от которой мы перешли к 1й производной, введя замену — переменную «скорость» равную dy/dt. Т.е.
от перешли к

Наконец-то переходим к коду (ссылка на github). Его можно писать в предлагаемом средой редакторе SciNotes, равно как и в любом другом текстовом редакторе. Можно также запустить оболочку без графики и вводить команды в консоли. На мой взгляд SciNotes удобнее подсветкой кода и интеграцией в среду разработки.

Первым делом нам нужно описать ДУ в виде функции на языке Scilab.

Затем задаем начальные условия.

После чего вызываем функцию-решатель ode(), передав ей на вход все созданное выше.

В матрице result в итоге окажуться значения искомых функций-решений данной системы ДУ, соответствующие точкам оси времени из указанного в t диапазона.

Посмотрим на то, что получилось в графической форме, а заодно выведем в консоль пару контрольных точек.


Получилась ожидаемая квадратичная зависимость координаты от времени.

Сверимся с практикой:
Cкорость через 50сек = 1762 км/ч (а должно быть 1357 км/ч).
Пройденный путь за 4мин.20сек = 331.3 км (а должно быть 36.4 км.).

Если со скоростью на начальном этапе прыжка, поморщившись, еще можно смириться, то итоговое пройденное расстояние превышено на порядок. Это объясняется тем, что неучтенное нами сопротивление воздуха на начальном участке полета действительно мало из-за разряженности стратосферы и наша простейшая модель худо-бедно справляется, но по мере снижения плотность атмосферы заметно увеличивается, ощутимо падает скорость падения и практика начинает категорически расходиться с теорией.

Если построить более подробный график, на который нанести также экспериментальные точки, то усугубляющееся со временем несоответствие данной модели и реальности станет еще более наглядным. В частности, скорость линейно возрастает, тогда как на практике она должна с определенного момента начать снижаться.


Исправим ситуацию, введя в модель силу сопротивления воздуха.

Модель-2 (с учетом сопротивления воздуха)

Атмосфера будет действовать на летящего с силой


где
с — коэффициент сопротивления
S — наибольшая площадь сечения, перпендикулярного направлению полета
density — плотность воздуха
v — скорость движения
Формула взята отсюда, где также можно почитать аналитическое решение


Нас интересует ускорение (хотя лучше было бы сказать замедление), которое Fair будет сообщать летящему вниз экстремалу, чтобы добавить поправку в первое уравнение системы.

По 2му закону Ньютона


С учетом данной поправки наша система примет вид

Решаем аналогичным образом. Описываем систему ДУ как Scilab-функцию.

Поскольку плотность атмосферы изменяется в зависимости от высоты, нам потребуется написать соответствующую функцию. Таблицу можно взять отсюда. А вообще есть ГОСТ 4401-81 Атмосфера стандартная. Параметры (с Изменением N 1).

Задаем начальные условия и решаем.

Построим график и посмотрим, что получилось.


Видим, что между 40-й и 70-й секундами пробьем звуковой барьер, в районе 50й секунды скорость достигнет максимума, после чего начнет снижаться. Набранной скорости не хватит, чтобы сгореть в атмосфере (на Хабре обсуждалось), кроме того к концу полета скорость снизится до величины, позволяющей безопасно открыть парашют. Что соответствует реальности.

Скорость — сравнение теории с экспериментом в контрольных точках

Время св.падения, с Расчетная скорость, м/с Фактическая скорость, м/с
20 183 194
50 312 377
260 73 77

Дистанция св.падения — сравнение теории с экспериментом в контрольных точках

Время св.падения, с Расчетная дистанция, м Фактическая дистанция, м
50 9853 8447
260 41049 36403

По скорости ошибка в среднем 27 м/с (7% от фактического рекорда), по дистанции свободного падения 3026 м (8% от фактически пройденной в св.падении дистанции). Для наших учебно-демонстрационных целей вполне приемлемо.

Заключение

Таким образом, мы на примере простой, но наглядной, мат. модели рассмотрели как при помощи Scilab решать ДУ, интерполировать, строить графики. Надеюсь эта статься будет полезна начинающим изучать Scilab, а кого-то быть может и подвигнет на дальнейшее применение Scilab в своей практической деятельности.

Читайте также: