В каком виде представлена информация в компьютере и на цифровых носителях

Обновлено: 06.07.2024

Информация – это знания, которые человек получает в общении с природой и обществом с помощью своих органов чувств.

Все живые существа могут воспринимать образную информацию (запахи, вкусы, шумы и многое другое), это только человек умеет представлять свои знания в знаковом (символьном) виде. Из различных символов (букв, цифр, знаков препинания) состоит текст. Из символов – только уже звуковых (фонем) – состоит устная речь.

Знаковую систему для представления информации называют языком, а полный набор символов языка – его алфавитом. Языки делятся на разговорные (естественные) и формальные. Формальные языки создаются специально, чаще всего для определенной области человеческой деятельности (например, язык математики). В вычислительной технике тоже используются особые формальные языки. Когда информация представлена в виде, пригодном для автоматической обработки, ее называют словом данные.

Информация бывает аналоговой и цифровой.

Рис.1. Аналоговое и цифровое представление информации

Человек воспринимает аналоговую информацию с помощью органов чувств, а вычислительная техника, в основном, работает с цифровой информацией. Поэтому часто аналоговую информацию необходимо преобразовывать в цифровую. В ПК это делает АЦП – аналогово-цифровой преобразователь. Обратную операцию выполняет ЦАП– цифро-аналоговый преобразователь.

Чем ближе цифровая информация к аналоговой, тем больше вычислений приходится выполнять компьютеру (рис. 1).

Примеры аналоговых устройств: телевизор, проигрыватель, телефон.

Цифровые устройства: ПК, музыкальные проигрыватели компакт-дисков, мониторы.

Над информацией (данными) могут выполняться различные операции.

Сбор информации.Сбор информации – это процесс целенаправленного извлечения и анализа информации о предметной области, в роли которой может выступать тот или иной процесс, объект и т. д. Цель сбора – обеспечение готовности информации к дальнейшему продвижению в информационном процессе.

Данная фаза содержит этапы:

1) первичное восприятие информации; здесь осуществляется определение качественных и количественных характеристик предметной области, важных для решаемых потребителем информации задач;

2) разработка системы классификации и кодирования информации, кодирование классов;

3) распознавание и кодирование объектов;

4) регистрация результатов.

Хранение информации. Информация хранится либо в собственной памяти человека – и тогда ею можно воспользоваться сразу, либо на внешних носителях (в книге, блокноте, на магнитном диске и т. п.), откуда ее сначала нужно прочитать. Хранение данных осуществляется с использованием внешней памяти.

Передача информации. Информацияпередается в виде сигналов. Разные виды информации могут передаваться в виде сигналов, имеющих разную физическую природу.

Обработка информации. Почти непрерывно человек обрабатывает информацию: получает новые знания на основе уже известных ему фактов и правил, изменяет форму представления, упорядочивает (сортирует) информацию, ищет ее в большом массиве (словаре, справочнике, картотеке и т. п.). В компьютере обработка информации осуществляется в соответствии с программой, предварительно размещенной в памяти компьютера.

Представление информации.Для представления информации потребителю используются устройства вывода, называемые периферийными устройствами (или периферией), которые в зависимости от вида сигнала–носителя информации делятся на устройства вывода на бумажный носитель и устройства вывода на электронный носитель.

Чтобы сохранить информацию на длительный срок, необходима дисковая память. Основу дисковой памяти составляют технология записи и способ организации быстрого доступа. Технология магнитной записи аналогична той, что используется во всех других видах переноса информации на магнитный носитель, например аудио и видеокассеты.

Принцип магнитной записи был впервые широко использован для записи звука, т.е. для аналоговой формы информации. Только позднее принцип был приспособлен для цифровой записи, которая теперь применяется в компьютерах, т.к. магнитная запись изначально двоична (намагничено-ненамагничено). Цифровая магнитная запись производится на поверхности магниточувствительного материала. Магнитное покрытие наносится на какую-либо основу, обычно гибкий пластик или алюминиевые пластины.

С помощью устройства, называемого дисководом, с диска можно считать (переслать в ОЗУ) информацию и записать (переслать из ОЗУ) ее на диск (сохранение информации на внешнем носителе).

Дисководы бывают нескольких типов: для дискет, CD-ROM/R/RW, DVD-ROM/R/RW. В компьютере может быть установлено несколько дисководов.

Чтение и запись информации с диска производится с помощью магнитной головки. Перемещение магнитной головки по направлению радиуса диска, вращающегося с постоянной скоростью вокруг своего центра, позволяет установить головку над любой точкой поверхности диска.
Форматирование – разбиение диска на дорожки и секторы. Самая первая дорожка магнитного диска (нулевая) – здесь хранится служебная информация, так называемая таблица размещения файлов(FAT таблица). В этой таблице компьютер запоминает адреса файлов.

У гибкого диска на двух сторонах по 80 дорожек. Каждая дорожка разбита на 18 секторов. Общая емкость гибкого магнитного диска может быть подсчитана

2х80х18х0.5Кбайт=1440 Кбайт = 1,44 Мбайт.

Жесткие диски имеют емкость, которую измеряют в гигабайтах: 1 Гбайт = 1024 Мбайт.

Накопители на жестких дисках (винчестеры) предназначены для хранения большого объема информации и значительно повышают возможности компьютера.
Жесткий диск изготовляется из прочного металла, на поверхность которого наносится магнитный материал. В компьютере обычно устанавливается несколько жестких дисков, расположенных один под другим, которые находятся в постоянном вращении. Жесткий диск вращается со скоростью порядка 3600 – 7200 об/мин (в 10 раз быстрее, чем гибкий диск) внутри герметичного металлического кожуха.

Головки чтения и записи устанавливают на расстоянии нескольких микрометров на воздушной подушке в непосредственной близости от жесткого диска.
Жесткие диски различаются емкостью, т. е. тем, сколько информации помещается на диске. Обычно компьютеры оснащаются жестким диском емкостью 800–2000 Мбайт.

Если на запись адреса файла использовано 16 бит (FAT – 16), то с их помощью можно дать адреса 65536 файлам, самих файлов не может быть больше 65536.

Кластер– минимальный размер адресного пространства.

Величина кластера =емкость диска / 65536.

При переходе на систему записи адреса 4 байтами (32 бита) – FAT – 32, размеры кластеров уменьшаются, а число адресов будет 36,5108=36 000 000 000.

В настоящее время широко используется файловая система FAT – 32.

Объем диска Размер кластера
513 Мбайт… 8 Гбайт 4 Кбайт
8 Гбайт… 16 Гбайт 8 Кбайт

Чем больше адресов, тем больше места пропадает из-за несовершенной системы адресации. Для борьбы с нерациональными потерями жесткий диск разбивают на несколько разделов. Каждый такой раздел рассматривают как отдельный логический жесткий диск. Каждый логический диск имеет свою собственную таблицу размещения файлов, поэтому на нем действует своя система адресации. В итоге потери из-за размеров кластеров становятся меньше.

В связи с ростом объемов и сложности программного обеспечения широкое внедрение получили мультимедиа-приложения. Достаточно популярны в последнее время устройства для чтения компакт-дисков (CD-ROM). Эти устройства и сами компакт-диски относительно не дороги и очень надежны. Они могут хранить большие объемы информации (700 Мбайт), поэтому они удобны для записи программ и данных большого объема, например каталогов, перечней энциклопедий, а также обучающих демонстрационных и игровых программ, сочетающих изображения, текст и звук.

Информация на компакт-дисках копируется посредством чередования отражающих и не отражающих свет участков на подложке диска. При промышленном производстве компакт-дисков эта подложка выполняется из алюминия, а не отражающие свет участки делаются с помощью продавливания углублений в подложке специальной пресс-формой. Сверху подложки на компакт-диске находится прозрачное покрытие, защищающее занесенную на компакт-диск информацию от повреждений.

Скорость чтения данных с компакт-дисков значительно меньше, чем с жестких дисков. Одна из основных причин этого состоит в том, что компакт-диски при чтении вращаются не с постоянной угловой скоростью, а так, чтобы обеспечить неизменную линейную скорость прохождения информации под читающей головкой.

Внешне DVD-диск напоминает CD: оба являются оптическими дисками диаметром 12 см и толщиной 1,2 мм. Аналогичны они и по принципам записи цифровой информации. Оба состоят из прозрачной полимерной подложки, отражающего слоя и вспомогательного защитного (несущего) слоя, придающего дискам необходимую жесткость. В отражающем слое тем или иным образом формируется своеобразная матрица в виде закрученной в спираль дорожки с “дырками” (питами). Считывание информации производится лазерным лучом, сканирующим отражающую поверхность. При попадании в дырку луч отражается точно на регистрирующий детектор, его сигнал превышает заданный порог, что и соответствует логической единице. При отсутствии дырки луч рассеивается, сигнал с детектора оказывается ниже заданного порога – фиксируется логический ноль. CD- и DVD-диски во многом подобны, но их ключевые физические параметры значительно отличаются.

Главное преимущество DVD-дисков по сравнению с CD – существенно более высокая информационная емкость за счет большей поверхностной плотности пит. Достичь такого показателя позволили новые технологические решения, среди которых в первую очередь стоит отметить следующие:

Рис. 2. Размеры пит и шага спирали

o двухкратное уменьшение геометрических размеров пит (рис. 2);

o более чем двухкратное уменьшение шага спирали между соседними дорожками пит;

o применение лазерного луча с меньшей длиной волны и увеличенной апертурой фокусирующей линзы для надежного считывания сверхмалых пит;

oиспользование более эффективных схем модуляции цифровых данных и улучшенной схемы коррекции ошибок, позволяющих на порядок повысить надежность считывания данных, несмотря на более высокую плотность их записи. Еще одно важное отличие DVD-дисков заключается в том, что они всегда двухсторонние. Два отдельных диска (каждый толщиной 0,6 мм) склеены между собой нерабочими сторонами. В простейшем варианте данные содержит только одна из сторон, а вторая является пустой. С каждой стороны может быть не один, а два рабочих информационных слоя: первый – «основной» – выполняется по стандартной технологии создания пит (прессования или выжигания) и напыления отражающего слоя, а второй – полупрозрачный (коэффициент отражения 40%) – наносится поверх первого. Для считывания двухслойных дисков применяются сложные оптические головки с переменным фокусным расстоянием. Луч лазера, проходя через полупрозрачный слой, сначала фокусируется на внутреннем слое, а после завершения его чтения — на внешнем.

2.2.3. USB-флэшки.В конце прошлого века у магнитных дисков появились активные конкуренты – твердотельные флэш-носители с USB интерфейсом, или, проще говоря, USB флэш-драйвы. Название «флэш» (flash) было введено компанией Toshiba, так как содержимое памяти в таких микросхемах можно стереть мгновенно «in a flash». Флэш–носители являются энергонезависимыми, то есть данные в них не пропадают после отключения питания и теоретически способны храниться до ста лет. Устройства с флэш-памятью миниатюрны, очень легкие, высоконадежные и обладают низким энергопотреблением. Благодаря этим свойствам флэш стала самым популярным носителем для портативных цифровых устройств (цифровые камеры, карманные компьютеры, аудиоплейеры и т. д.). Объем современных флэш-драйвов составляет от 32 Мбайт до 2 Гбайт. В одном корпусе USB-флэшки объединены микросхемы флэш-памяти, контроллер и разъем USB. Большинство флэш-драйвов оснащено специальным светодиодом, который обычно мигает с частотой несколько герц при обращении к флэшке. Аббревиатура USB означает, что для подключения этих устройств не нужно никаких специальных «дисководов» или адаптеров, кроме имеющегося в каждом современном компьютере или ноутбуке USB порта. Размер обычных внешних накопителей (оптические приводы, жесткие диски, магнитооптика и т. д.) по сравнению с компактными флэш – драйвами все-таки достаточно громоздкий. Типичный размер USB-драйва 80x30x20 мм (некоторые чуть больше, некоторые чуть меньше), то есть небольшой брелок, помещающийся в кулаке. Вес обычно не превышает 20–30 г.

Поскольку внутри устройства нет никаких движущихся частей, то USB- драйвы не боятся физических воздействий и более надёжны с точки зрения сохранности данных. Корпуса флэш-драйвов выполняются из прочной (иногда прорезиненной) пластмассы, поэтому в отличие от оптических носителей царапин USB-драйв тоже не боится.

Обычно на флэш-драйве есть специальный механический переключатель защиты от записи. Он обозначается двумя пиктограммами – открытым и закрытым замочками. С помощью специального программного обеспечения часть драйва (или весь драйв) закрывается паролем. И обратиться к этой области или отформатировать ее можно будет, только зная пароль доступа.

Обычно скорость чтения не превышает 1 Мб/с, а скорость записи 0,70 – 0,8 Мб/с.

Из всего вышесказанного можно сделать вывод, что USB флэш-драйвы являются одним из самых оптимальных устройств для хранения и переноса данных.

Статьи к прочтению:

08 01 Устройства вывода: Мониторы


Похожие статьи:

Информация, закодированная с помощью естественных и формальных языков, а также информация в форме зрительных и звуковых образов хранится в памяти человека.

Однако для долговременного хранения информации, ее накопления и передачи из поколения в поколение используются носители информации.

Материальная природа носителей информации может быть различной:

  • - молекулы ДНК, которые хранят генетическую информацию;
  • - бумага, на которой хранятся тексты и изображения;
  • - магнитная лента, на которой хранится звуковая информация;
  • - фото- и кинопленки, на которых хранится графическая информация;
  • - микросхемы памяти, магнитные и лазерные диски, на которых хранятся программы и данные в компьютере, и так далее.

По оценкам специалистов, объем информации, фиксируемой на различных носителях, превышает один эксабайт в год. Примерно 80% всей этой информации хранится в цифровой форме на магнитных и оптических носителях и только 20% - на аналоговых носителях (бумага, магнитные ленты, фото- и кинопленки).

Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возможным повреждениям имеют молекулы ДНК, так как существует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потере информации только на поврежденном участке. Поврежденная часть фотографии не лишает возможности видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.

Цифровые носители гораздо более чувствительны к повреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуатации и хранения цифровых носителей информации.

Наиболее долговременным носителем информации является молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида.

Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские глиняные таблички), сотен лет (бумага) и десятков лет (магнитные ленты, фото- и кинопленки).

Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при правильном хранении оптические носители способны хранить информацию сотни лет, а магнитные - десятки лет.

Определение объемов различных носителей информации

Носители информации характеризуются информационной емкостью, то есть количеством информации, которое они могут хранить. Наиболее информационно емкими являются молекулы ДНК, которые имеют очень малый размер и плотно упакованы. Это позволяет хранить огромное количество информации (до 10 21 битов в 1 см 3 ), что дает возможность организму развиваться из одной-единственной клетки, содержащей всю необходимую генетическую информацию.

Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден:

• Лист формата А4 с текстом (набран на компьютере шрифтом 12-го кегля с одинарным интервалом) - около 3500 символов

• Гибкий магнитный диск – 1,44 Мб

• Оптический диск CD-R(W) – 700 Мб

• Оптический диск DVD – 4,2 Гб

• Флэш-накопитель - несколько Гб

• Жесткий магнитный диск – сотни Гб

Таким образом, на дискете может храниться 2-3 книги, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Созданную или полученную каким-либо образом информацию хранят в течение определённого времени, в течение которого её временно или долговременно содержат на различных носителях электронных данных. Если информация представляет интерес для её создателей или правообладателей, то им приходится создавать электронные архивы.

Электронный архив - это файл, содержащий один или несколько файлов в сжатой или несжатой форме и информацию, связанную с этими файлами (имя файла, дата и время последней редакции и т.п.).

Электронные архивы позволяют в любой момент времени извлекать из них необходимые данные для дальнейшего их использования в различных ситуациях (например, для обновления или восстановления утерянных данных). Такие архивы называют страховочными копиями. Их используют в случае утраты или порчи основной машиночитаемой информации, а также для длительного её хранения в месте, которое защищено от вредных воздействий и несанкционированного доступа. Как правило, компьютерными архивами информации являются электронные каталоги, базы и банки данных, а также коллекции любых видов электронной информации.

Для обеспечения надёжности хранения и защиты данных рекомендуют создавать по 2–3 архивные копии последних редакций файлов. В случае необходимости осуществляется разархивирование данных.

Разархивирование - это процесс точного восстановления электронной информации, ранее сжатой и хранящейся в файле-архиве.

Для создания архивных файлов и разархивирования используют специальные программы-архиваторы:

- 7-Zip File Manager

Основные возможности архиваторов:

• просмотр содержания архива и файлов, содержащихся в архиве

• распаковка архива или отдельных файлов архива;

• создание простого архива файлов (файлов и папок) в виде файла с расширением, определяющим используемую программу-архиватор;

• создание самораспаковывающегося архива файлов (файлов и папок) в виде файла с пусковым расширением EXE;

• создание многотомного архива файлов (файлов и папок) в виде группы файлов-томов заданного размера (раньше - в размер дискеты).

Носители информации

Носитель информации (информационный носитель) – любой материальный объект, используемый человеком для хранения информации. Это может быть, например, камень, дерево, бумага, металл, пластмассы, кремний (и другие виды полупроводников), лента с намагниченным слоем (в бобинах и кассетах), фотоматериал, пластик со специальными свойствами (напр., в оптических дисках) и т. д., и т. п.

Носителем информации может быть любой объект, с которого возможно чтение (считывание) имеющейся на нём информации.

Носители информации применяются для:

  • записи;
  • хранения;
  • чтения;
  • передачи (распространения) информации.

Зачастую сам носитель информации помещается в защитную оболочку, повышающую его сохранность и, соответственно, надёжность сохранения информации (например, бумажные листы помещают в обложку, микросхему памяти – в пластик (смарт-карта), магнитную ленту – в корпус и т. д.).

К электронным носителям относят носители для однократной или многократной записи (обычно цифровой) электрическим способом:

  • оптические диски (CD-ROM, DVD-ROM, Blu-ray Disc);
  • полупроводниковые (флеш-память, дискеты и т. п.);
  • CD-диски (CD – Compact Disk, компакт диск), на который может быть записано до 700 Мбайт информации;
  • DVD-диски (DVD – Digital Versatile Disk, цифровой универсальный диск), которые имеют значительно большую информационную ёмкость (4,7 Гбайт), так как оптические дорожки на них имеют меньшую толщину и размещены более плотно;
  • диски HR DVD и Blu-ray, информационная ёмкость которых в 3–5 раз превосходит информационную ёмкость DVD-дисков за счёт использования синего лазера с длиной волны 405 нанометров.

Электронные носители имеют значительные преимущества перед бумажными (бумажные листы, газеты, журналы):

  • по объёму (размеру) хранимой информации;
  • по удельной стоимости хранения;
  • по экономичности и оперативности предоставления актуальной (предназначенной для недолговременного хранения) информации;
  • по возможности предоставления информации в виде, удобном потребителю (форматирование, сортировка).

Есть и недостатки:

  • хрупкость устройств считывания;
  • вес (масса) (в некоторых случаях);
  • зависимость от источников электропитания;
  • необходимость наличия устройства считывания/записи для каждого типа и формата носителя.

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск – запоминающее устройство (устройство хранения информации), основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие пластины, покрытые слоем ферромагнитного материала – магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной («парковочной») зоне, где исключён их нештатный контакт с поверхностью дисков.

Также, в отличие от гибкого диска, носитель информации обычно совмещают с накопителем, приводом и блоком электроники. Такие жёсткие диски часто используются в качестве несъёмного носителя информации.

Оптические (лазерные) диски в настоящее время являются наиболее популярными носителями информации. В них используется оптический принцип записи и считывания информации с помощью лазерного луча.

DVD-диски могут быть двухслойными (емкость 8,5 Гбайт), при этом оба слоя имеют отражающую поверхность, несущую информацию. Кроме того, информационная емкость DVD-дисков может быть еще удвоена (до 17 Гбайт), так как информация может быть записана на двух сторонах.

Накопители оптических дисков делятся на три вида:

  • без возможности записи - CD-ROM и DVD-ROM (ROM – Read Only Memory, память только для чтения). На дисках CD-ROM и DVD-ROM хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна;
  • с однократной записью и многократным чтением – CD-R и DVD±R (R – recordable, записываемый). На дисках CD-R и DVD±R информация может быть записана, но только один раз;
  • с возможностью перезаписи – CD-RW и DVD±RW (RW – Rewritable, перезаписываемый). На дисках CD-RW и DVD±RW информация может быть записана и стерта многократно.

Основные характеристики оптических дисководов:

  • емкость диска (CD – до 700 Мбайт, DVD – до 17 Гбайт)
  • скорость передачи данных от носителя в оперативную память – измеряется в долях, кратных скорости 150 Кбайт/сек для CD-дисководов;
  • время доступа – время, нужное для поиска информации на диске, измеряется в миллисекундах (для CD 80–400 мс).

В настоящее время широкое распространение получили 52х-скоростные CD-дисководы – до 7,8 Мбайт/сек. Запись CD-RW дисков производится на меньшей скорости (например, 32х-кратной). Поэтому CD-дисководы маркируются тремя числами «скорость чтения х скорость записи CD-R х скорость записи CD-RW» (например, «52х52х32»).
DVD-дисководы также маркируются тремя числами (например, «16х8х6»).

При соблюдении правил хранения (хранение в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

Флеш-память (flash memory) – относится к полупроводникам электрически перепрограммируемой памяти (EEPROM). Благодаря техническим решениям, невысокой стоимости, большому объёму, низкому энергопотреблению, высокой скорости работы, компактности и механической прочности, флеш-память встраивают в цифровые портативные устройства и носители информации. Основное достоинство этого устройства в том, что оно энергонезависимое и ему не нужно электричество для хранения данных. Всю хранящуюся информацию во флэш-памяти можно считать бесконечное количество раз, а вот количество полных циклов записи, к сожалению, ограничено.

У флеш-памяти есть как свои преимущества перед другими накопителями (жесткие диски и оптические накопители) , так и свои недостатки, с которыми вы можете познакомиться из таблицы, расположенной ниже.

Вы уже владеете одним языком, а быть может и несколькими. Знаете некоторые понятия из химии, физики, математики и других наук. А для того, чтобы понимать и использовать компьютерный язык нужно иметь знания о представлении информации в памяти компьютера. В этой статье поговорим о представлении текста, графики, звука в ПК и рассмотрим основные положения, касающиеся этой темы.

Введение

Для того чтобы было намного проще понять, как представляются файлы в компьютере приведем несколько примеров из жизни с которыми сталкивался каждый:

  1. Вы хотите перейти дорогу, но дойдя до перекрестка, вы останавливаетесь, потому что загорелся красный свет. После небольшого ожидания цвет светофора меняется на зеленый. Машины тормозят, а вы продолжайте свой путь.
  2. Вы сильно торопитесь, когда едете на работу или учебу. Участник дорожного движения, который едет спереди двигается на низкой скорости. Вы моргаете ему фарами, он уступает вам дорогу, и вы едете дальше.

А теперь переведем эти ситуации на язык информатики – в данных ситуациях светофор и фары передают код. Красный сигнал говорит нам о том, что нужно остановиться, а моргание фарами это “код” с помощью которого мы просим уступить дорогу. Быть может вы удивитесь, но в основу любого человеческого языка тоже положен код, только символы в нем называются алфавитом. Теперь рассмотрим это определение более подробно. Итак:

Код – набор обозначений, с помощью которого можно представить информацию.

Кодирование – процесс, при котором данные переводятся в код.

По мере развития информационной сферы учеными и разработчиками предлагались многие способы кодирования информации. Некоторые из них остались незамеченными, другими же мы пользуемся до сих пор. В качестве примера приведем азбуку Морзе, разработанную Самюэлем Морзе в 1849 году. Буквы и цифры определяются в ней тремя символами:

  • Тире (длинный сигнал);
  • Точка (короткий сигнал);
  • Пауза или отсутствие сигнала.

Однако наибольшую популярность завоевал “двоичный код”, который предложил использовать Вильгельм Лейбниц в семнадцатом веке. Информация в нем определяется двумя символами – 0 и 1. Разработчикам данный метод кодирования сильно понравился из-за простоты его реализации. 0- это пропуск сигнала, а число 1- его наличие. Именно двоичное представление используется сегодня в ПК и в другой цифровой технике.

Это интересно Что такое интерфейс простыми словами 💻

Представление и устройство памяти персонального компьютера

Скорее всего, вы знаете, что внутренняя память компьютера состоит из двух частей – оперативной и основной:

Чтобы иметь представление, как работает внутренняя память компьютера, и как её использовать, нужно заглянуть внутрь системного блока. Здесь можно провести аналогию с тетрадным листом “в клеточку”. Каждая клетка содержит в себе одно из двух состояний – 0 или 1. Если в ячейке стоит 1, то это говорит о том, что данная ячейка внутренней памяти включена, если 0, то выключена. Этот способ представления информации называется цифровым кодированием.

Представление памяти пк

Каждая ячейка внутренней памяти ПК хранит в себе единицу информации, которая называется битом. Составляя различные последовательности из битов, мы можем определить различную информацию. У цифрового кодирования много преимуществ – легко копировать и переносить материалы с одного носителя на другой. При создании дубликата копия полностью идентична оригиналу, что невозможно осуществить с данными, которые представлены в аналоговой форме. Из-за большого количества преимуществ в 80-х годах 20 века люди начали использовать способы представления текста, звука и фото с помощью цифр.

Представление графических типов информации в ПК

Сейчас существует два способа представления графических данных в машинном коде.

Растровый

Суть этого способа заключается в том, что графическое изображение делится на маленькие фрагменты, которые называются пиксели. Каждый пиксель содержит в себе информацию о своем цвете. Данный способ называется растровым кодированием.

Растровое изображение

Векторный

В отличие от растрового кодирования, в данном способе представление графики описывается с помощью векторов. Каждому вектору задают координаты начала и конца, толщину и цвет. Например, для отрисовки окружности надо будет задать координаты её центра и радиус, цвет заполнения (если он есть), а также цвет и толщину контура.

векторное изображение

Текст и числа

Представление текстовой информации во внутренней памяти персонального компьютера осуществляется с помощью специальных таблиц. На данный момент, распространение получили стандарты ASCII и UTF-8

ASCII

Таблица была разработана и стандартизирована в 1963 в США. Она предназначалась для обмена данными по телетайпу. Однако сейчас, с её помощью, можно определить различные буквы, знаки и числа. Один знак в этой таблице кодируется восемью битами.

Стандарт был предложен в 1992 году. Её разработали Кен Томпсон и Роб Пайк. С помощью этой кодировки можно представить все знаки в мире. Обладает большой популярностью в интернете – большинство сервисов и сайтов используют именно это таблицу.

Для записи голоса используется микрофон и звуковая плата компьютера. Чтобы компьютер смог определить звуковую информацию – её необходимо перевести в цифровую. Для этого аналоговый сигнал поступает на аналого-цифровой преобразователь. Там он разбивается на маленькие временные кусочки, каждому из которых устанавливается величина интенсивности голоса.

представление звука в пк

В результате функция A(t) преобразуется в дискретную последовательность. Качество звуковой информации полученной на выходе определяется частотой дискретизации.

Частота дискретизации – количестве измерений уровней громкости за одну секунду. Чем больше это значение, тем лучше качество.

Видео

Заключение

Теперь вы знаете о представлении информации в памяти компьютера. Если разобраться в цифровом кодировании и устройстве внутренней памяти ПК, то вы сможете понять и другие, более серьезные разделы информатики, такие как программирование, IP-адресация и другие. Если у вас возникли вопросы по теме, то задавайте их в комментариях к статье.

Что было известно первому человеку? Как убить мамонта, бизона или поймать кабана. В эпоху палеолита хватало стен в пещере, чтобы зафиксировать все изученное. Пещерная база данных целиком бы уместилась на скромную флешку размером мегабайт. За 200000 лет своего существования мы узнали о геноме африканской лягушки, нейронных сетях и больше не рисуем на скалах. Сейчас у нас есть диски, облачные хранилища. А также другие виды носителей информации, способные сохранить на одном чипсете всю библиотеку МГУ.

виды носителей информации

Что такое носитель информации

Носитель информации – это физический объект, свойства и характеристики которого используются для записи и хранения данных. Примерами носителей информации являются пленки, компактные оптические диски, карты, магнитные диски, бумага и ДНК. Носители информации различаются по принципу осуществления записи:

  • печатная или химическая с нанесением краски: книги, журналы, газеты;
  • магнитная: HDD, дискеты;
  • оптическая: CD, Blu-ray;
  • электронная: флешки, твердотельные накопители.

Классифицируются хранилища данных по форме сигнала:

  • аналоговые, использующие для записи непрерывный сигнал: аудио компакт-кассеты и бобины для магнитофонов;
  • цифровые - с дискретным сигналом в виде последовательности чисел: дискеты, флешки.

Первые носители информации

История записи и хранения данных началась 40 тысяч лет назад, когда Homo sapiens пришла идея делать эскизы на стенах своих жилищ. Первое наскальное творчество находится в пещере Шове на юге современной Франции. Галерея содержит 435 рисунков, изображающих львов, носорогов и других представителей фауны позднего палеолита.

цифровые носители информации

На смену Ориньякской культуре в бронзовом веке возник принципиально новый вид носителей информации – туппу́м. Девайс представлял собой пластину из глины и напоминал современный планшет. На поверхность с помощью тростниковой палочки - стилуса - наносились записи. Чтобы труд не размыло дождем, туппумы обжигались. Все таблички с древней документацией тщательно сортировались и хранились в специальных деревянных ящиках.

В Британском музее есть туппум, содержащий информацию о финансовой сделке, произошедшей в Месопотамии во времена правления царя Ассурбанипала. Офицер из свиты принца подтверждал продажу рабыни Арбелы. Табличка содержит его именную печать и записи о ходе операции.

компьютерные носители информации

Кипу и папирус

С III тысячелетия до нашей эры в Египте начинают использовать папирус. Запись данных происходит на листы, изготовленные из стеблей растения papyrus. Портативный и легкий вид носителей информации быстро вытеснил свою глиняную предшественницу. На папирусе пишут не только египтяне, но и греки, римляне, византийцы. В Европе материал использовали до XII века. Последний документ, написанный на папирусе, – папский декрет 1057 года.

Одновременно с древними египтянами, на противоположном конце планеты инки изобретают кипу, или «говорящие узелки». Информация фиксировалась с помощью завязывания узлов на прядильных нитях. Кипу хранили данные о налоговых сборах, численности населения. Предположительно использовалась нечисловая информация, но ученым ее только предстоит разгадать.

современные носители информации

Бумага и перфокарты

С XII до середины XX века основным хранилищем данных была бумага. Ее использовали для создания печатных и рукописных изданий, книг, средств масс-медиа. В 1808 году из картона начали делать перфокарты – первые цифровые носители информации. Представляли собой листы картона с проделанными в определенной последовательности отверстиями. В отличие от книг и газет, перфокарты считывались машинами, а не людьми.

Изобретение принадлежит американскому инженеру с немецкими корнями Герману Холлериту. Впервые автор применил свое детище для составления статистики смертности и рождаемости в Нью-Йоркском Совете здравоохранения. После пробных попыток, перфокарты использовали для переписи населения США в 1890 году.

Но сама идея проделывать дырки в бумаге, чтобы записывать информацию, была далеко не новой. Еще в 1800 году перфокарты ввел в обиход француз Джозеф-Мари Жаккард для управления ткацким станком. Поэтому технологический прорыв заключался в создании Холлеритом не перфокарт, а табуляционной машины. Это был первый шаг на пути к автоматическому считыванию и вычислению информации. Компания TMC Германа Холлерита по производству табуляционных машин в 1924 году была переименована в IBM.

электронные носители информации

OMR-карты

Представляют собой листы плотной бумаги с информацией, записанной человеком в виде оптических меток. Сканер распознает метки и обрабатывает данные. OMR-карты используют для составления опросников, тестов с опциональным выбором, бюллетеней и форм, которые необходимо заполнять вручную.

Технология основана на принципе составления перфокарт. Но машина считывает не сквозные отверстия, а выпуклости, или оптические метки. Погрешность исчислений составляет менее 1 %, поэтому OMR-технологию продолжают использовать государственные учреждения, экзаменационные органы, лотереи и букмекерские конторы.

Перфолента

Цифровой носитель информации в виде длинной бумажной полоски с отверстиями. Перфорированные ленты были впервые использованы Базиле Бушоном в 1725 году для управления ткацким станком и механизирования отбора нитей. Но ленты были очень хрупкими, легко рвались и при этом дорого стоили. Поэтому их заменили на перфокарты.

С конца XIX века перфолента получила широкое применение в телеграфии, для ввода данных в компьютеры 1950-1960 годов и в качестве носителей для мини-компьютеров и станков с ЧПУ. Сейчас бобины с намотанной перфолентой стали анахронизмом и канули в Лету. На смену бумажным носителям пришли более мощные и объемные хранилища данных.

Магнитная лента

Дебют магнитной ленты в качестве компьютерного носителя информации состоялся в 1952 году для машины UNIVAC I. Но сама технология появилась гораздо раньше. В 1894 году датский инженер Вольдемар Поульсен обнаружил принцип магнитной записи, работая механиком в Копенгагенской телеграфной компании. В 1898 году ученый воплотил идею в аппарате под названием "телеграфон".

Стальная проволока проходила между двумя полюсами электромагнита. Запись информации на носитель осуществлялась посредством неравномерного намагничивания колебаний электрического сигнала. Вольдемар Поульсен запатентовал свое изобретение. На Всемирной выставке 1900 года в Париже он имел честь записать голос императора Франца-Иосифа на свой девайс. Экспонат с первой магнитной звукозаписью по сей день хранится в Датском музее науки и техники.

Когда патент Поульсена истек, Германия занялась улучшением магнитной записи. В 1930 году стальная проволока была заменена гибкой лентой. Решение использовать магнитные полосы принадлежит австрийско-немецкому разработчику Фрицу Пфлеймеру. Инженер придумал покрывать тонкую бумагу порошком оксида железа и осуществлять запись посредством намагничивания. С использованием магнитной пленки были созданы компакт-кассеты, видеокассеты и современные носители информации для персональных компьютеров.

примеры носителей информации

HDD-диски

Винчестер, HDD или жесткий диск – это аппаратное устройство с энергонезависимой памятью, что означает полное сохранение информации, даже при отключенном питании. Является вторичным запоминающим устройством, состоящим из одной или нескольких пластин, на которые записываются данные с использованием магнитной головки. HDD находятся внутри системного блока в отсеке дисководов. Подключаются к материнской плате с помощью кабеля ATA, SCSI или SATA и к блоку питания.

Первый жесткий диск был разработан американской компанией IBM в 1956 году. Технологию применили в качестве нового вида носителей информации для коммерческого компьютера IBM 350 RAMAC. Аббревиатура расшифровывается как «метод случайного доступа к учету и контролю».

Чтобы вместить девайс у себя дома, потребовалась бы целая комната. Внутри диска было 50 алюминиевых пластин по 61 см в диаметре и 2,5 см шириной. Размер системы хранения данных приравнивался к двум холодильникам. Его вес составлял 900 кг. Емкость RAMAC была всего лишь 5МБ. Смешная цифра на сегодняшний день. Но 60 лет назад это расценивалось как технология завтрашнего дня. После анонсирования разработки, ежедневная газета города Сан Хосе выпустила репортаж под названием «Машина с суперпамятью!».

гибкий магнитный диск носитель информации

Размеры и возможности современных HDD

Жесткий диск – компьютерный носитель информации. Используется для хранения данных, включая изображения, музыку, видео, текстовые документы и любые созданные или загруженные материалы. Кроме того, содержат файлы для операционной системы и программного обеспечения.

Первые винчестеры вмещали до нескольких десятков Мбайт. Постоянно развивающаяся технология позволяет современным HDD хранить терабайты информации. Это около 400 фильмов со средним расширением, 80 000 песен в mp3-формате или 70 компьютерных ролевых игр, аналогичных «Скайрим», на одном устройстве.

Дискета

Floppy, или гибкий магнитный диск, – носитель информации, созданный IBM в 1967 году как альтернатива HDD. Дискеты стоили дешевле винчестеров и предназначались для хранения электронных данных. На ранних компьютерах не было CD-ROM или USB. Гибкие диски были единственным способом установки новой программы или резервного копирования.

Вместительность каждой 3,5-дюймовой дискеты была до 1,44 Мбайт, когда одна программа «весила» не менее полутора мегабайт. Поэтому версия Windows 95 появилась сразу на 13 дискетах DMF. Floppy disk на 2,88 Мбайт появился только в 1987 году. Просуществовал этот электронный носитель информации до 2011 года. В современной комплектации компьютеров отсутствуют флоппи-дисководы.

Оптические носители

С появлением квантового генератора началась популяризация оптических запоминающих устройств. Запись осуществляется лазером, а считываются данные за счет оптического излучения. Примеры носителей информации:

  • Blu-ray диски;
  • CD-ROM диски;
  • CD-R и CD-RW диски;
  • DVD-R, DVD+R, DVD-RW и DVD+RW.

Устройство представляет собой диск, покрытый слоем поликарбоната. На поверхности находятся микроуглубления, которые считываются лазером при сканировании. Первый коммерческий лазерный диск появился на рынке в 1978 году, а в 1982 году японская компания SONY и Philips выпустили в продажу компакт-диски. Их диаметр составлял 12 см, а разрешение было увеличено до 16 бит.

Электронные носители информации формата CD использовались исключительно для воспроизведения звуковой записи. Но на то время это была передовая технология, за которую в 2009 году Royal Philips Electronics получила награду IEEE. А в январе 2015 года CD был награжден как ценнейшая инновация.

В 1995 году появились цифровые универсальные диски или DVD, ставшие оптическими носителями нового поколения. Для их создания использовалась технология другого типа. Вместо красного лазер DVD использует более короткий инфракрасный свет, что увеличивает объем носителя информации. Двухслойные DVD-диски способны хранить до 8,5 Гбайта данных.

носитель информации используется для

Flash-память

Флеш-память – это интегральная микросхема, которая не требует постоянной мощности для сохранения данных. Другими словами, это энергонезависимая полупроводниковая компьютерная память. Запоминающие устройства с флеш-памятью постепенно завоевывают рынок, вытесняя магнитные носители.

  • компактность и мобильность;
  • большой объем;
  • высокая скорость работы;
  • низкое энергопотребление.

К запоминающим устройствам Flash-типа относят:

  • USB-флешки. Это самый простой и дешевый носитель информации. Используется для многократной записи, хранения и передачи данных. Размеры варьируются от 2 Гбайт до 1 Тбайта. Содержит микросхему памяти в пластиковом или алюминиевом корпусе с USB-разъёмом.
  • Карты памяти. Разработаны для хранения данных на телефонах, планшетах, цифровых фотоаппаратах и других электронных девайсах. Отличаются размером, совместимостью и объемом.
  • SSD. Твердотельный накопитель с энергонезависимой памятью. Это альтернатива стандартному жесткому диску. Но в отличие от винчестеров у SSD нет движущийся магнитной головки. За счет этого они обеспечивают быстрый доступ к данным, не издают скрипов, как HDD. Из недостатков – высокая цена.

Облачные хранилища

Облачные онлайн-хранилища – это современные носители информации, представляющие собой сеть из мощных серверов. Вся информация хранится удаленно. Каждый пользователь может получать к данным доступ в любое время и из любой точки мира. Недостаток в полной зависимости от интернета. Если у вас нет подключения к Сети или Wi-Fi, доступ к данным закрыт.

объемы носителей информации

Облачные хранилища гораздо дешевле своих физических аналогов и обладают большим объемом. Технология активно используется в корпоративной и образовательной среде, разработке и проектировании веб-приложений компьютерного софта. На облаке можно хранить любые файлы, программы, резервные копии, использовать их как среду разработки.

Из всех перечисленных видов носителей информации самыми перспективными являются облачные хранилища. Также все больше пользователей ПК переходят с магнитных жестких дисков на твердотельные накопители и носители с Flash-памятью. Развитие голографических технологий и искусственного интеллекта обещает появление принципиально новых девайсов, которые оставят флешки, SDD и диски далеко позади.

Читайте также: