Вселенная как квантовый компьютер

Обновлено: 04.07.2024

  • ЖАНРЫ 360
  • АВТОРЫ 278 531
  • КНИГИ 658 103
  • СЕРИИ 25 237
  • ПОЛЬЗОВАТЕЛИ 614 386

Программируя Вселенную. Квантовый компьютер и будущее науки

Издательство благодарит Russian Quantum Center, Сергея Белоусова и Виктора Орловского за помощь в подготовке издания.

Перевод А. Стативка

Редактор И. Лисов

Редакторы Russian Quantum Center А. Сергеев, Д. Фалалеев

Руководитель проекта А. Половникова

Корректор Е. Сметанникова

Компьютерная верстка М. Поташкин

© Seth Lloyd, 2006

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2013

Предисловие автора к русскому изданию

Я с удовольствием пишу это специальное введение для издания книги «Программируя Вселенную» на русском языке. Я хотел бы поблагодарить Сергея Белоусова, Евгения Демлера, Мишу Лукина и всех коллег из Российского квантового центра, которые помогли сделать возможной публикацию этого русского перевода. Российский квантовый центр – это новое прогрессивное учреждение, которое сохраняет великую русскую традицию фундаментальной науки. Исследователи центра уже внесли важный вклад в теорию и практику обработки квантовой информации, которая является одной из центральных тем моей книги. Я с нетерпением жду от этой научной организации новых больших и прекрасных научных достижений.

Идея «Программируя Вселенную» состоит в том, что мы должны воспринимать Вселенную в терминах обработки информации, проводимой ею на самом фундаментальном уровне. В традиционном физическом описании Вселенной главной величиной является энергия. Недавно, однако, стало ясно, что информация является столь же важной величиной. Как гласит знаменитая формула Эйнштейна E = mc², вся материя сделана из энергии. Однако информация задает форму, которую принимает вещество, и определяет те преобразования, которым подвергается энергия. В глубине своей Вселенная – это танец вращений и щелкающих звуков, в котором энергия и информация являются равными партнерами. Вселенная, в сущности, является гигантским компьютером, в котором каждый атом и каждая элементарная частица содержат биты информации, и каждый раз, когда два атома или две частицы сталкиваются, эти биты меняют свои значения. Вычислительная природа Вселенной дает начало ее запутанности и сложности: все, что может быть вычислено – все, что может вообразить наш разум, и даже сверх того – существует где-то во Вселенной.

Российские математики и ученые вписали много прекрасных страниц в теорию информации. Работы Андрея Николаевича Колмогорова были очень важны для этой книги: Колмогоров был одним из основоположников в области теории алгоритмической информации, в которой утверждается, что информация должна быть определена на языке ее обработки, то есть через вычисления. Теория сложности Колмогорова является естественной основой теорий вычисления и образования сложности, обсуждаемых в этой книге. В последнее время российские ученые сделали исключительно важный вклад в теорию квантовой информации и квантовых вычислений. Квантовая механика – это раздел физики, который изучает поведение вещества и энергии в их самой фундаментальной форме. В своей основе она является странной и контринтуитивной: частицы имеют соответствие в виде волн, а волны сделаны из частиц – это корпускулярно-волновой дуализм. Один электрон может находиться одновременно в двух местах, и множество вещей, которые для нашего классического воображения представляются невозможными, в действительности происходят ежесекундно. Вселенная – это не просто компьютер; в силу своей природы она является квантово-механическим компьютером. Сочетание квантовой странности с обработкой информации как раз и придает Вселенной ее стабильность, мощь и сложность.

Я имел счастье начинать свою научную карьеру в 1980-е гг., в момент, когда российские и советские ученые начали выезжать за границу после многих десятилетий разобщения с остальным миром. Помимо открытия сокровищницы фундаментальной научной информации, которая до этого была опубликована только на русском языке, эти ученые придали научному дискурсу уникальный и чудесный дух. В юности я читал Толстого и Достоевского и потому был знаком с богатством русской интеллектуальной дискуссии, но я никогда до этого не участвовал в настоящем русском научном споре, когда начинают говорить на повышенных тонах, когда по столу бьют кулаком, когда кусок мела могут в сердцах разбить о доску, но в конце, когда задачу удалось решить, все снова становятся друзьями. Страсть, настойчивость и дружеское разрешение фундаментальных проблем – вот истинный дух науки! И я надеюсь, что русское издание «Программируя Вселенную» породит яркие научные споры.

Яблоко и Вселенная

«В начале был бит», – начал я. Часовня женского монастыря XVII в., где находится занятый изучением сложных систем Институт Санта-Фе, была заполнена обычными слушателями: физиками, биологами, экономистами и математиками с закваской из нескольких Нобелевских лауреатов. Один из отцов-основателей астрофизики и квантовой гравитации, Джон Арчибальд Уилер, предложил мне прочесть лекцию на тему «Всё из бита». Я принял вызов. Стоя перед аудиторией, я стал сомневаться, стоило ли это делать, но отступать было некуда. Я взял в руку яблоко.

«Вещи возникают из информации, то есть из битов, – продолжил я, нервно подбрасывая яблоко в воздух. – Это яблоко – хороший объект. Яблоко часто ассоциируют с информацией. Во-первых, яблоко – плод познания, “смертельный вкус которого принес на землю смерть и все страданья наши”. Оно несет информацию о добре и зле. Позже именно траектория падающего яблока подсказала Ньютону универсальные законы тяготения, а искривленная поверхность яблока есть метафора искривленного пространства времени Эйнштейна. Ближе к нашей теме то, что в генетическом коде, записанном в семенах яблока, запрограммирована структура будущих яблонь. И еще одно, не менее важное свойство яблока: оно содержит свободную энергию – калории богатой битами энергии, благодаря которой функционирует наше тело». Я откусил кусочек яблока.

«Очевидно, это яблоко содержит информацию разных типов. Но сколько оно вмещает? Сколько битов в нем?» Я положил яблоко на стол и повернулся к доске, чтобы сделать быстрый расчет. «Что интересно, количество битов в яблоке известно с начала XX в., когда еще не было самого слова “бит”. Может показаться, что яблоко содержит бесконечное число битов, но это не так. В действительности законы квантовой механики, управляющие всеми физическими системами, говорят, что требуется лишь конечное число битов, чтобы определить микроскопическое состояние яблока и всех его атомов. Каждый атом, а точнее, его положение и скорость содержит всего несколько битов; каждый ядерный спин в ядре атома хранит один-единственный бит. Поэтому битов в яблоке всего в несколько раз больше, чем атомов – несколько миллионов миллиардов миллиардов нулей и единиц».

Я повернулся к аудитории. Яблока на столе не было. Ничего себе! Кто его взял? Уилер безмятежно смотрел на меня. Лицо Мюррея Гелл-Манна, нобелевского лауреата, изобретателя кварка и одного из ведущих физиков мира, также не отражало никаких эмоций.

«Я не могу продолжать без яблока. Нет объекта – нет битов», – заявил я и сел.

Моя голодная забастовка продлилась всего несколько мгновений: улыбнувшись, инженер из исследовательского центра Bell Labs протянул мне яблоко. Я взял его и поднял над головой, бросая вызов любому, кто решится совершить еще одну попытку воровства. Это была моя ошибка. Но тогда мне казалось, что все идет хорошо.

В традиционном физическом описании Вселенной главной величиной является энергия. Однако, информация является столь же важной величиной. Как гласит знаменитая формула Эйнштейна E = mc², вся материя сделана из энергии. Во Вселенной энергия и информация являются равными партнерами. Вселенная, в сущности, является гигантским компьютером, в котором каждый атом и каждая элементарная частица содержат биты информации, и каждый раз, когда два атома или две частицы сталкиваются, эти биты меняют свои значения. Все, что может быть вычислено, все, что может вообразить наш разум, существует где-то во Вселенной!

Как пишет Сет Ллойд («Программируя Вселенную), «Вещи возникают из информации, то есть из битов. К примеру, яблоко часто ассоциируют с информацией. Именно траектория падающего яблока подсказала Ньютону универсальные законы тяготения, а искривленная поверхность яблока есть метафора искривленного пространства времени Эйнштейна. В генетическом коде, записанном в семенах яблока, запрограммирована структура будущих яблонь. И еще одно, не менее важное свойство яблока: оно содержит свободную энергию – калории богатой битами энергии, благодаря которой функционирует наше тело. Передать запах яблока могут всего несколько молекул и сопутствующих им битов, но чтобы обеспечить яблоку пищевую ценность, необходимы миллиарды миллиардов битов».

С точки зрения количества информации, которую могут хранить биты, все они равны. Бит – сокращение от binary digit (двоичное число) – может находиться в одном из двух различимых состояний: 0 или 1, да или нет, “орел” или “решка”. Любая физическая система, где есть два этих состояния, содержит один бит. Система, в которой больше состояний, содержит больше битов. Согласно законам квантовой механики любая физическая система, ограниченная конечным объемом пространства и конечным количеством энергии, имеет конечное число различимых состояний и поэтому содержит конечное число битов. Все физические системы содержат информацию.


Вселенная – самый большой объект, существующий на свете, а бит – самый маленький кусочек информации. Вселенная состоит из битов.

Каждая молекула, атом и элементарная частица содержат биты информации. В любом взаимодействии между этими частицами Вселенной информация обрабатывается путем изменения этих битов. Иначе говоря, Вселенная вычисляет. Но ею управляют законы квантовой механики, поэтому она вычисляет так, как это свойственно квантовой механике; ее биты – это квантовые биты. По сути, история Вселенной – это огромное, постоянное квантовое вычисление. Вселенная – это квантовая вычислительная машина.

Возникает вопрос: что вычисляет Вселенная? Ответ: саму себя, свое собственное поведение. Как только Вселенная возникла, она тут же начала вычислять. Сначала конструкции, которые она создавала, были простыми: они включали элементарные частицы и устанавливали фундаментальные законы физики. Со временем, обрабатывая все больше и больше информации, Вселенная давала начало все более запутанным и сложным объектам, включая галактики, звезды и планеты. Жизнь, язык, люди, общество, культура – все обязаны своим существованием естественной способности вещества и энергии обрабатывать информацию.

Способность Вселенной к вычислению объясняет одну из величайших тайн природы: как из очень простых законов физики возникают сложные системы, например живые существа. Эти законы позволяют предсказывать будущее, но только как вероятность и только в общих чертах. Квантово-вычислительная природа Вселенной такова, что конкретные детали будущего всегда остаются непредсказуемыми. Их смог бы вычислить только компьютер размером с саму Вселенную. Так что единственный способ заглянуть в будущее – подождать и посмотреть, что произойдет.

Цифровая революция, происходящая сегодня, – последнее звено в длинной цепи революций в области обработки информации, уходящей в прошлое. Среди них – возникновение человеческих языков, рождение жизни…. начало самой Вселенной. Каждая из них заложила основу для следующей, и все эти революции в сфере обработки информации, начиная с Большого взрыва, происходили благодаря естественной способности Вселенной обрабатывать данные.


Квантовая механика славится своими парадоксами. Волны ведут себя как частицы, а частицы – как волны, и можно находиться в двух местах одновременно. Пожалуй, не так уж удивительно, что на микроуровне вещи ведут себя странным и парадоксальным образом; в конце концов, мы привыкли воспринимать объекты, которые по размеру намного больше отдельных атомов. Но парадоксы квантового мира все же сбивают нас с толку. Нильс Бор, отец квантовой механики, как-то заметил: если кто-то считает, будто может разбираться в квантовой механике, не испытывая при этом головокружения, то на самом деле он ее не понимает.

На протяжении полувека вычислительная мощность компьютеров удваивалась каждые полтора года. Этот взрыв называется «законом Мура», в честь Гордона Мура, который указал на экспоненциальный характер роста еще в 1960-е годы. Закон Мура – это не закон природы, а свидетельство человеческой изобретательности. Каждые восемнадцать месяцев компьютеры становятся в два раза быстрее, потому что каждые восемнадцать месяцев инженеры находят способ уменьшить вдвое размер соединений и логических элементов, из которых они состоят. Каждый раз, когда размер основных компонентов компьютера уменьшается вдвое, на чипе того же размера становится возможно разместить в два раза больше элементов. В результате компьютер оказывается вдвое мощнее своего предшественника, созданного полтора года назад.

Если спроецировать закон Мура на будущее, можно увидеть, что размер соединений и логических элементов, из которых состоят компьютеры, лет через сорок должен будет достичь уровня атомов; следовательно, чтобы закон Мура действовал и дальше, ученым придется научиться создавать компьютеры, работающие на квантовом уровне. Квантовые компьютеры представляют собой последний рубеж миниатюризации.

Первые квантовые компьютеры появились десять лет назад, и количество битов, которые они могут содержать, удваивается почти раз в два года. Даже если эта скорость сохранится, пройдет еще полвека, прежде чем квантовые компьютеры смогут сравняться с сегодняшними по количеству битов. Квантовым компьютерам предстоит еще долгий путь до обычной «персоналки».

Одна из причин для создания квантовых компьютеров заключается в том, что они позволят понять, как Вселенная записывает и обрабатывает информацию. Один из лучших способов понять закон природы – это создать машину, которая бы иллюстрировала этот закон. Дэвид Кори из Массачусетского технологического института построил первый молекулярный квантовый компьютер, его квантовые аналоговые компьютеры могут выполнять вычисления, для которых потребовался бы обычный компьютер, превышающий размерами саму Вселенную. Как только ученые увидят как работают квантовые компьютеры, они смогут определить границы вычислительной способности Вселенной.

Возможно, через 100 лет изобретение квантовых компьютеров будут сравнивать с открытием огня?


Когда речь идет о квантовой теории, то информация — это одна из количественных характеристик системы. Возможно провести аналогию со знакомыми всем мерами классической информации, которыми мы пользуемся, когда работаем на обычном компьютере. Тогда мы говорим о битах, байтах, а сейчас все больше о мегабайтах и гигабайтах информации, содержащейся в том или ином файле или на диске. Работа компьютера основана, прежде всего, на количественной теории информации, на битах, на определенном количестве ячеек памяти. Нашему компьютеру все равно, какая информация содержится в том или ином файле, когда он создается, копируется или удаляется. Для компьютера важно лишь общее количество битов, которыми мы манипулируем, и состояние каждого бита, когда файл сохраняется на диске. Способы обработки файлов и ячеек памяти, своеобразные «фундаментальные законы», согласно которым наш компьютер манипулирует информацией, не зависят от того, какие именно данные там содержатся. Например, любой файл копируется по одному и тому же «закону», независимо от того, какая в нем есть информация.

Так же и в квантовой теории — только здесь на первый план выходят не биты, а кубиты (квантовые биты). Причем не только тогда, когда мы говорим о квантовом компьютере, но и в более широком смысле, когда речь идет о любой системе, описываемой в терминах состояний. Такое обобщение возможно потому, что кубит — это вектор состояния произвольной двухуровневой системы, и любую более сложную систему можно рассматривать как совокупность кубитов. Обычно в квантовой теории, описывая какую-либо систему в терминах состояний, мы рассматриваем ее, как состоящую из элементарных «кирпичиков», кубитов — элементарных двухуровневых состояний.

Таким образом, любые системы в окружающей реальности можно рассматривать в терминах кубитов, как совокупность ячеек памяти квантового компьютера. Тогда и вся Вселенная представляется в виде глобального и единого для всей реальности Квантового Компьютера с большой буквы, своеобразной всеобъемлющей Матрицей (физик А. Доронин в своей работе "Квантовая магия" использует термин "матрица плотности"). Поэтому Р. Фейнман ещё в середине 20 в.говорил об исключительно важной роли квантовых компьютеров в постижении законов природы, а в настоящее время мы имеем возможность убеждаться в этом ежедневно, следя за набирающими обороты развитием квантового компьютинга. Понимание фундаментальных принципов работы квантового компьютера, в отличие от обычного, уже не ограничивается одним только «железом», конкретными техническими устройствами. Это и будет означать более глубокое понимание фундаментальных законов окружающей реальности, согласно которым «функционирует» вся Вселенная. Процессы декогеренции/рекогеренции, т.е. перехода нелокального (чисто информационного) состояния в локальное и обратно, манипулирование квантовой запутанностью кубитов и т. д. — все это физические процессы, которые происходят в окружающей нас реальности, причем на самом фундаментальном ее уровне.

Вселенная вычисляет, записывая и трансформируя информацию. Все то, что мы видим вокруг, можно назвать вселенским, или универсальным компьютером. Однако у этого названия есть другое, более техническое значение. В информатике тоже есть понятие «универсальный компьютер» – это устройство, которое можно запрограммировать так, что оно будет обрабатывать биты информации любым желаемым способом. Обычные цифровые компьютеры, – это универсальные компьютеры, а их языки – универсальные языки. Люди способны производить универсальные вычисления, и человеческие языки универсальны. Почти все системы, которые можно запрограммировать на выполнение произвольно длинных последовательностей простых преобразований информации, являются универсальными.

Универсальный компьютер может сделать с информацией почти все что угодно. Изобретатели универсальных компьютеров и универсальных языков, Алонзо Черч и Алан Тьюринг, выдвинули гипотезу, что на универсальном компьютере может быть выполнена любая возможная математическая манипуляция, то есть что универсальный компьютер может создавать математические построения любого уровня сложности. Но сам он не должен быть сложной машиной; все, что он должен уметь, – это брать биты, по одному или по два за раз, и выполнять с ними простые операции. Чтобы совершить любое желаемое преобразование над сколь угодно большим набором битов, достаточно многократно выполнять операции всего с одним или двумя битами за раз. Любая машина, которая может выполнить такую последовательность простых логических операций, является универсальным компьютером.

Важно, что универсальный компьютер можно запрограммировать так, чтобы преобразовывать информацию любым желаемым образом, и любой универсальный компьютер можно запрограммировать так, чтобы он преобразовывал информацию точно так же, как это делает любой другой универсальный компьютер. Таким образом, любой универсальный компьютер может моделировать другой, и наоборот. Такая взаимомоделируемость означает, что все универсальные компьютеры могут выполнять один и тот же набор задач. (Эта особенность вычислительной универсальности нам знакома: если какая-то программа работает на PC, ее, безусловно, можно видоизменить так, что она будет работать на Mac.)

Конечно, на Mac программа может работать медленнее, чем на PC, и наоборот. Программа, написанная для универсального компьютера определенного типа, на нем обычно работает быстрее, чем ее «переводная» версия на другом компьютере. Но эта переведенная программа все равно будет работать. Можно показать, что любой универсальный компьютер может не только имитировать любой другой универсальный компьютер, но и делать это эффективно . При переводе программы с одного компьютера на другой она будет работать медленнее, но ненамного.

Если продолжить сравнение с обычным компьютером, то наше представление о привычном материальном мире — все равно что знакомство с одной программой, запущенной на Компьютере, и некоторая способность ориентироваться в ее пределах. При этом мы могли видеть лишь один результат его работы — в виде классической реальности, и изучали законы, которые справедливы в рамках лишь одной этой программы. Но теперь мы начинаем понимать Законы, по которым работают любые программы, принцип действия самого Компьютера и его операционной системы. Это законы, по которым Матрица транслирует нам то или иное восприятие. Мы выходим за рамки привычной локальной программы и замечаем множество других программ (уровней реальности), которые загружены в оперативную память вместе с нашей. Мы начинаем понимать взаимосвязь всех этих различных программ-уровней и можем более надежно прогнозировать результат перехода с одного на другой (если в терминах эзотерики и религии - например, то, в какую реальность душа попадет после смерти физического тела).

Имея дело с классической информацией, мы разделяем саму информацию и физический носитель. В результате чего можем лишь приспособить какой-либо материальный объект для хранения (передачи) определенного количества «классической» информации. Получается, что без материального носителя информация не может существовать. Поэтому и возникают иногда вопросы, где содержится квантовая информация, и что является ее носителем? В квантовой теории с этим как раз все просто и ясно: поскольку информация здесь — это физическая величина, характеризующая систему, то сама система и является носителем квантовой информации. Это все равно что спросить, где содержится масса физического тела. Она содержится в самом носителе, т.к. является одной из количественных характеристик данного тела.

Квантовое описание на сегодняшний день — это самое полное теоретическое описание из всех известных. Когда описывается замкнутая система, то на вопрос, где содержится информация об этой системе, следует очевидный ответ: информация содержится в самой системе, это одна из ее количественных характеристик.

Американский ученый Сет Ллойд в своей книге "Программируя вселенную" утверждает, что с помощью квантового компьютера возможно описать и запрограммировать работу всей Вселенной как физической системы. Его теория достаточно интересна, но, по моему мнению, слишком идеалистична и самоуверенна в масштабах целой Вселенной. Если Вселенная бесконечна, то она по определению не является сложной системой и не поддается какому-либо описанию и программированию . Однако уже нет сомнений, что некоторые её масштабные составляющие в скором будущем смогут быть описаны с помощью квантовых компьютеров. Далее цитирую автора.

"Но как насчет квантового компьютера? Несколько лет назад, следуя предложению физика Ричарда Фейнмана, я показал, что квантовые компьютеры способны моделировать любую систему, которая подчиняется известным законами физики (и даже пока еще неизвестным!), причем моделировать просто и эффективно.

Такое моделирование происходит следующим образом: во-первых, состояние каждого элемента квантовой системы – атома, электрона, или фотона – отображается на состояние некоторого небольшого набора квантовых битов, который называют квантовым регистром. Этот регистр сам является квантово-механическим, поэтому он без проблем может хранить квантовую информацию, относящуюся к первоначальной системе, и всего лишь в нескольких квантовых битах. Затем мы запускаем естественную динамику квантовой системы с помощью простых квантовых логических операций – взаимодействий между квантовыми битами. Поскольку динамика физической системы основана на взаимодействиях между ее составными частями, эти взаимодействия можно напрямую смоделировать посредством квантовых логических операций, отображенных на биты квантового регистра, которые соответствуют этим частям.

Этот метод квантового моделирования является прямым и весьма эффективным. Время, за которое квантовый компьютер выполняет такое моделирование, пропорционально времени, за которое эволюционирует сама моделируемая система, а объем памяти, нужный для моделирования, пропорционален количеству подсистем или подобъемов моделируемой системы. Моделирование производится путем прямого отображения динамики системы на динамику квантового компьютера. Наблюдатель, который взаимодействует с квантовым компьютером через подходящий интерфейс, не заметит разницы между квантовым компьютером и самой системой. Все измерения, сделанные на таком компьютере, дадут те же самые результаты, как и аналогичные измерения на самой системе. Таким образом, квантовый компьютер – это универсальный квантовый имитатор.

Вселенная является физической системой. Поэтому ее можно эффективно моделировать с помощью квантового компьютера – ровно такого же размера, как сама она. Поскольку Вселенная поддерживает квантовые вычисления и ее можно эффективно смоделировать с помощью квантового компьютера, можно заключить, что ее вычислительная мощность не больше и не меньше, чем имеет универсальный квантовый компьютер.

Более того, Вселенная неотличима от квантового компьютера. Рассмотрим квантовый компьютер, выполняющий эффективное моделирование Вселенной, и сравним результаты измерений, проведенных во Вселенной, с измерениями, проведенными в квантовом компьютере. Во Вселенной измерения проводит одна ее часть – в данном случае мы – над другой ее частью. Аналогичный процесс происходит в квантовом компьютере, когда один регистр компьютера получает информацию о другом регистре. Так как квантовый компьютер может выполнять эффективное и точное моделирование, результаты этих двух наборов измерений будут неразличимы.

Вселенная обладает такой же способностью к обработке информации, что и универсальный квантовый компьютер. Универсальный квантовый компьютер может точно и эффективно моделировать Вселенную. Результаты измерений, сделанных во Вселенной, неотличимы от результатов измерений в квантовом компьютере. Раз так, мы можем дать точный ответ на вопрос о том, является ли Вселенная квантовым компьютером в техническом смысле. Этот ответ – да. Вселенная является квантовым компьютером.

Но что вычисляет Вселенная? Все, что мы видим, и все, чего не видим, – реализация квантовых вычислений Вселенной. Мы не знаем в точности, как Вселенная выполняет свои мельчайшие вычисления, потому что у нас пока нет целостной теории фундаментальной физики, но даже не зная всех деталей, можно видеть, что квантово-вычислительная мощь Вселенной дает прямое объяснение ее запутанности, разнообразию и сложности".

Двое физиков из Балтийского федерального университета им. Иммануила Канта опубликовали исследование, в котором развивается предположение о том, что вся наша Вселенная сама по себе является квантовым объектом. Выведение квантовой теории на макроуровень, по мнению ученых, может дать естественные физические объяснения явлениям темной материи и фантомных полей.


В исследовании ученые Артем Юров и Валериан Юров провели аналогию между Вселенной и квантовым компьютером. Они утверждают, что Вселенную нужно рассматривать как квантовый объект или кубит в большой вычислительной машине.

Это означает, что Вселенная обладает квантовыми свойствами, которые включают суперпозицию, то есть возможность быть более чем в одном месте или состоянии одновременно.


Такому амбициозному заявлению можно было бы противопоставить явление декогеренции. То есть то, как квантовые объекты «коллапсируют» из множества возможных состояний в одно физическое. Это состояние определяется окружением, с которым кванты взаимодействуют.

Артем Юров и сам долгое время был озадачен этой проблемой: «Однажды меня спросили: “С чем взаимодействует Вселенная?”. Я тогда ничего не ответил. Казалось, что нет ничего, кроме самой Вселенной, и нет ничего, с чем она может взаимодействовать».


Однако в целом ученые не растерялись, представив ответ в своей работе: «не существует такой вещи, как “декогеренция”». То есть Вселенная всегда остается в квантовом состоянии.

По мнению исследователей, причина, по которой квантовые явления настолько хрупки, не имеет ничего общего с «коллапсом волновой функции» (резкой декогеренцией при наличии наблюдателя). Существование квантовых явлений зависит исключительно от взаимного положения соседних «миров». Когда они достаточно близки, квантовый потенциал жив и активен; когда они расходятся, квантовый потенциал уменьшается, и частицы снова становятся классическими.

Значит, скорее всего, люди — это не магические наблюдатели, заставляющие кванты коллапсировать в классическую реальность, а просто шум, который игнорируют Вселенные, пока занимаются своими вычислениями.

С незапамятных времён вопросы мироздания и устройства нашего мира волнуют умы многих учёных и исследователей. С каждым годом количество тех, кто сравнивает нашу Вселенную с огромной очень древней виртуальной реальностью увеличивается. Наш повседневный мир в такой представлении выглядит как имитация, голограмма. "Как же так? Мы ведь можем всё "потрогать", ощутить. Неужели всё сон?"-спросите Вы.

Наш мозг воспринимает одинаково всё о чем мы думаем. Для него не существует разницы между объективной реальностью, фантазиями и снами.

При таком подходе очень важно исходить из того, что всё что нас окружает и даже мы сами, всё вокруг- информация. Таким образом, Вселенная в этом смысле может оказаться результатом невероятно большой программы, запущенной очень давно.

Эта идея, вдохновила в 1940-х годах Конрада Цузе, человека, стоявшего у истоков разработки первых компьютеров.

Он предположил, что законы мироздания сопоставимы с работой квантового компьютера и действуют в соответствии с определённым кодом, благодаря которому и существует всё на свете.

Несомненно, Цузе опережал своё время.

Сейчас всё больше учёных задают себе вопрос о реальности нашего мира.

В 2006 году специалист по квантовым вычислениям Сет Ллойд развил идею цифровой Вселенной. «В этом смысле история Вселенной-это грандиозное и непрекращающееся вычисление», -утверждает он, опираясь на свои исследования. Ллойд даёт самое радикальное определение реальности: « Вселенная-это квантовый компьютер. Реальность творится по мере того, как происходит вычисление». С точки зрения Ллойда, всё существующее-это выходные данные мирового компьютера. Приверженцем данной теории является и знаменитый бизнесмен Илон Маск.

Интересный взгляд на рассматриваемую тему изложен в популярном фильме "Матрица", сериале "Разрабы", "Чёрное зеркало" и многих других.

Кто же является Архитектором наших судеб?

Посредством своих убеждений мы образуем связь между всем, что мы можем вообразить и реальностью. Мы ежесекундно "вычисляем", "строим" её кирпичик за кирпичиком, не только нашими действиями, но и мыслями.

Да, мыслить масштабами вселенных невероятно сложно, но мы можем начать с себя и того что нас окружает.

Если вас заинтересовала данная тема, в следующей статье поговорим о бинарном коде как о возможном универсальном языке вселенной.

Используемые материалы:

Грэгг Брэйден "Божественная матрица: время, пространство и сила сознания"

Читайте также: