Замена мосфета на материнской плате

Обновлено: 07.07.2024

_________________
Большой опыт, порой, не даёт находить/видеть нам простые и очевидные решения.
Всегда с уважением, Александр.

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!


Не только нет, но и ВООБЩЕ НЕТ.
В приведенной схеме нет напряжений, которые откроют высокопороговый МОСФЕТ (к которым относится 4905) до номинального сопротивления канала.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

КРАМ, можно подробнее? Растолкуйте пожалуйста, я не силён в технологиях! А как изменить схему, чтоб воткнуть 4905? Или это тоже невозможно?

Приглашаем всех желающих 25/11/2021 г. принять участие в вебинаре, посвященном антеннам Molex. Готовые к использованию антенны Molex являются компактными, высокопроизводительными и доступны в различных форм-факторах для всех стандартных антенных протоколов и частот. На вебинаре будет проведен обзор готовых решений и перспектив развития продуктовой линейки. Разработчики смогут получить рекомендации по выбору антенны, работе с документацией и поддержкой, заказу образцов.

Подробнее очень просто.
Чтобы открыть 4905 потребуется не 5, а 10 вольт.
Плюс схему сдвига уровня на N-канальном НИЗКОПОРОГОВОМ МОСФЕТе.
Схема сдвига уровня - это обычный ключ с управлением от МК, но с питанием выхода от 10 вольт. Тогда на выходе ключа будет достаточный для управления 4905-м размах.
В качестве этого дополнительного ключа проще всего поставить IRLML2502.
ЗЫ. И в нагрузку тоже попадет не 5, а 10 вольт, естественно.

Последний раз редактировалось КРАМ Ср фев 17, 2016 08:38:48, всего редактировалось 1 раз.

Приглашаем 30 ноября всех желающих посетить вебинар о литиевых источниках тока Fanso (EVE). Вы узнаете об особенностях использования литиевых источников питания и о том, как на них влияют режим работы и условия эксплуатации. Мы расскажем, какие параметры важно учитывать при выборе литиевого ХИТ, рассмотрим «подводные камни», с которыми можно столкнуться при неправильном выборе, разберем, как правильно проводить тесты, чтобы убедиться в надежности конечного решения. Вы сможете задать вопросы представителям производителя, которые будут участвовать в вебинаре

КРАМ
Ровно как и применённый в авторской схеме. Да собственно видимо и не стояло такой задачи, так как нагрузка не такая уж мощная. ТС видимо уже имеет данный транзистор, и не спешит покупать применённый в авторской схеме, который повторю, так же будет "недооткрываться". Если следовать всем канонам, то естественно следует применить logic-level транзистор, и если бы стоял вопрос чем лучше заменить - ответ был бы другим.

_________________
Большой опыт, порой, не даёт находить/видеть нам простые и очевидные решения.
Всегда с уважением, Александр.

Последний раз редактировалось korob Ср фев 17, 2016 08:40:36, всего редактировалось 1 раз.


Чисто теоретически это так, а чисто практически часто такие транзисторы прекрасно управляются 5В, особенно если нагрузка потребляет мало, а очень любят для нагрузки в пол ампера ставить 50А ключи.
Если автора вопроса устраивает сопротивление канала в 2,2 Ом (внимательно читаем даташит на этот предмет), то можно ставить и 4905.
Но мне почему то кажется, что вслед за этим последуют вопросы о причинах его нагрева.
Для Вашей схемы МК должен выдавать единицу вместо нуля для управления, сомневаюсь, что ТС сможет изменить прошивку. Схема с ОБ или ОЗ была бы более логична в данном случае, они не инвертирует сигнал.
Может там 10мА светодиод намечается поставить, тогда 4905 будет холодны-холодный Если автора вопроса устраивает сопротивление канала в 2,2 Ом Кстати, если речь идет о небольших токах, то можно ставить IRLML6402

Если он есть в наличии.

А вообще спор на пустом месте развели. IRF4905 открываться будет и точка. Да, его не нагрузишь под заявленные 75А., (но нам и не надо) а до 5А. будет ничуть не хуже, а самое главное он уже есть.

_________________
Большой опыт, порой, не даёт находить/видеть нам простые и очевидные решения.
Всегда с уважением, Александр.


Не очень понятно зачем светодиод зажигать от земли?
Есть иное предположение. Ток все же в районе единиц ампер.
IRF4905 открываться будет и точка. Да, его не нагрузишь под заявленные 75А., (но нам и не надо) а до 5А. будет ничуть не хуже, а самое главное он уже есть. При токе 5 ампер мощность на стоке составит 200 мВт
При токе в 9 ампер - 9 Ватт Ну вот поэтому и нужно знать мощность нагрузки, чтобы сказать, возможно заменять, или нет
Обычно начинают сразу, да ты что!? нет! этож не лоджиклевел! А при ближайшем рассмотрении оказывается, что и можно заменить, и нельзя в зависимости от неких условий. При токе 5 ампер мощность на стоке составит 1 Вт (0,2 вольта при 5 амперах) ПЕРЕгрев корпуса без радиатора - примерно 50 градусов, то есть абсолютное значение примерно 80. При токе в 9 ампер - 9 Ватт 13Alex13
Раскройте нам секрет, что подключать собираетесь?

_________________
Большой опыт, порой, не даёт находить/видеть нам простые и очевидные решения.
Всегда с уважением, Александр.


Как раз очень категорично.
1 Ватт на ТО220 без радиатора в РЕАЛЬНОЙ обстановке (корпус, затрудненный теплообмен) доведет температуру до 100 градусов. Секрета нет! По прямому назначению и собираюсь использовать, я же указал ИСТОЧНИК! Только нагрузка около 85 ватт.

Это действительно уже не секрет, а сюрприз. И всё это от 5В. собираетесь запитывать? Просто иначе не получится, если следовать авторской схеме. Придётся всё таки либо ставить правильные ключи (причём возможно в параллель) либо менять схему.

P.S Мне показалось что необходимость замены была продиктована наличием IRF4905, и/или невозможностью приобрести нужный.

UPD:

Так, питаем всё таки от 12В., разглядел. Значит ток не такой уж страшный. Если есть IRF7416 - ставить два в параллель. Если нет, то IRF4905 три в параллель, при необходимости/возможности на радиатор. Но лучше "перевернуть" питание, с выхода МК поставить инвертирующий буфер, и поставить нормальныый N - канальный транзистор с логическим уровнем (благо выбор из N - канальных побогаче).

_________________
Большой опыт, порой, не даёт находить/видеть нам простые и очевидные решения.
Всегда с уважением, Александр.

Последний раз редактировалось korob Ср фев 17, 2016 14:27:02, всего редактировалось 1 раз.

И то и другое! В наших магазинах такой экзотики не найти , а если заказывать цена бууууудет. Да и мощность нужна больше, автор указал не более 40 ватт, а нужно около 85 ватт!

Я вот ТУТ схему увидел с использованием IRF4905

Как заменить транзистор на плате

Итак, оказалась у нас на ремонте вот такая старенькая материнская плата Asus A7NBX

Неисправная материнская плата

"Диагноз" - не включается. В данном случае это значит следующее: плата крутит вентилятором на процессоре, но запуска компьютера не происходит. Звуковых сигналов нет, замена комплектующих (память, видеокарта, блок питания) ничего не дает.

Будем пробовать ремонтировать! Что для этого нужно сделать в первую очередь? Произвести как можно более тщательный визуальный осмотр неисправного устройства. Запомните этот момент! Отдельно даже выделю эту мысль в нашей статье.

Важно! Любая диагностика неисправности начинается с внимательного осмотра! Это - первый этап этой самой диагностики!

Иногда бывает так, что на этом она и заканчивается :) В том смысле, что неисправность удается уверенно идентифицировать чисто визуально. Матерые ремонтники для этого дела используют, как минимум, хорошее увеличительное стекло или цифровые микроскопы. К слову простой USB микроскоп с 200 кратным увеличением можно приобрести за долларов 20-30.

USB микроскоп

Но лично я так "глубоко не копаю", да и не об этом мы сейчас говорим. Проведя осмотр платы с пристрастием, под AGP разъемом (без всяких микроскопов) была и обнаружена явная неисправность, которая мешала материнской плате стартовать.

Неисправный транзистор

Видите полевой транзистор между конденсатором и дросселем? Вот это и есть наша будущая "жертва" :) Согласен, видно не очень, поэтому сфотографируем этот же участок под увеличительным стеклом.

Прогоревший полевой транзистор

Видите большой овал, частично перекрывающий маркировку транзистора? Знаете что это такое? Так выглядит банальная "дыра" в пластмассовом или металлокерамическом корпусе элемента! Если поскоблить иголкой зону повреждения, можно увидеть, как из нее посыпется мелкая крошка, похожая на графитовую.

Весьма очевидно, что транзистор нужно заменить (на такой же или аналогичный по характеристикам и исполнению корпуса). Чтобы окончательно убедиться в его неисправности, давайте "прозвоним" транзистор с помощью мультиметра. О том, как пользоваться мультиметром, у нас рассказано вот здесь.

Прозвонка неисправного транзистора

Как видите на фото выше, мы "звонили" транзистор по всем направлениям и во всех случаях раздавался характерный писк тестера, сигнализирующий о его "пробое" (фактически - коротком замыкании внутри элемента).

Будем выпаивать и менять транзистор на аналогичный. Где можно взять аналогичный (или похожий) элемент для замены неисправного? Здесь несколько вариантов:

  1. выпаять с "донора" (платы, не подлежащей ремонту)
  2. купить на радиорынке или специализированном магазине
  3. заказать через Интернет

В нашем случае я воспользовался вторым вариантом. Приобрел за доллар на рынке вот такой транзистор, немного отличающийся по характеристикам, но, в целом, подходящий для замены "пробитого".

Исправный транзистор для для замены

Работать мы будем, используя термовоздушную паяльную станцию, но сначала нам нужно будет подготовить место пайки. Что я имею в виду? Дело в том, что транзистор, который мы должны заменить, расположен между электролитическим конденсатором и дросселем. Очень близко к ним. И при обработке потоком горячего воздуха эти элементы могут пострадать. В подобных случаях самым простым решением является выпаивание близко расположенных элементов и установка их обратно после окончания работ.

Так мы и поступим! О том, как заменить конденсаторы на плате и о самой технологии работы с паяльником мы уже подробно говорили в отдельной статье, так что не будем повторяться. После применения паяльника будущий "фронт работ" у нас выглядит вот так:

Подготаваливаем место для пайки феном

Чтобы уберечь от оплавления пластмассовый AGP разъем, мы прикроем его куском металла, который будет забирать на себя тепло от фена. Также еще одной заслонкой можно прикрыть близко расположенные PCI слоты.

Итак, наносим на место будущей пайки флюс (я пользуюсь флюс-гелем «Amtech RMA-223»), устанавливаем на паяльной станции температуру 360-380 градусов Цельсия (вполне достаточно для такой операции, как замена транзистора) и приступаем к работе.

Выпаиваем транзистор

При подборе правильного термопрофиля (соответствия температуры поставленной задаче) и соблюдения технологии работы, транзистор должен оказаться у нас "в руках" секунд через 20-30:

Замена транзистора

Отлично! Теперь нам нужно подготовить посадочно место для нового элемента. Каким образом? Нужно залудить его (нанести на контактные площадки некоторое количество припоя, чтобы новому транзистору было чем припаиваться). Справедливости ради стоит отметить, что при аккуратном съеме детали часто ничего наносить и не нужно (на площадках остается достаточное количество припоя), но я хочу показать Вам еще один метод, поэтому специально полностью зачистим все "пятачки" от остатков припоя.

Для начала, нанесем на поверхность достаточное количество флюса.

Наносим флюс-гель

Это нужно для того, чтобы медная оплетка, которую мы будем использовать для удаления припоя, скользила по поверхности и сама не припаялась :) Оплетка бывает разной ширины (обращайте на это внимание при покупке). Я пользуюсь 2-х миллиметровой.

Удаляем лишний припой оплеткой

Площадки зачищены (на них нет олова, только металл самой подложки). Если мы сейчас попробуем просто сверху припаять транзистор, то у нас попросту не получится. Металл к металлу без припоя (материала, который их сцепляет) не паяется.

Теперь мы подходим к интересному моменту: для нанесения припоя на контактные площадки мы воспользуемся такой вещью, как паяльная паста для BGA. Вот, например, такой от фирмы «BAKU» (цена 3-5 долларов):

Паяльная паста для BGA

Посмотрел на фото и сам удивился. Кажется, что - это такая большая емкость, но на самом деле все это выглядит немного иначе:

BGA паста Baku

В такой баночке всего 50 грамм "продукта". Как видим, в составе его шестьдесят три процента олова (63Sn) и тридцать семь процентов свинца (37Pb). Также в эту смесь добавлено некоторое количество флюса, который "связывает" оба компонента.

Что же такое BGA паста и для чего она используется? Основное ее предназначение - формирование BGA шариков с тыльной стороны чипа. Если сейчас не все понятно, то дальше по тексту, надеюсь, все прояснится :)

Что такое есть аббревиатура BGA? Расшифровывается как Ball Grid Array (массив из шариков). В отличие от SMD - Surface Mounted Device (технологии поверхностного монтажа), здесь элементы крепятся к подложке (плате) с помощью массива из маленьких шариков припоя, расположенных на тыльной стороне микросхемы.

Технология bga монтажа сейчас приобретает все большую популярность среди производителей. Таким образом на плату напаиваются мосты, на видеокарту - графические процессоры, на оперативную память - чипы DDR. Вот, например, как выглядит северный мост, только что снятый с платы ноутбука:

Северный мост ноутбука

Видите сетку из этих самых шариков? Посмотрим на это дело поближе:

Массив BGA шариков

Вот именно таким образом и осуществляется электрический контакт микросхемы с печатной платой. Если хотите, можете ознакомиться с разновидностями корпусов микросхем и принципами их монтажа, скачав с нашего сайта вот этот файл.

Паяльная паста для BGA используется именно для формирования подобных шариков на "подошвах" микросхем. В процессе нанесения используются специальные трафареты. Можно купить BGA шарики и отдельно, но здесь есть нюанс: они бывают разного диаметра (в зависимости от типа микросхемы), а паяльная паста может (при помощи тех же трафаретов) сформировать массив шаров любого диаметра. Наверняка, Вы слышали такое слово, как «реболлинг» (reball или реболл)? Именно оно и обозначает процесс восстановления (нанесения) шариковых выводов припоя на чип.

Примечание: имейте в виду, что все описанное выше, относится именно к паяльной пасте для BGA. Часто в магазинах можно встретить баночки с надписями: "паяльная паста". Это своеобразное "желе" (по типу геля), которое используется, как флюс для облегчения работы с паяльником. Бывает разного цвета и консистенции.

Паяльные пасты

Здесь не содержится ни олова, ни свинца. По сути, как мы уже и говорили, - это флюс. Настоящая BGA паста, которую мы будем использовать для замены транзистора на плате, выглядит следующим образом:



Совет: хранить подобную пасту рекомендуют при небольшой минусовой температуре (идеально - на дверце холодильника). Если температура будет комнатная, паста начнет расслаиваться: флюс, как менее плотный ее компонент, постепенно выдавится вверх и будет "плавать" на поверхности. В холодильнике же субстанция сохраняет однородность и дольше - свои свойства.

Перед применением ее весьма желательно хорошенько перемешать (особенно после холодильника). Или дать постоять при комнатной температуре не менее четырех часов. Рекомендую потом все равно перемешать! Субстанция станет действительно больше похожей на пасту, а не на подзастывший обойный клей :)

Перемешиваем пасту

Перемешиваю я это дело при помощи тонкого шила. С его же помощью и буду наносить паяльную пасту на контактные площадки на плате. Идея какая: наносим паяльную пасту, "сажаем" на нее транзистор и прогреваем все это дело термофеном. Олово и свинец в ней расплавляются и припаивают компонент к плате. Поскольку в субстанции содержится флюс, то отдельно не нужно наносить даже его!

По идее, микросхему (вроде мультиконтроллера) можно макнуть "ножками" прямо в паяльную пасту, установить на плату и запаять (излишки олова можно потом убрать с помощью медной оплетки).

Вопрос: знаете, как спаять два провода при помощи зажигалки? Если нет - смотрите видео в конце данной статьи :)

Сам опробирую подобную технологию впервые, поэтому делюсь тем, что получилось в итоге. Наносим пасту:

Наносим паяльную пасту на плату

Как оказалось - перестарался (можно было "намазывать" гораздо меньшее количество) :)

Устанавливаем на все это безобразие сверху наш новый транзистор, который мы собираемся менять. Плюс еще в чем: субстанция вязкая, поэтому элемент прилипает и позиционировать его становится намного проще, да и струей воздуха от фена не сдуете.

Устанавливаем транзистор

Включаем термофен и начинаем припаивать транзистор к плате:

Запаиваем транзистор

В процессе мы увидим, как паяльная масса, похожая на кашицу с вкраплениями мелких частиц, собирается в комок, потом из нее испаряется флюс и, в итоге, под действием высокой температуры и сил поверхностного натяжения, паяльная паста превращается в привычный нам оловянный припой, который надежно и фиксирует транзистор на плате.

Транзистор припаян

Примечание: Молекулы жидкости, как и любого другого вещества, испытывают взаимное притяжение. На молекулы внутри жидкости силы притяжения соседних молекул действуют со всех сторон, что взаимно уравновешивает всю "конструкцию". Молекулы же на поверхности (на ее внешнем обводе) не имеют соседей снаружи, и общая (суммарная) сила притяжения всех ее молекул направлена внутрь самой жидкости.

В итоге, вся поверхность воды стремится, как бы, ужаться к своему центру под воздействием этих сил. Этот эффект и называют силой поверхностного (молекулярного) натяжения, которая действует вдоль всей поверхности жидкости и приводит к образованию на ней чего-то вроде упругой незримой пленки. Именно поэтому рюмку можно налить "с горкой" и, поднеся к губам, не расплескать ни капли. Расплескивать нельзя ни в коем случае! :)

К слову, охотничью дробь изготавливают, используя именно эту силу (силу поверхностного натяжения): расплавленным каплям металла просто дают свободно падать с достаточной высоты, что приводит к их естественному остыванию и превращению в шарики дроби. Ведь любая жидкость, если оставить ее в спокойном состоянии, стремится принять форму с наименьшей площадью. А это и будет - сфера!

Возвращаемся от теории к практике! После запайки транзистора можем взять наш мультиметр и еще раз проверить (прозвонить) элемент на короткое замыкание.

Прозвонка транзистора на КЗ

На этот раз - все нормально: КЗ нет. Как говорят паяльщики: "коротыш ушел!".

Что нам нужно сделать теперь? Правильно! Очистить место замены транзистора от следов пайки. Как и чем это делать, мы рассматривали вот здесь. Ничего нового не скажу и сейчас: зубная щетка нам в помощь :)

Очищаем место пайки

И последний "штрих" - нам нужно вернуть на место конденсатор и дроссель, которые мы спаяли с платы в самом начале. Помните? Запаиваем их обратно.



Что теперь? Собираем наш тестовый стенд, подключаем монитор и запускаем всю конструкцию!

Замена транзистора прошла успешно

Как видим, все работает! В завершении статьи хочу показать Вам еще один пример из моей практики. Некая материнская плата не хотела нормально работать: включалась только если на нее нажать в определенном месте и так удерживать. Примерно вот здесь:

Место неисправности на плате

Так сразу и не скажешь, в чем неисправность, верно? Давайте посмотрим на один из элементов под увеличительным стеклом, а именно - одну из транзисторных сборок PHKD6N2 в SOIC корпусе (Small-Outline Integrated Circuit - небольшая микросхема с выводами по длинным сторонам).

N-канальный полевой транзистор (сборка)

Обратите внимание на два нижних правых вывода элемента. Видите, как они почернели и, по факту, потеряли контакт ("отгорели ноги", как говорят ремонтники). Это, к слову, вполне объясняет то, что при нажатии на эту область электрический контакт восстанавливался и плата начинала нормально работать.

Будем ли мы полностью заменять транзистор на материнской плате? В данном случае в этом нет необходимости: просто хорошенько пропаяем отгоревшие выводы (зальем их припоем по всей длинне) и восстановим, таким образом, соединение элемента с платой. Пайку я буду осуществлять при помощи вот такого гаджета, который называется "третья рука".

Третья рука с увеличительным стеклом

Согласитесь, гораздо удобнее работать при помощи увеличительного стекла не держа его при этом в руке :) Также можно воспользоваться наголовной бинокулярной лупой с диодной подсветкой - очень удобно!

После окончания работ место пайки у нас стало выглядеть вот так:

Электрический контакт на выводах восстановлен

На всякий случай, были пропаяны все четыре вывода. После этого плата успешно "завелась" и до сих пор работает, установленная в одном из многочисленных корпусов компьютеров у нас на работе.


G-ЗАТВОР S-ИСТОК D-СТОК
мосфеты повсеместно используються как силовые транзисторы импульсных и линейных устройств стабилизаторов, регулирующие и переключающие устройства
в этой теме попробуем наглядно обьяснить
как проверить мосфет
как заменить и чем заменить
а так-же собрать минимум информации о аналогах и критичной замене, если получиться то и более


1. Kак проверить мосфет?
для того чтобы его правильно проверить нужно начать с замеров напряжений на них, для этого нужно знать какой мосфет за что отвечает, но замеры напруг это уже совсем другая тема
чтобы правильно проверить мосфет его нужно сначала выпаять либо отпаять ножки от платы, но делать это надо очень осторожно,так-как их просто можно выломать из корпуса
2. Как выпаять мосфет?
все это делают по разному, лично я термовоздушной станцией выпаиваю или нижним подогревом
если припой с свинцом то ставлю температуру300гр и как только припой поплывет снимаю пинцетом мосфет
с безсвинцовкой потяжелее , снимаю только нижним подогревом потому как боюсь перегреть сам транзистор
можно выпаять с помощью 2 паяльников, первым ватт на 60 разогреваем основу вторым отпаиваем ноги и им же снимаем мосфет
(лично я такой способ считаю лишней заморочкой), предлагают некоторые еще и такой вариант, разогрев ножки подсунуть под них кусочек лезвия, а потом отпаять основу
3. Выпаяли мосфет начинаем прозванивать
за образец возьмем наиболее распространенные мосфеты в корпусе ТО252аа или D2pak

1 ножка G-затвор, 2 ножка или основаD-сток,и3ножка S-исток
пример проверки покажу на обычном китайском мультиметре EM362



Сгорел мосфет в линейном стабилизаторе, как подобрать аналог?
Полевики в данном случае можно разделить на 2 группы, различающиеся нормированным напряжением VGS (ON) , и сопротивлением открытого канала RDS(ON).
Дело в том что управляющую схему на ОУ конструкторы по желанию могут запитывать от 12в источника как и от 5в.
Это значит что усилитель ошибки может управлять полевиком по затвору от 0 до 9-10в, или от 0 до 4,5-4.,8в..

Смотрим даташиты, и в некоторых видим нормированное RDS(ON) при различных VGS (ON).


Если схема управления 5 вольтовая, придется тщательнее подбирать транзистор, по даташитам сравнивая RDS(ON)&VGS (ON) обращая особое внимание на VGS (ON) = 2,5в(4.5в).и RDS(ON) при этом напряжении.
Сравнив с даташитом "погорельца" - подбираем по характеристикам не худшим чем было.
Можно подбором, но нужно учесть, что в уже работающей схеме на затворе должно быть не более 4в ( лучше меньше) , для обеспечения запаса регулировки.

Если она 12 вольтовая , то практически любой мосфет с донорской матплаты , (с не меньшим током) сможет работать в этом участке..

Как определить какая схема использована в данном участке.
Очень просто, без полевика, включив аппарат - измеряем относительно "земли" напряжение на точке завтора в плате.,схема усилителя ошибки будет стремится максимально увеличить напряжение на затворе, пытаясь открыть мосфет (которого нет.. ).
Если мы видим около 9-10в, значит схема 12-вольтовая, параметры подбора сужаются.
Если не более 5в то схема управления 5-вольтовая.


Мосфеты — разновидность полевых транзисторов, очень полезная штука, если правильно его подобрать, подключить и использовать. Я их люблю применять в поделках. Маломощные в основном для экономичности потребления тока, мощные для коммутации амперных нагрузок и для силовых ключей в ШИМ- схемах и генераторах.

В отличие от простых биполярных транзисторов управляются они не током а напряжением. Управляющий электрод — затвор по сути является одним контактом простого неполярного конденсатора малой емкости.

В логических пятивольтовых схемах очень хорошо применять "логические" мосфеты — транзисторы, которые управляются напрямик с ножек микроконтроллера.

При подборе и выборе мощного мосфета нужно учитывать его основные параметры, это максимальное напряжение на его ножках, сопротивление между входом и выходом в открытом состоянии и напряжение на затворе, достаточное полностью открыть мосфет. Для логических мосфетов это напряжение в основном чуть ниже пяти вольт.

При подключении мощных нагрузок на первый план выступает проходное сопротивление сток — исток в открытом состоянии. Чем больше коммутируемый ток — тем важнее этот праметр. В даташитах этот параметр всегда на первой странице отдельной строкой.

Чем меньше этот параметр, тем меньше тепла будет выделяться мосфетом при работе. Даже небольшое изменение этого параметра приводит к большим разностям в выделении тепла.

Для примера я собрал тестовую схему:

Для замеров я использовал два мультиметра. Напряжение на затвор от нуля до максимума я подавал через проволочный многооборотный резистор СП5-3. Подопытным транзистором был 2SK3918.

Вот таблица замеров:

Данные конечно получились не совсем точные, но для общего сведения пойдет.
Пояснения:

GS — напряжение между затвором и минусом схемы, которое поступает с подстроечного резистора

DS — напряжение падения на транзисторе.

I — ток нагрузки — лампочки.

Далее применив Закон Ома вычислилась мощность W и сопротивление R. Вот это сопротивление и указывается в даташитах. Красным отмечена слишком большая мощность нагрева транзистора — мосфет полностью не открыт.

При использовании в качестве мощных ШИМ-ключей для регулировки яркости светодиодов и ламп нельзя задирать частоту импульсов высоко. Достаточно держать её чуть выше 50 Герц. Например така частота у штатных панелей приборов оптитрон и у штатных ДХО из ламп дальнего света " в пол накала" в тойотах. Если использовать более высокие частоты (килогерцы и выше) затвор мосфета начинает хорошо проводить ток и для раскачки его необходимо усложнять схему или использовать специальные драйверы.

Как показала практика мосфет 2SK3918 спокойно без радиатора в воздухе выдерживает 60-ти ватовую лампочку, оставаясь слегка теплым при напряжении на затворе в пять вольт. При подключении ШИМ генератора со скважностью 30-50% вообще холодный.

Читайте также: