Восстановите структурную схему компьютера расставьте названия элементов

Обновлено: 04.07.2024

Микропроцессор(МП) является основным элементом ПК и предназначен для управления работой всего ПК, а также для выполнения арифметических и логических операций. В настоящее время наиболее распространенными моделями являются микропроцессоры Pentium, Celeron фирмы Intel и Athlon фирмы AMD. В состав микропроцессора входят:

  • арифметико-логическое устройство (АЛУ) предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор);
  • регистры общего назначения (РОН) – это быстродействующие ячейки памяти, используемые в основном как различные счетчики и указатели на адресное пространство ПК. В современных микропроцессорах имеется шестнадцать 64 –х битных регистров общего назначения. Обращение к регистрам позволяет значительно увеличить быстродействие выполняемой программы;
  • кэш-память – блок высокоскоростной памяти, в которую копируются данные, извлеченные из оперативной памяти. Такое сохранение основных команд позволяет повысить производительность процессора. Современные микропроцессоры имеют кэш-память первого (L1) и второго (L2) уровней. Кэш-память первого уровня (L1), как правило, имеет объем 128 Кбайт, емкость кэш- памяти второго уровня достигает 1 Мбайта;
  • устройство управления (УУ) формирует и подает во все элементы ПК в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций;

схемы управления шиной реализуют сопряжение и связь с другими устройствами ПК через системную шину

Системная шинаобеспечивает сопряжение и связь всех устройств ПК между собой. Системная шина обеспечивает передачу информации между всеми устройствами системного блока. Современные системные шины имеют разрядность 64 бита и тактовую частоту до 800 МГц.

Генератор тактовых импульсов (ГТИ) генерирует последовательность электрических импульсов. Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик ПК и во многом определяет скорость его работы, так как каждая операция в машине выполняется за определенное количество тактов. Современные ПК имеют тактовую частоту до 3,6 ГГц.

Внутренняя памятьпредназначена для хранения и обмена информацией. Внутренняя память содержит два вида запоминающих устройств:

  • постоянное запоминающее устройство (ПЗУ, в английской литературе ROM – read only memory) – служит для хранения неизменяемой (постоянной) программной и справочной информации, позволяет оперативно только считывать хранящуюся в нем информацию (изменить информацию в ПЗУ нельзя!). В ПЗУ хранятся программы самотестирования ПК при включении питания, программы начальной загрузки операционной системы, программы установки конфигурации системы и некоторые другие. Наряду с постоянной памятью используется энергонезависимая полупостоянная память (ППЗУ, CMOS), хранящая параметры конфигурации компьютера, она может быть изменена.
  • оперативное запоминающее устройство (ОЗУ, RAM – random access memory) – предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве недостатка ОЗУ следует отменить невозможность сохранения информации в ней после выключения питания машины (энергозависимость). Современные ПК имеет ОЗУ объемом 128 или 256 Мбайт.

Видеоадаптеры(видеокарты) предназначены для подключения монитора к компьютеру. Физически они осуществляют формирование сигнала для отображения на дисплее данных и синхронизирующими сигналами -горизонтальной и (строчной) и вертикальной (кадровой) развертки. В настоящее время широко используется стандарт SVGA (Super Video Graphics Array). Видеоустройства, поддерживающий стандарт SVGA, способны отображать до 16,8 миллионов цветов и обеспечивают максимально качественное изображение, приближенное к натуральному цвету.

Контроллеры НЖМД, НГМД и НОД представляют собой специализированные устройства, обеспечивающие подключение и функционирование накопителя на жестких магнитных диска (НЖМД -«винчестер»), накопителя на гибких магнитных дисках (НГМД- дискета) и накопителя на оптических дисках (CD-диск ) соответственно.

Сетевой адаптер(сетевая плата)является устройством для подключения ПК к локальной компьютерной сети. Наиболее распространенными в настоящее время являются сетевые адаптеры, функционирующие на основе технологии Ethernet и Fast Ethernet и обеспечивающие скорости передачи данных 10 и 100 Мбит/с соответственно.

Порты(интерфейсы) представляют собой совокупность программных и аппаратных средств для подключения внешних устройств. Конструктивно порты на системном блоке представляют собой стандартные разъемы. Параллельные порты (LPT) позволяет передавать за один такт целый байт информации и применяется для быстрой связи на небольших расстояниях. Последовательные порты (COM) за один такт передают один бит и, в общем случае, работает медленнее, но позволяет передавать данные на большие расстояния. Следует, однако, отметить, что современные последовательные порты типа USB и IEEE1394 превосходят по скорости параллельные, и поэтому вытесняют последние. Специальные порты служат для подключения клавиатуры, микрофона и динамиков (для управления последними используется звуковая карта – мультимедийное устройство, позволяющее воспроизводить музыку и внятную человеческую речь). Игровой порт служит для подключения специального механического устройства джойстика, используемого в компьютерных играх.

Слоты расширения представляют собой пустые разъемы на системной плате, куда могут вставляться дополнительные внутренние устройства.

Внешние устройства ПК

Внешние устройства ПК обеспечивают взаимодействие машины с окружающей средой пользователями, объектами управления и другими ЭВМ. Внешние устройства весьма разнообразны и могут быть классифицированы по ряду признаков. В частности по назначению можно выделить следующие виды внешних устройств:

  • внешние запоминающие устройства (ВЗУ) или внешняя память ПК;
  • диалоговые средства пользователя;
  • устройства ввода информации;
  • устройства вывода информации;
  • средства связи и телекоммуникации.

Некоторые внешние устройства (монитор, принтер, клавиатура, мышь) были кратко описаны в раздел 2.4.2 и являются типовыми внешними устройствами. Следует также отметить, что номенклатура внешних устройств все время меняется, и это связано с постоянными попытками упростить процесс общения человека с машиной.

Среди наиболее распространенных в настоящее время внешних устройств ПК отметим сканер, модем, плоттер и стример.

Сканер предназначен для считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей. Сканеры можно классифицировать по ряду признаков: по способу использования (ручные, планшетные, пакетной обработки); по скорости обработки (количество листов в минуту); методу сканирования (однопроходный, двухпроходный), по разрешающей способности (величина dpi- количество точек на дюйм) т.д. Сканеры, как правило, позволяют представлять информацию как в текстовом режиме с распознаванием символов, так и в графическом виде. Наиболее распространенными на рынке являются сканеры фирм XEROX, RICOH.

Модемслужит для подключения ПК к глобальной компьютерной сети Интернет по телефонным линиям связи. Модемы преобразуют цифровой сигнал в аналоговый с помощью методов аналоговой модуляции. В зависимости от режимов работы различные модемы обеспечивают различные скорости передачи данных: от 1,2 Кбит/с до 56,0 Кбит/с. Наиболее популярными модемами для ПК в настоящее время являются модемы фирм 3Com и ZyXEL.

Плоттер(графопостроитель) предназначен для вывода графической информации (графиков, чертежей, рисунков) на бумажный носитель. Плоттеры бывают векторные с вычерчиванием изображения с помощью пера, фломастера или карандаша и растровые: термографические, электростатические, струйные и лазерные. Конструктивно плоттеры подразделяются на планшетные и барабанные. Основные характеристиками плоттеров являются: скорость вычерчивания (100-1000 мм/с); возможность цветного изображения и передача полутонов; разрешающая способность и четкость изображения. Лидерами на рынке плоттеров являются фирмы Hewlett Packard и Canon.

Стример(накопитель на магнитной ленте) – это устройство, которое применяется для операций резервного копирования и архивирования данных винчестера на магнитную ленту. Такое копирование происходит, как правило, в экстремальных ситуациях, когда необходимо очень быстро сохранить важную информацию с НЖМД. Все файлы, размещенные на сменной кассете, будут сохраняться без каких-либо потерь независимо от того, включен компьютер или нет. В качестве носителей информации применяются сменные кассеты различного размера с магнитной лентой. Ёмкость таких кассет составляет от 40 Мбайт до 13 Гбайт, скорость передачи данных — от 2 до 9 Мбайт в минуту, длина ленты – от 63,5 до 230 м, количество дорожек – от 20 до 144. Основными производителями стримеров являются фирмы IBM, HPQ, Dell и Tandberg.

Иерархия памяти ПК

Память ПК – это совокупность отдельных устройств, которые запоминают, хранят и выдают информацию. Отдельные устройства памяти называются запоминающими устройствами (ЗУ). Производительность ПК во многом зависит от состава и характеристик запоминающих устройств, которые в свою очередь различаются принципом действия и назначением. Основными операциями с памятью являются процедуры записи и считывания (выборки). Общее название указанных процедур носит название обращение к памяти. Основные характеристики памяти – это емкость и быстродействие (время обращение к памяти).

Емкость ЗУ измеряется в Байтах (1Байт = 8 Бит), Килобайтах (1 Кбайт= 210 Байт), Мегабайтах (1Мбайт= 210 Кбайт), Гигабайта (1Гбайт= 210 Мбайт), Терабайтах (1Тбайт= 210 Гбайт).

Быстродействие измеряется в секундах и в настоящее время находится в пределах от 10 –2 до 10 –9 секунд в зависимости от способа доступа к информации.

По способу доступа к хранящейся в них информации ЗУ делятся на: ЗУ с произвольным, прямым и последовательным доступом.

В ЗУ с произвольным доступом время обращения не зависит от места нахождения данных. Такой доступ реализован в регистрах общего назначения, КЭШ-памяти и внутренней памяти ПК.

Носитель информации в ЗУ с прямым доступом непрерывно вращается, в результате данные доступны через некоторый фиксированный промежуток времени. К ЗУ с прямым доступом относятся НЖМД, НМГД, НОД.

ЗУ с последовательным доступом, прежде чем найти необходимые данные, «просматривает» все предыдущие участки памяти. Последовательный доступ реализована в ЗУ, использующих магнитную ленту, например, в стримерах.

Следует отметить, что требования, предъявляемые к емкости и быстродействию ЗУ, являются взаимно противоречивыми с точки зрения технической реализации. Поэтому для эффективного функционирования в ПК память строится по иерархическому принципу, где на разных уровнях иерархии находятся ЗУ, обладающие различными характеристиками. Иерархическая структура памяти ПК представлена на рис. 2.3.

При движении от 1-го до 3-го уровня иерархии быстродействие ЗУ уменьшается, а емкость увеличивается.

Иерархическая организация памяти позволяет повысить производительность ПК и предоставить пользователю практически неограниченную емкость памяти.

Назначение и основные характеристики ЗУ 1-го уровня были описаны в пункте 2.4.3. Рассмотрим 2-й и 3-й уровень иерархии памяти ПК.

НЖМД (HDD – hard disk drive) в обиходе называют винчестером. В отличие от оперативной памяти, НЖМД гарантируют долговременное хранение информации, для чего не требуется постоянное питание компьютера от внешнего источника электроэнергии. Для записи данных в жестких дисках используется магнитный слой, который покрывает пластины (диски), вращающиеся внутри винчестера с огромными скоростями. Вдоль пластин перемещаются головки чтения/записи. Основными характеристика современных НЖМД являются: емкость (до 100 Гбайт ); количество пластин (до 10 штук); среднее время поиска информации (меньше 20 мс); скорость вращения пластин (до 15000 об/мин); вес (меньше 100 г). Основными производителями НЖМД являются фирмы IBM, Seegate, Toshiba, Fujitsu, Samsung.

НОД являются в настоящее время самыми надежными и широко распространенными ЗУ внешней памяти. Считывание информации с оптического диска происходит за счёт регистрации изменений интенсивности отраженного от алюминиевого слоя излучения маломощного лазера. НОД подразделяются на: CD-ROM (Compact Disc Read Only Memory) – компакт- диск только для чтения; CD-R (Compact Disc Recordable) – однократно записываемый компакт- диск; CD-RW (Compact Disc Rewritable)– перезаписываемый компакт-диск; DVD (Digital Versatile Disk) – универсальный цифровой диск.

Стандартный оптический диск CD имеет емкость порядка 650–800 Мбайт, емкость DVD диск достигает от 4,7 до 17 Гбайт.

Архивная памятьПК предназначена для длительного и надежного хранения программ и данных. Как видно из рисунка 2.3 хранить информацию можно на дискетах, оптических дисках, съемных НЖМД, магнитной ленте и флэш-памяти. Поскольку трое первых носителей информации описаны выше, а съемный НЖМД принципиально не отличается от обычного НЖМД, отметим основные свойства флэш-памяти.

Флэш-память представляет собой особый вид энергонезависимой перезаписываемой полупроводниковой памяти. Это означает, что она не требует дополнительной энергии для хранения данных (энергия требуется только для записи), допускает изменение (перезапись) хранимых в ней данных и не содержит механически движущихся частей (как обычные НЖМД или НОД) и построена на основе интегральных микросхем.

Информация, записанная на флэш-память, может храниться очень длительное время (несколько десятков лет) и способна выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных НЖМД).

Размер носителя флэш-памяти составляет от 20 до 40 мм в длину, в ширину и толщина до 3 мм, емкость достигает 1Гбайт, в зависимости от типа флэш-памяти возможна перезапись информации от 10 тысяч до 1млн раз.

Благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в качестве накопителя не только в ПК, но и в таких портативных устройствах, как цифровые фото- и видео-камеры, мобильные телефоны, портативные компьютеры, MP3-плейеры, цифровые диктофоны, и т.п. В ближайшие годы флэш-память будет самым применяемым компактным накопителем информации, постепенно вытесняя привычные дискеты.

Конфигурацией ПК называются состав и характеристики устройств, входящих в данный компьютер. Конфигурация подбирается в зависимости от задач, которые необходимо решать ПК.

Конфигурация ПК может быть задана следующим образом:

В приведенной выше конфигурации можно выделить:

Модульность, масштабируемость и стандартизуемость отдельных блоков современных ПК позволяет быстро и гибко менять его конфигурацию

Статьи к прочтению:

Урок 1 1 Устройство компьютера


Похожие статьи:

Цель: Изучить основные компоненты ЭВМ и их характеристики, провести тестирование быстродействия ОЗУ, построить структурную схему ПК.

FSB (Front Side Bus) – шина в двухшинной архитектуре DIB корпорации Intel шина, связывающая процессор с оперативно запоминающие устройство (ОЗУ).

DMI (Desktop Management Interface) — интерфейс программирования приложений (Application Programming Interface – API), позволяющий программному обеспечению собирать данные о характеристиках компьютера. Спецификация DMI разработана консорциумом Distributed Management Task Force (DTMF), возглавляемом фирмой Intel. Данный интерфейс позволяет пользователю получить информацию об аппаратном обеспечении ПК.

Чипсет (chip set) – набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, ЦПУ, ввода-вывода и других. Чипсеты встречаются и в других устройствах, например, в радиоблоках сотовых телефонов. Чипсет состоит из двух основных микросхем (иногда они объединяются в один чип):

MCH (Memory Controller Hub) — контроллер-концентратор памяти — северный мост (northbridge) — обеспечивает взаимодействие центрального процессора (ЦП) с памятью и видеоадаптером (PCI Express). В новых чипсетах часто имеется интегрированная видеоподсистема. Контроллер памяти может быть интегрирован в процессор (например Opteron, Nehalem, UltraSPARC T1).

ICH (I/O Controller Hub) — контроллер-концентратор ввода-вывода — южный мост (southbridge) — обеспечивает взаимодействие между ЦП и жестким диском, картами PCI, интерфейсами IDE, SATA, USB и пр. Также иногда к чипсетам относят микросхему Super I/O, которая подключается к южному мосту и отвечает за низкоскоростные порты RS232,

В программе имеется достаточно широкий набор тестов:

·чтение из памяти — тестирует скорость пересылки данных из ОЗУ к процессору;

·запись в память;

·копирование в памяти — тестирует скорость пересылки данных из одних ячеек памяти в другие через кэш процессора;

·задержка памяти — тестирует среднее время считывания процессором данных из ОЗУ;

CPU Queen — тестирует производительность процессора в целочисленных операциях при решении классической «Задачи с ферзями»;

CPU PhotoWorxx — тестирует производительность блоков целочисленных арифметических операций, умножения, а также подсистемы памяти при выполнении ряда стандартных операций с RGB-изображениями;

CPU ZLib — тестирует производительность процессора и подсистемы памяти при создании архивов формата ZIP при помощи популярной открытой библиотеки ZLib. Использует целочисленные операции;

CPU AES — тестирует скорость процессора при выполнении шифрования по криптоалгоритму AES. Способен использовать низкоуровневые команды шифрования процессоров VIA C3 и C7, что позволяет последнему быть одним из лидеров теста, превосходя по производительности ряд многоядерных процессоров Intel и AMD;

FPU Julia — тестирует производительность блоков процессора, выполняющих операции с плавающей запятой, в вычислениях с 32-разрядной точностью. Моделирует несколько фрагментов фрактала Жюлиа. При возможности использует инструкции MMX, SSE и 3DNow!;

FPU Mandel — тестирует производительность блоков процессора, выполняющих операции с плавающей запятой, в вычислениях с 64-разрядной точностью путем моделирования нескольких фрагментов фрактала Мандельброта. Способен использовать инструкции SSE2.

FPU SinJulia — усложненный вариант теста FPU Julia. Тестирует производительность блоков процессора, выполняющих операции с плавающей запятой, в вычислениях с 80-разрядной точностью. Использует инструкции x87, предназначенные для вычисления тригонометрических и показательных функций.

Тайминги оперативной памяти. Схема таймингов включает в себя задержки CL-tRCD-tRP-tRAS соответственно. Для работы с памятью необходимо для начала выбрать чип, с которым мы будем работать. Делается это командой CS (Chip Select). Затем выбирается банк и строка. Перед началом работы с любой строкой необходимо ее активировать. Делается это командой выбора строки RAS (Row Address Strobe), при выборе строки она активируется. Затем нужно выбрать столбец командой CAS (Column Address Strobe) – эта же команда инициирует чтение. Затем считать данные и закрыть строку, совершив предварительный заряд (precharge) банка.

CL(Cas Latency) – минимальное время между подачей команды на чтение (CAS) и началом передачи данных (задержка чтения).

tRCD (RAS to CAS delay) – время, необходимое для активизации строки банка, или минимальное время между подачей сигнала на выбор строки (RAS) и сигнала на выбор столбца (CAS).

tRP (Row Precharge) – время, необходимое для предварительного заряда банка (precharge). Иными словами, минимальное время закрытия строки, после чего можно активировать новую строку банка.

tRAS (Active to Precharge) – минимальное время активности строки, то есть минимальное время между активацией строки (ее открытием) и подачей команды на предзаряд (начало закрытия строки). Строка не может быть закрыта раньше этого времени.

CR (Command Rate) – Время, необходимо

е для декодирования контроллером команд и адресов. Иначе, минимальное время между подачей двух команд. При значении 1T команда распознается 1 такт, при 2T – 2 такта, 3T – 3 такта.

Это все основные тайминги. Остальные тайминги имеют меньшее влияние на производительность.

Порты (каналы ввода - вывода)

На задней стенке корпуса современных ПК размещены (точнее могут размещаться) следующие порты:

Game – для игровых устройств (для подключения джойстика).

VGA (Video Graphics Array) – выход контроллера графического адаптера (видеокарты) для подключения монитора.

COM-port – асинхронные последовательные (обозначаемые СОМ1 — СОМЗ). Через них обычно подсоединяются мышь, модем и тому подобное.

PS/2 – асинхронные последовательные порты для подключения клавиатура и манипулятора мышь.

LPT – параллельные (обозначаемые LPT1—LPT4), к ним обычно подключаются принтеры.

USB (Universal Serial Bus) – универсальный интерфейс для подключения 127 устройств (этот интерфейс может располагаться на передней или боковой стенке корпуса).

IEЕЕ-1394 (FireWire) – интерфейс для передачи больших объемов видео информации в реальном времени (для подключения цифровых видеокамер, внешних жестких дисков, сканеров и другого высокоскоростного оборудования). Интерфейсом FireWire оснащены все видеокамеры, работающие в цифровом формате. Может использоваться и для создания локальных сетей.

iRDA - инфракрасные порты предназначены для беспроводного подключения карманных или блокнотных ПК или сотового телефона к настольному компьютеру. Связь обеспечивается при условии прямой видимости, дальность передачи данных не более 1 м. Если в ПК нет встроенного iRDA адаптера, то он может быть выполнен в виде дополнительного внешнего устройства (USB iRDA адаптера), подключаемого через USB-порт. А также разъемы звуковой карты для подключения колонок, микрофона и линейный выход.

Задание 1. Ознакомьтесь с суммарной информацией о компьютере.

1.Запустите программу Everest Ultimate Edition.

2. В левом меню в раскрывающемся списке «Компьютер» выберите пункт «Суммарная информация».

3. Выпишите из списка основных параметров исследуемого компьютера в правом окне:

тип операционной системы;

тип центрального процессора (ЦП);

тип системной платы;

тип чипсета системной платы;

количество и тип оперативной (системной) памяти;

тип и объем дискового накопителя;

перечислить другие устройства ввода-вывода, имеющиеся на исследуемом ПК.

Задание 2. Ознакомьтесь с ЦП исследуемого компьютера.

1. В левом меню в раскрывающемся списке «Системная плата» выберите пункт «ЦП».

2. Выпишите основные параметры ЦП из списка в правом окне:

название ядра (псевдоним) ЦП;

размер и характеристики кэш памяти ЦП;

физические параметры ЦП:

напряжение питания ядра;

3. В левом меню в раскрывающемся списке «Компьютер» выберите пункт «Разгон».

4. Выпишите текущую частоту процессора.

5. Сравните исходную частоту процессора с текущей.

Задание 3. Ознакомьтесь с материнской (системной) платой ПК.

1. В левом меню в раскрывающемся списке «Системная плата» выберите пункт «Системная плата».

2. Выпишите из списка основных параметров материнской платы в правом окне:

название материнской платы и фирму;

свойства шины FSB:

свойства шины памяти:

название чипсета – Intel Hub Interface;

физическую информацию о системной плате:

число гнезд для ЦП;

размеры системной платы;

чипсет системной платы.

Задание 4. Ознакомьтесь со свойствами модулей ОЗУ.

1. В левом меню в раскрывающемся списке «Системная плата» выберите пункт «SPD».

2. Выпишите свойства модулей ОЗУ и основные тайминги памяти, для разных частот.

Задание 5. Ознакомьтесь с чипсетом материнской платы.

1. В левом меню в раскрывающемся списке «Системная плата» выберите пункт «Чипсет».

2. Ознакомьтесь со свойствами «северного моста» чипсета. Для этого в верхнем окне выберите пункт «Северный мост».

название «северного моста»;

поддерживаемые скорости FSB;

поддерживаемые типы оперативной памяти;

тип контроллера памяти;

максимальный объем оперативной памяти;

основные тайминги памяти (CR, tRAS, tRP, tRCD, CL).

4. Ознакомьтесь со свойствами «южного моста» чипсета. Для этого в верхнем окне выберите пункт «Южный мост».

5. Перечислите устройства, содержащиеся в «южном мосте».

Задание 6. Ознакомьтесь с системой хранения данных ПК – постоянно запоминающими устройствами (ПЗУ).

1. В левом меню в раскрывающемся списке «Хранение данных» выберите пункт «Хранение данных Windows». В правом верхнем окне появится список всех возможных ПЗУ исследуемого компьютера.

2. Рассмотрите параметры жесткого диска и оптического DVD накопителя. Для этого выпишите их основные характеристики. Такие как:

Задание 7. Ознакомьтесь с имеющимися на плате портами ввода-вывода.

1. В разделе «Компьютер» выберите пункт «DMI».

2. Из раздела «Системные разъемы» выпишите имеющиеся на материнской плате разъемы.

3. Из раздела «Разъемы портов» выпишите разъемы для подключения внешних устройств ввода-вывода, для каждого укажите тип порта.

Задание 8. Проведите тестирование быстродействия ОЗУ.

1. Перейти в раздел «Тест» в левом меню.

2. Выберите пункт «Чтение из памяти» для тестирования скорости пересылки данных из ОЗУ к процессору.

3. Для начала тестирования нажмите кнопку «Обновить» либо клавишу «F5» на клавиатуре.

4. Выберите пункт «Запись в память».

6. Выберите пункт «Копирование в памяти» для тестирования скорости пересылки данных из одних ячеек памяти в другие через кэш процессора.

8. Выберите пункт «Задержка в памяти» для тестирования среднего времени считывания процессором данных из ОЗУ.

9. Нажмите клавишу «F5» на клавиатуре для тестирования.

Задание 9. По результатам предыдущих пунктов постройте структурную схему ПК.

Контрольные вопросы

1.Основные принципы построения ЭВМ, структура Дж. фон Неймана.

2.Классическая архитектура ЭВМ и принципы фон Неймана.

3.Нарисуйте структурную схема ПК, поясните назначение всех компонентов. Центральный процессор, основные характеристики. Система памяти: состав, назначение. Оперативная память DRAM: строение, основные параметры. Системная магистраль: определение, назначение, параметры.

4.Шины FSB, Hyper Transport, PCI, PCI-E: назначение, основные параметры, быстродействие .

С давних времен люди пытались облегчить свой труд, создавая различные машины и механизмы, усиливающие физические возможности человека.

Первая Электронно-Вычислительная Машина (ЭВМ) - "ENIAC" (Electronic Numerical Integrator and Computer), была создана США в1946г. Её характеристики: 18900 электронных ламп, 5 тыс. операций сложения в секунду, разрядность 30бит, ОП - 600бит

Первая ЭВМ в СССР - МЭСМ (Малая Электронная Счетная Машина)была создана С.А.Лебедевпоя в1951г. : 6000 электронных ламп, 5 тыс. операций сложения в секунду, разрядность 16 бит, ОП - 1800бит

Первый персональный компьютер (ПК) в 1976г выпустила фирма Apple; в СССР персональные компьютеры появились в 1985г.

Различают два основных класса компьютеров:1) цифровые компьютеры (компьютеры), обрабатывающие данные в виде числовых двоичных кодов; 2) аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины, которые являются аналогами вычисляемых величин.

По своему назначению компьютер – универсальное техническое устройство для работы с информацией. По принципам устройства компьютер – модель человека, работающего с информацией.

Компьютер - это программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами. (т.е. компьютер - это комплекс программно-управляемых электронный устройств)

Архитектура ЭВМ – описание устройств и принципов работы компьютеры, достаточное для пользователя и программиста (т.е без подробностей технического характера, а именно электронных схем, конструктивных деталей и пр)

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера.

Архитектура включает: 1) Описание пользовательских возможностей программирования; 2) Описание системы команд и системы адресации; 3) Организацию памяти и т.д.

Схему устройства компьютера предложил Джон фон Нейман в 1946г, её принципы работы во многом сохранились в современных компьютерах.

Принципы Джон фон Неймана: 1) принцип программного управления (программа состоит из набора команд, которые выполняются процессором друг за другом в определенной последовательности) ; 2) принцип однородности памяти (программы и данные хранятся в одной и той же памяти); 3) принцип адресности (ОП состоит из пронумерованных ячеек и процессору в любой момент времени доступна любая ячейка)

Персональный компьютер (ПК) – универсальная ЭВМ, предназначенная для индивидуального пользования. Обычно ПК проектируется на основе принципа открытой архитектуры: 1) описание принципа действия ПК и его конфигурации, что позволяет собирать ПК из отдельных узлов и деталей; 2) наличие в ПК внутренних расширительных гнезд, в которые пользователь может вставлять различные устройства, удовлетворяющие заданному стандарт

1 Структурная схема персонального компьютера (ПК).

Основу ПК составляет системный блок, в котором размещены:

· блок оперативного запоминающего устройства (ОЗУ);

· постоянного запоминающего устройства (ПЗУ); долговременной памяти на жёстком магнитном диске (Винчестер);

· устройства для запуска компакт-дисков (CD) и дискет (НГМД).

Там же находятся платы: сетевая, видеопамяти, обработки звука, модем (модулятор-демодулятор), интерфейсные платы, обслуживающие устройства ввода-вывода: клавиатуры, дисплея, "мыши", принтера и др.


Рисунок 1. Структура персонального компьютера.

Все функциональные узлы ПК связаны между собой через системную магистраль, представляющую из себя более трёх десятков упорядоченных микропроводников, сформированных на печатной плате.

Микропроцессор служит для обработки информации: он выбирает команды из внутренней памяти (ОЗУ или ПЗУ), расшифровывает и затем исполняет их, производя арифметические и логические операции. Получает данные из устройства ввода и посылает результаты на устройства вывода. Он вырабатывает также сигналы управления и синхронизации для согласованной работы его внутренних узлов, контролирует работу системной магистрали и всех периферийных устройств. Упрощённая схема микропроцессора представлена на нижней схеме (выделена штриховой линией с надписью ЦП). В его состав входят: арифметико-логическое устройство (АЛУ), выполняющее арифметические и логические операции над двоичными числами; блок регистров общего назначения (РОН), используемых для временного хранения обрабатываемой информации (R0 - R5), указателя стека (R6) и счётчика команд (R7); устройство управления (УУ), определяющее порядок работы всех узлов микропроцессора. Одной из важнейших характеристик микропроцессора является его разрядность, определяемая числом разрядов АЛУ и РОН. Современные микропроцессоры имеют 16- , 32- и 64-разрядную длину двоичного числа, а также до 200 и более различных внутренних команд.

2 Основные устройства компьютера

В основу устройства компьютера положен принцип открытой архитектуры, т.е. возможность подключения к системе дополнительных независимо разработанных устройств различных прикладных применений. Все устройства подключаются к системе и взаимодействуют друг с другом через общую шину.

Внешний взгляд на компьютер позволяет назвать такие компоненты, входящие в его состав как:

1. Системный блок

2. Монитор (вместе с видеокартой монитор образует видеосистему)

4. Периферийные устройства

Конструктивно системный блок может быть выполнен в горизонтальном (Desk Top) и вертикальном (Mini Tower) исполнении.

Системный блок содержит такие основный устройства ПК как системная плата с процессором и ОП, накопители на магнитных дисках, CD-ROM, блок питания.

Рисунок 2. Современная материнская плата

Материнская (системная) плата – основной аппаратный компонент, где находятся разъемы для установки микропроцессора, оперативной памяти, кварцевый резонатор, базовая система ввода-вывода BIOS, вспомогательные микросхемы, интерфейс ввода-вывода (последовательный порт, параллельный порт, интерфейс клавиатуры, дисковый интерфейс и т.д.) и шина.

Часть технического обеспечения, конструктивно отделенных от основного блока компьютера называют периферийными (устройства ввода-вывода)

Для подключения устройств ввода-вывода на системном блоке имеются разъемы различных портов:

СОМ - Последовательные порты. Передают последовательно электрические импульсы, несущие информации. К ним обычно подключают мышь и модем.

LPT - Параллельный порт. Передает одновременно 8 электрических импульсов. Реализует более высокую скорость информации, используют для подключения принтера.

USB - Последовательная универсальная шина (Universal Serial Bus) – обеспечивает высокоскоростное подключение нескольких периферийных устройств (сканер, цифровая камера и т.д)

Монитор - это устройство, через которое мы воспринимаем всю визуальную информацию от компьютера. Данные, отображаемые на экране монитора, хранятся в определенном блоке памяти компьютера (видеопамять). Управляет работой монитора устройство, размещенное в системном блоке и называемое видеокартой или видеоадаптером. Видеокарта вместе с монитором и образуют видеосистему. Процессор помещает в видеопамять данные, а видеокарта монитора примерно 60 раз в секунду просматривает данные и рисует соответствующее их содержанию изображение на экране.

Современные мониторы бывают постороенными на основе электронно-лучевой трубки (CRT) или жидко-кристаллическими (LCD). В CRT-мониторах изображение получается в результате свечения специального вещества - люминофора под воздействием потока электронов. LCD-мониторы сделаны из вещества, находящегося в жидком состоянии, но имеющего при этом некоторые свойства кристаллов. Молекулы жидких кристаллов меняют свойство проходящего сквозь них светового луча, таким образом на мониторе создается изображение. В настоящее время по показателю цена-качество CRT-мониторы превосходят LCD, т.е. при равном качестве LCD-мониторы дороже. Но зато в LCD-мониторах совершенно отсутствует вредное электро-магнитное излучение, а также уровень потребления энергии примерно на 70% ниже, чем у CRT.

Клавиатура компьютера работает под управлением программ, которые определяют, какую информацию получает компьютер в результате нажатия клавиш. Механизм обработки сигналов, поступающих от клавиатуры, примерно следующий. Каждая клавиша на клавиатуре имеет свой номер, называемый кодом.

После нажатия клавиши клавиатура посылает процессору сигнал прерывания и заставляет процессор приостановить свою работу и переключиться на программу обработки прерывания клавиатуры. При этом клавиатура в своей собственной специальной памяти запоминает, какая клавиша была нажата (обычно в памяти клавиатуры может храниться до 20 кодов нажатых клавиш, если процессор не успевает ответить на прерывание). После передачи кода нажатой клавиши процессору эта информация из памяти клавиатуры исчезает.

Кроме нажатия клавиатура отмечает также и отпускание каждой клавиши, посылая процессору свой сигнал прерывания с соответствующим кодом. Таким образом, компьютер "знает", держат клавишу или она уже отпущена. Это свойство используется при переходах на другой регистр, например при написании заглавных букв. Кроме того, если клавиша нажата дольше определенного времени, т.н. "порог повтора" - обычно около половины секунды, то клавиатура генерирует повторные коды нажатия этой клавиши.

Принтер - это отдельное устройство. Он подключается к компьютеру с помощью разъема. Самые первые принтеры для компьютеров печатали очень медленно и могли напечатать только текст, похожий на тот, что получается на пишущей машинке. Потом появились принтеры, способные по точкам печатать картинки.

Сегодня самые популярные принтеры – лазерные. На них получаются странички, не уступающие по качеству книжным.

Сканеры - устройства для оцифровки и ввода в компьютер изображений с бумажных копий - это старейших вид компьютерной периферии. Современные сканеры позволяют оцифровывать изображения даже объемных предметов и диапозитовов (слайдов).

Манипулятор "мышь" - как правило, самый дешевый из компонентов компьютера, поэтому и отношение к нему соответствующее: очень часто почти безразличное ("лишь бы была"). В то же время, очевидно, что мышь - крайне важное устройство в составе ПК, поскольку вместе с клавиатурой постоянно используется для ввода информации и управления ею внутри компьютера. По принципу действия мыши делятся на отико-механические и оптические. Пока большинство мышей оптико-механические - они дешевы, но требуют периодической чистки. Оптические мыши отличаются высокой надежностью и точностью позиционирования на экране, но они дороги. Еще мыши различаются и по своим управляющим возможностям. Раньше по этому признаку мыши разделялись в основном на "двухкнопочные" и "трехкнопочные". Теперь же трехкнопочные мыши встречаются редко (в большинстве случаев для нормального управления вполне достаточно и двух кнопок)

Цифровые камеры – формируют любые изображения сразу в компьютерном формате;

Микрофон – ввод звуковой информации. Звуковая карта преобразует звук из аналоговой формы в цифровую.

Веб-камера- нужна для ввода динамического изображения в компьютер и звука, чтобы, например, общаться нам с вами, создавать телеконференции

USB-накопители на флэш-памяти, на мой взгляд, стали самым универсальным средством переноса информации. Это миниатюрное устройство размером и весом меньше зажигалки. Оно имеет высокую механическую прочность, не боится электромагнитных излучений, жары и холода, пыли и грязи.

Несмотря на огромное разнообразие вычислительной техники и ее необычайно быстрое совершенствование, фундаментальные принципы устройства машин во многом остаются неизменными. В частности, начиная с самых первых поколений, любая ЭВМ состоит из следующих основных устройств

В основу устройства компьютера положен принцип открытой архитектуры, т.е. возможность подключения к системе дополнительных независимо разработанных устройств различных прикладных применений. Все устройства подключаются к системе и взаимодействуют друг с другом через общую шину.

Внешний взгляд на компьютер позволяет назвать такие компоненты, входящие в его состав как:

5. Системный блок

6. Монитор (вместе с видеокартой монитор образует видеосистему)

8. Периферийные устройства

Схема устройства компьютеров, построенных по магистральному принципу

Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство (АЛУ) и устройство управления (УУ).

По своему назначению компьютер – универсальное техническое устройство для работы с информацией. По принципам устройства компьютер – модель человека, работающего с информацией.

Компьютер - это программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

1. Жигарев А., Н. Макарова Н. В. «Основы компьютерной грамоты» 2007 г.

2. Кузнецов Е. Ю., Осман В. М. «Персональные компьютеры и программируемые микрокалькуляторы». 2008 г.

3. Растригин Л. А. «С компьютером наедине». 2005 г.

4. Под ред. А.П. Ершова, В.М. Монахова. «Основы информатики и вычислительной техники». 2007 г.

Упрощенная структурная схема ПК представлена на рис. 2.2 (без выделения в качестве отдельных элементов материнской платы и блока питания).


Рис.2.2. Упрощенная структурная схема ПК

Рассмотрим основные элементы данной схемы.

Процессор (микропроцессор) является основным элементом ПК и предназначен для управления работой всего ПК, а также для выполнения операций по обработке информации.

Системная шина – основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Она включает в себя шину данных, адресную шину, шину инструкций (управления) и шину питания, обеспечивая три направления передачи информации:

1. между процессором и основной памятью;

2. между процессором и портами ввода-вывода внешних устройств;

3. между основной памятью и портами ввода-вывода внешних устройств.

Важнейшими функциональными характеристиками системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимальная скорость передачи информации. Пропускная способность шины зависит от ее разрядности и тактовой частоты, на которой шина работает.

Все внешние устройства (точнее, их порты ввода-вывода) через соответствующие унифицированные разъемы подключаются к шине через адаптеры (специальные устройства сопряжения и обмена) или через контроллеры (электронные управляющие схемы).

Видеоадаптер (видеокарта) предназначен для подключения монитора к компьютеру. Его основное назначение – формирование видеосигнала для отображения данных на мониторе. Кроме этого, многие видеоадаптеры имеют дополнительные мультимедийные возможности: прием изображений с внешнего источника (видеокамера, видеомагнитофона или телевизионной антенны), вывод изображения на внешние источники (телевизор или видеомагнитофон), декодирование видеосигнала, поступающего с дисков VideoCD или DVD и др.

§ графическим чипом (чипсетом);

§ объемом и типом видеопамяти (оперативной памяти видеоадаптера);

§ разрешающей способностью (максимальным количеством точек по горизонтали и вертикали, которое он способен воспроизвести на экране);

§ цветовым режимом (количеством отображаемых цветов);

§ максимальной частотой развертки (частотой обновления кадров);

§ интерфейсом подключения к системной плате;

§ дополнительными мультимедийными возможностями;

§ поддержкой цифрового интерфейса;

Адаптеры портов ввода-вывода обслуживают разнообразные внешние устройства, присоединение которых к ПК осуществляется через специальные схемные элементы – порты. В зависимости от способа передачи информации различают следующие порты:

Параллельные порты (LPT) позволяет передавать за один такт целый байт информации и применяется для быстрой связи на небольших расстояниях.

Последовательные порты (COM) за один такт передают один бит и, в общем случае, работает медленнее, но позволяет передавать данные на большие расстояния. Следует, однако, отметить, что современные последовательные порты типа USB и IEEE1394 превосходят по скорости параллельные, и поэтому вытесняют последние.

Специальные порты служат для подключения клавиатуры, микрофона и динамиков (для управления последними используется звуковая карта).

Игровой порт служит для подключения специального механического устройства джойстика, используемого в компьютерных играх.

Контроллеры НЖМД, НГМД и НОД обеспечивают подключение и функционирование накопителей на жестких магнитных дисках (винчестеров), накопителя на гибких магнитных дисках (дисковода), накопителей на оптических дисках (CD/DVD-приводов).




Внутренняя память ПК предназначена для хранения и обработки данных.

Емкость памяти измеряется в Байтах (1Байт = 8 Бит), Килобайтах (1 Кбайт = 1024 Байт), Мегабайтах (1Мбайт = 1024 Кбайт), Гигабайтах (1Гбайт = 1024 Мбайт), Терабайтах (1Тбайт = 1024 Гбайт).

Выделяют следующие виды внутренней памяти:

1. Постоянное запоминающее устройство (ПЗУ, ROM – read only memory) – память для хранения программ управления работой и тестирования устройств ПК. Важнейшая микросхема ПЗУ – модуль BIOS (Basic Input/Output System – базовая система ввода/вывода), в котором хранятся программы автоматического тестирования устройств после включения компьютера и загрузки ОС в оперативную память. ПЗУ сохраняет информацию и при отключенном питании компьютера, т.е. является энергонезависимой памятью. Большинство микросхем ПЗУ являются масочными (программируются изготовителем) – внести в них изменение невозможно.

2. Полупостоянное запоминающее устройство (ППЗУ,CMOS – Complementary Metal-Oxide Semiconductor)– память с невысоким быстродействием и минимальным энергопотреблением от батарейки – используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы. Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS.

3. Оперативное запоминающее устройство (ОЗУ, RAM – random access memory) – память для оперативной записи (оперативная память), хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве особенности ОЗУ следует отменить невозможность сохранения в ней информации после выключения питания ПК (энергозависимость).

Оперативная память выпускается в виде микросхем, собранных в специальные модули памяти, определенного типа и объема.

4. Кэш-память – служит буфером между оперативной памятью и микропроцессором и позволяет увеличить скорость выполнения операций, т.к. является сверхбыстродействующей. В нее помещаются данные, которые процессор получил, и будет использовать в ближайшие такты своей работы. При обращении микропроцессора к памяти сначала ищутся данные в кэш-памяти, а затем, если остается необходимость, в оперативной памяти.

Читайте также: