Алгоритм распределения памяти который не предусматривает использование внешней памяти

Обновлено: 07.07.2024

Под памятью ( memory ) в данном случае подразумевается оперативная (основная) память компьютера. В однопрограммных операционных системах основная память разделяется на две части. Одна часть для операционной системы (резидентный монитор , ядро ), а вторая – для выполняющейся в текущий момент времени программы. В многопрограммных ОС "пользовательская" часть памяти – важнейший ресурс вычислительной системы – должна быть распределена для размещения нескольких процессов, в том числе процессов ОС. Эта задача распределения выполняется операционной системой динамически специальной подсистемой управления памятью ( memory management ). Эффективное управление памятью жизненно важно для многозадачных систем. Если в памяти будет находиться небольшое число процессов, то значительную часть времени процессы будут находиться в состоянии ожидания ввода-вывода и загрузка процессора будет низкой.

В ранних ОС управление памятью сводилось просто к загрузке программы и ее данных из некоторого внешнего накопителя (перфоленты, магнитной ленты или магнитного диска) в ОЗУ . При этом память разделялась между программой и ОС. На рис. 6.3 показаны три варианта такой схемы. Первая модель раньше применялась на мэйнфреймах и мини-компьютерах. Вторая схема сейчас используется на некоторых карманных компьютерах и встроенных системах, третья модель была характерна для ранних персональных компьютеров с MS-DOS .

 Варианты распределения памяти

С появлением мультипрограммирования задачи ОС, связанные с распределением имеющейся памяти между несколькими одновременно выполняющимися программами, существенно усложнились.

Функциями ОС по управлению памятью в мультипрограммных системах являются:

  • отслеживание (учет) свободной и занятой памяти;
  • первоначальное и динамическое выделение памяти процессам приложений и самой операционной системе и освобождение памяти по завершении процессов;
  • настройка адресов программы на конкретную область физической памяти;
  • полное или частичное вытеснение кодов и данных процессов из ОП на диск, когда размеры ОП недостаточны для размещения всех процессов, и возвращение их в ОП;
  • защита памяти, выделенной процессу, от возможных вмешательств со стороны других процессов;
  • дефрагментация памяти .

Перечисленные функции особого пояснения не требуют, остановимся только на задаче преобразования адресов программы при ее загрузке в ОП.

Для идентификации переменных и команд на разных этапах жизненного цикла программы используются символьные имена, виртуальные (математические, условные, логические – все это синонимы) и физические адреса (рис. 6.4).

Типы адресов

Символьные имена присваивает пользователь при написании программ на алгоритмическом языке или ассемблере. Виртуальные адреса вырабатывает транслятор , переводящий программу на машинный язык . Поскольку во время трансляции неизвестно, в какое место оперативной памяти будет загружена программа , транслятор присваивает переменным и командам виртуальные (условные) адреса, считая по умолчанию, что начальным адресом программы будет нулевой адрес .

Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности будут расположены переменные и команды.

Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Диапазон адресов виртуального пространства у всех процессов один и тот же и определяется разрядностью адреса процессора (для Pentium адресное пространство составляет объем, равный 2 32 байт , с диапазоном адресов от 0000.000016 до FFFF.FFFF16).

Существует два принципиально отличающихся подхода к преобразованию виртуальных адресов в физические. В первом случае такое преобразование выполняется один раз для каждого процесса во время начальной загрузки программы в память . Преобразование осуществляет перемещающий загрузчик на основании имеющихся у него данных о начальном адресе физической памяти, в которую предстоит загружать программу, а также информации, предоставляемой транслятором об адресно-зависимых элементах программы.

Второй способ заключается в том, что программа загружается в память в виртуальных адресах. Во время выполнения программы при каждом обращении к памяти операционная система преобразует виртуальные адреса в физические.

6.3. Распределение памяти

Существует ряд базовых вопросов управления памятью, которые в различных ОС решаются по -разному. Например, следует ли назначать каждому процессу одну непрерывную область физической памяти или можно выделять память участками? Должны ли сегменты программы, загруженные в память , находиться на одном месте в течение всего периода выполнения процесса или их можно время от времени сдвигать? Что делать, если сегменты программы не помещаются в имеющуюся память ? Как сократить затраты ресурсов системы на управление памятью ? Имеется и ряд других не менее интересных проблем управления памятью [5, 10, 13, 17].

Ниже приводится классификация методов распределения памяти, в которой выделено два класса методов – с перемещением сегментов процессов между ОП и ВП (диском) и без перемещения, т.е. без привлечения внешней памяти (рис. 6.5). Данная классификация учитывает только основные признаки методов. Для каждого метода может быть использовано несколько различных алгоритмов его реализации.

Классификация методов распределения памяти


Рис. 6.5. Классификация методов распределения памяти

На рис. 6.6 показаны два примера фиксированного распределения. Одна возможность состоит в использовании разделов одинакового размера. В этом случае любой процесс, размер которого не превышает размера раздела, может быть загружен в любой доступный раздел. Если все разделы заняты и нет ни одного процесса в состоянии готовности или работы, ОС может выгрузить процесс из любого раздела и загрузить другой процесс, обеспечивая тем самым процессор работой.

Варианты фиксированного распределения памяти


Рис. 6.6. Варианты фиксированного распределения памяти

При использовании разделов с одинаковым размером имеются две проблемы.

  1. Программа может быть слишком велика для размещения в разделе. В этом случае программист должен разрабатывать программу, использующую оверлеи, чтобы в любой момент времени требовался только один раздел памяти. Когда требуется модуль, отсутствующий в данный момент в ОП, пользовательская программа должна сама его загрузить в раздел памяти программы. Таким образом, в данном случае управление памятью во многом возлагается на программиста.
  2. Использование ОП крайне неэффективно. Любая программа, независимо от ее размера, занимает раздел целиком. При этом могут оставаться неиспользованные участки памяти большого размера. Этот феномен появления неиспользованной памяти называется внутренней фрагментацией (internal fragmentation).

Бороться с этими трудностями (хотя и не устранить полностью) можно посредством использования разделов разных размеров. В этом случае программа размером до 8 Мбайт может обойтись без оверлеев, а разделы малого размера позволяют уменьшить внутреннюю фрагментацию при загрузке небольших программ.

В том случае, когда разделы имеют одинаковый раздел, размещение процессов тривиально – в любой свободный раздел. Если все разделы заняты процессами, которые не готовы к немедленной работе, любой из них может быть выгружен для освобождения памяти для нового процесса.

Когда разделы имеют разные размеры, есть два возможных подхода к назначению процессов разделам памяти. Простейший путь состоит в том, чтобы каждый процесс размещался в наименьшем разделе, способном вместить данный процесс (в этом случае в задании пользователя указывался размер требуемой памяти). При таком подходе для каждого раздела требуется очередь планировщика, в которой хранятся выгруженные из памяти процессы, предназначенные для данного раздела памяти. Достоинство такого способа в возможности распределения процессов между разделами ОП так, чтобы минимизировать внутреннюю фрагментацию.

Недостаток заключается в том, что отдельные очереди для разделов могут привести к неоптимальному распределению памяти системы в целом. Например, если в некоторый момент времени нет ни одного процесса размером от 7 до 12 Мбайт, то раздел размером 12 Мбайт будет пустовать, в то время как он мог бы использоваться меньшими процессами. Поэтому более предпочтительным является использование одной очереди для всех процессов. В момент, когда требуется загрузить процесс в ОП, выбирается наименьший доступный раздел, способный вместить данный процесс.

В целом можно отметить, что схемы с фиксированными разделами относительно просты, предъявляют минимальные требования к операционной системе; накладные расходы работы процессора на распределение памяти невелики. Однако у этих схем имеются серьезные недостатки.

  1. Количество разделов, определенное в момент генерации системы, ограничивает количество активных процессов (т.е. уровень мультипрограммирования).
  2. Поскольку размеры разделов устанавливаются заранее во время генерации системы, небольшие задания приводят к неэффективному использованию памяти. В средах, где заранее известны потребности в памяти всех задач, применение рассмотренной схемы может быть оправдано, но в большинстве случаев эффективность этой технологии крайне низка.

Для преодоления сложностей, связанных с фиксированным распределением, был разработан альтернативный подход, известный как динамическое распределение. В свое время этот подход был применен фирмой IBM в операционной системе для мэйнфреймов в OS/MVT ( мультипрограммирование с переменным числом задач – Multiprogramming With a Variable number of Tasks). Позже этот же подход к распределению памяти использован в ОС ЕС ЭВМ [12] .

При динамическом распределении образуется перемененное количество разделов переменной длины. При размещении процесса в основной памяти для него выделяется строго необходимое количество памяти. В качестве примера рассмотрим использование 64 Мбайт (рис. 6.7) основной памяти. Изначально вся память пуста, за исключением области, задействованной ОС. Первые три процесса загружаются в память , начиная с адреса, где заканчивается ОС, и используют столько памяти, сколько требуется данному процессу. После этого в конце ОП остается свободный участок памяти, слишком малый для размещения четвертого процесса. В некоторый момент времени все процессы в памяти оказываются неактивными, и операционная система выгружает второй процесс, после чего остается достаточно памяти для загрузки нового, четвертого процесса.

Вариант использования памяти

Поскольку процесс 4 меньше процесса 2, появляется еще свободный участок памяти. После того как в некоторый момент времени все процессы оказались неактивными, но стал готовым к работе процесс 2, свободного места в памяти для него не находится, а ОС вынуждена выгрузить процесс 1, чтобы освободить необходимое место и разместить процесс 2 в ОП. Как показывает данный пример, этот метод хорошо начинает работу, но плохо продолжает. В конечном счете, он приводит к наличию множества мелких свободных участков памяти, в которых нет возможности разместить какой-либо новый процесс. Это явление называется внешней фрагментацией ( external fragmentation ), что отражает тот факт, что сильно фрагментированной становится память , внешняя по отношению ко всем разделам.

Один из методов преодоления внешней фрагментации – уплотнение ( compaction ) процессов в ОП. Осуществляется это перемещением всех занятых участков так, чтобы вся свободная память образовала единую свободную область. В дополнение к функциям, которые ОС выполняет при распределении памяти динамическими разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется уплотнением или сжатием.

Перечислим функции операционной системы по управлению памятью в этом случае.

  1. Перемещение всех занятых участков в сторону старших или младших адресов при каждом завершении процесса или для вновь создаваемого процесса в случае отсутствия раздела достаточного размера.
  2. Коррекция таблиц свободных и занятых областей.
  3. Изменение адресов команд и данных, к которым обращаются процессы при их перемещении в памяти, за счет использования относительной адресации .
  4. Аппаратная поддержка процесса динамического преобразования относительных адресов в абсолютные адреса основной памяти.
  5. Защита памяти, выделяемой процессу, от взаимного влияния других процессов.

Уплотнение может выполняться либо при каждом завершении процесса, либо только тогда, когда для вновь создаваемого процесса нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц свободных и занятых областей, а во втором – реже выполняется процедура сжатия.

Так как программа перемещается по оперативной памяти в ходе своего выполнения, в данном случае невозможно выполнить настройку адресов с помощью перемещающего загрузчика. Здесь более подходящим оказывается динамическое преобразование адресов. Достоинствами распределения памяти перемещаемыми разделами являются эффективное использование оперативной памяти, исключение внутренней и внешней фрагментации, недостатком – дополнительные накладные расходы ОС.

При использовании фиксированной схемы распределения процесс всегда будет назначаться одному и тому же разделу памяти после его выгрузки и последующей загрузке в память . Это позволяет применять простейший загрузчик , который замещает при загрузке процесса все относительные ссылки абсолютными адресами памяти, определенными на основе базового адреса загруженного процесса.

Ситуация усложняется, если размеры разделов равны (или неравны) и существует единая очередь процессов, – процесс по ходу работы может занимать разные разделы . Такая же ситуация возможна и при динамическом распределении. В этих случаях расположение команд и данных, к которым обращается процесс, не является фиксированным и изменяется всякий раз при выгрузке, загрузке или перемещении процесса. Для решения этой проблемы в программах используются относительные адреса. Это означает, что все ссылки на память в загружаемом процессе даются относительно начала этой программы. Таким образом, для корректной работы программы требуется аппаратный механизм, который бы транслировал относительные адреса в физические в процессе выполнения команды, обращающейся к памяти.

Применяемый обычно способ трансляции показан на рис. 6.8. Когда процесс переходит в состояние выполнения, в специальный регистр процесса, называемый базовым, загружается начальный адрес процесса в основной памяти. Кроме того, используется "граничный" (bounds) регистр , в котором содержится адрес последней ячейки программы. Эти значения заносятся в регистры при загрузке программы в основную память . При выполнении процесса относительные адреса в командах обрабатываются процессором в два этапа. Сначала к относительному адресу прибавляется значение базового регистра для получения абсолютного адреса. Затем полученный абсолютный адрес сравнивается со значением в граничном регистре. Если полученный абсолютный адрес принадлежит данному процессу, команда может быть выполнена. В противном случае генерируется соответствующее данной ошибке прерывание .

Менеджер памяти - часть операционной системы, отвечающая за управление памятью.

Основные методы распределения памяти:

Без использования внешней памяти (например: HDD)

С использованием внешней памяти

6.2 Методы без использования внешней памяти

6.2.1 Однозадачная система без подкачки на диск

Память разделяется только между программой и операционной системой.

Схемы разделения памяти:

Схемы разделения памяти

Третий вариант используется в MS-DOS. Та часть, которая находится в ПЗУ, часто называется BIOS.

6.2.2 Распределение памяти с фиксированными разделами.

Память просто разделяется на несколько разделов (возможно, не равных). Процессы могут быть разными, поэтому каждому разделу необходим разный размер памяти.

Системы могут иметь:

общую очередь ко всем разделам

к каждому разделу отдельную очередь

Распределение памяти с фиксированными разделами

Недостаток системы многих очередей очевиден, когда большой раздел может быть свободным, а к маленькому выстроилась очередь.

Алгоритмы планирования в случае одной очереди:

выбирается задача, которая максимально займет раздел

Также может быть смешанная система.

6.2.3 Распределение памяти динамическими разделами

В такой системе сначала память свободна, потом идет динамическое распределение памяти.

Распределение памяти динамическими разделами.

Перемещаемые разделы

Это один из методов борьбы с фрагментацией. Но на него уходит много времени.

Рост разделов

Иногда процессу может понадобиться больше памяти, чем предполагалось изначально.

Настройка адресов и защита памяти

В предыдущих примерах мы можем увидеть две основные проблемы.

Настройка адресов или перемещение программ в памяти

Защита адресного пространства каждой программы

Решение обоих проблем заключается в оснащении машины специальными аппаратными регистрами.

Базовый (указывает начало адресного пространства программы)

Предельный (указывает конец адресного пространства программы)

6.3 Методы с использованием внешней памяти (свопинг и виртуальная память)

Так как памяти, как правило, не хватает. Для выполнения процессов часто приходится использовать диск.

Основные способы использования диска:

Свопинг (подкачка) - процесс целиком загружается в память для работы

Виртуальная память - процесс может быть частично загружен в память для работы

6.3.1 Свопинг (подкачка)

При нехватке памяти процессы могут быть выгружены на диск.

т.к. процесс С очень большой, процесс А был выгружен временно на диск,
после завершения процесса С он снова был загружен в память.

Как мы видим процесс А второй раз загрузился в другое адресное пространство, должны создаваться такие условия, которые не повлияют на работу процесса.

Свопер - планировщик, управляющий перемещением данных между памятью и диском.

Этот метод был основным для UNIX до версии 3BSD.

Управление памятью с помощью битовых массивов

Вся память разбивается на блоки (например, по 32бита), массив содержит 1 или 0 (занят или незанят).

Чтобы процессу в 32Кбита занять память, нужно набрать последовательность из 1000 свободных блоков.

Такой алгоритм займет много времени.

битовые массивы и списки

Управление памятью с помощью связных списков

Этот способ отслеживает списки занятых (между процессами) и свободных (процессы) фрагментов памяти.

Запись в списке указывает на:

занят (P) или незанят (H) фрагмент

адрес начала фрагмента

Четыре комбинации соседей для завершения процесса X

Алгоритмы выделения блока памяти:

первый подходящий участок.

следующий подходящий участок, стартует не сначала списка, а с того места на котором остановился в последний раз.

самый подходящий участок (медленнее, но лучше использует память).

самый неподходящий участок, расчет делается на то, что программа займет самый большой участок, а лишнее будет отделено в новый участок, и он будет достаточно большой для другой программы.

6.3.2 Виртуальная память

Основная идея заключается в разбиении программы на части, и в память эти части загружаются по очереди.

Программа при этом общается с виртуальной памятью, а не с физической.

Диспетчер памяти преобразует виртуальные адреса в физические.

Страничная организация памяти

Страничные блоки - единицы физической памяти.

Х - обозначает не отображаемую страницу в физической памяти.

Страничное прерывание - происходит, если процесс обратился к странице, которая не загружена в ОЗУ (т.е. Х). Процессор передается другому процессу, и параллельно страница загружается в память.

Таблица страниц - используется для хранения соответствия адресов виртуальной страницы и страничного блока.

Таблица может быть размещена:

в аппаратных регистрах (преимущество: более высокое быстродействие, недостаток - стоимость)

Типичная запись в таблице страниц

Присутствие/отсутствие - загружена или незагружена в память

Защита - виды доступа, например, чтение/запись.

Изменение - изменилась ли страница, если да то при выгрузке записывается на диск, если нет, просто уничтожается.

Обращение - было ли обращение к странице, если нет, то это лучший кандидат на освобождение памяти.

Информация о адресе страницы когда она хранится на диске, в таблице не размещается.

Для ускорения доступа к страницам в диспетчере памяти создают буфер быстрого преобразования адреса, в котором хранится информация о наиболее часто используемых страниц.

Страничная организация памяти используется, и в UNIX, и в Windows.

Хранение страничной памяти на диске

Статическая область свопинга

После запуска процесса он занимает определенную память, на диске сразу ему выделяется такое же пространство. Поэтому файл подкачки должен быть не меньше памяти. А в случае нехватки памяти даже больше. Как только процесс завершится, он освободит память и место на диске.

На диске всегда есть дубликат страницы, которая находится в памяти.

Этот механизм наиболее простой.

Статический и динамический методы организации свопинга.

Динамическая область свопинга

Предполагается не выделять страницам место на диске, а выделять только при выгрузке страницы, и как только страница вернется в память освобождать место на диске.

Этот механизм сложнее, так как процессы не привязаны к какому-то пространству на диске, и нужно хранить информацию (карту диска) о местоположении на диске каждой страницы.

Самым простым способом управления оперативной памятью является разделение ее на несколько разделов фиксированной величины. Это может быть выполнено вручную оператором во время старта системы или во время ее генерации. Очередная задача, поступившая на выполнение, помещается либо в общую очередь (рис. 20,а), либо в очередь к некоторому разделу (рис 20,б).

Рис 20. Схема с фиксированными разделами: (a) с общей очередью процессов,

(b) с отдельными очередями процессов.

Подсистема управления памятью в этом случае выполняет следующие задачи:

· сравнивает размер программы, поступившей на выполнение, и свободных разделов, выбирает подходящий раздел,

· осуществляет загрузку программы и настройку адресов.

Эта схема была реализована в IBM OS/360 (MFT) и в DEC RSX-11.

Подсистема управления памятью сравнивает размер программы, поступившей на выполнение, выбирает подходящий раздел, осуществляет загрузку программы и настройку адресов. В какой раздел помещать программу? Распространены две стратегии:

· Стратегия первого подходящего (First fit). Задание помещается в первый подходящий по размеру раздел.

· Стратегия наиболее подходящего (Best fit). Задание помещается в тот раздел, где ему наиболее тесно.

· Стратегия наименее подходящего (Worst fit). При помещении в самый большой раздел в нем остается достаточно места для возможного размещения еще одного процесса.

Моделирование показало, что с точки зрения использования памяти эти способы примерно одинаковы, но первый способ быстрее. Заметим, что перечисленные стратегии широко применяются и другими компонентами ОС, например, для размещения файлов на диске.

Связывание (настройка) адресов для данной схемы возможны как на этапе компиляции, так и на этапе загрузки.

Недостатки этой схемы:

· число одновременно выполняемых процессов ограничено числом разделов,

· предлагаемая схема сильно страдает от внешней фрагментации потери памяти, не используемой ни одним процессом.

Фрагментация - это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти. Фрагментация возникает потому, что процесс не полностью занимает выделенный ему раздел или вследствие не использования некоторых разделов, которые слишком малы для выполняемых пользовательских программ.

§ Оверлейная структура

Так как размер логического адресного пространства процесса может быть больше чем размер выделенного ему раздела (или больше чем размер самого большого раздела), иногда используется техника, называемая оверлей (overlay) или организация структуры с перекрытием (рис. 21).

Основная идея ¾ держать в памяти только те инструкции программы, которые нужны в данный момент времени. Потребность в таком способе загрузки появляется, если логическое адресное пространство системы мало, например 1 мегабайт (MS-DOS) или даже всего 64 килобайта (PDP-11), а программа относительно велика.

Рис. 21. Организация структуры с перекрытием.

Можно поочередно загружать в память ветви A-B, A-C-D и A-C-E программы. Коды ветвей оверлейной структуры программы находятся на диске как абсолютные образы памяти и считываются драйвером оверлеев при необходимости.

Для конструирования оверлеев необходимы специальные алгоритмы перемещения и связывания. Для описания оверлейной структуры обычно используется специальный несложный язык (overlay description language). Совокупность файлов исполняемой программы дополняется файлом (обычно с расширением .odl), описывающим дерево вызовов внутри программы

Например, для примера, приведенного на рисунке 21, текст этого файла может выглядеть так:

Привязка к памяти происходит в момент очередной загрузки одной из ветвей программы. Оверлеи не требуют специальной поддержки со стороны ОС. Они могут быть полностью реализованы на пользовательском уровне с простой файловой структурой.

Заметим, что здесь впервые проявляется свойство локальности, которое дает возможность хранить в памяти только ту информацию, которая необходима в каждый конкретный момент вычислений.

На современных системах (32-разрядных, 64-разрядных), где виртуальное адресное пространство измеряется гигабайтами, проблемы с нехваткой памяти решаются другими способами (виртуальная память).

§ Схема с переменными разделами

Более эффективной представляется схема с переменными (динамическими) разделами. В этом случае память машины не делится заранее на разделы. Сначала вся память свободна. Каждой вновь поступающей задаче выделяется необходимая ей память. Если достаточный объем памяти отсутствует, то задача не принимается на выполнение и стоит в очереди. После завершения задачи память освобождается, и на это место может быть загружена другая задача. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера. Смежные свободные участки могут быть объединены в один.

На рисунке 22 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так в момент в памяти находится только ОС, а к моменту память разделена между 5 задачами, причем задача П4, завершаясь, покидает память. На освободившееся после задачи П4 место загружается задача П6, поступившая в момент .

Рис. 22. Распределение памяти динамическими разделами

Задачами операционной системы при реализации данного метода управления памятью является:

· ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти,

· при поступлении новой задачи - анализ запроса, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившей задачи в соответствии с одной из стратегий (first fit, best fit, worst fit)

· загрузка задачи в выделенный ей раздел и корректировка таблиц свободных и занятых областей,

· после завершения задачи корректировка таблиц свободных и занятых областей.

Этому методу также присуща внешняя фрагментация вследствие наличия большого числа участков свободной памяти. Проблемы фрагментации могут быть различными. В худшем случае мы можем иметь участок свободной (потерянной) памяти между двумя процессами. Если все эти куски объединить в один блок, мы смогли бы разместить больше процессов. Выбор между first-fit и best-fit слабо влияет на величину фрагментации.

В зависимости от суммарного размера памяти и среднего размера процесса эта проблема может быть большей или меньшей. Статистический анализ показывает, что при наличии n блоков пропадает n/2 блоков, то есть 1/3 памяти! Это известное 50% правило (два соседних свободных участка в отличие от двух соседних процессов могут быть объединены в один). Одно из решений проблемы внешней фрагментации - разрешить адресному пространству процесса не быть непрерывным, что разрешает выделять процессу память в любых доступных местах. Один из способов реализации такого решения - это paging , используемый во многих современных ОС (будет рассмотрен ниже).

§ Схема с перемещаемыми разделами

Другим способом борьбы с внешней фрагментацией является сжатие (рис. 23)., то есть перемещение всех занятых (свободных) участков в сторону возрастания (убывания) адресов, так, чтобы вся свободная память образовала единую непрерывную область. В дополнение к функциям, которые выполняет ОС при распределении памяти переменными разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Этот метод иногда называют схемой с перемещаемыми разделами. В идеале фрагментация после сжатия должна отсутствовать.

Сжатие может выполняться либо при каждом завершении задачи, либо только тогда, когда для вновь поступившей задачи нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц, а во втором - реже выполняется процедура сжатия. Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то преобразование адресов из виртуальной формы в физическую должно выполняться динамическим способом. В идеале фрагментация после сжатия должна отсутствовать.

Рис. 23. Распределение памяти перемещаемвми разделами

Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, а алгоритм выбора оптимальной стратегии сжатия очень трудоемкий, что часто перевешивает преимущества данного метода.

Виртуальная память

Уже давно существует проблема размещения в памяти программ, размер которых превышает размер доступной памяти (один из вариантов ее решения –организация структур с перекрытием рассмотрен в 6.3.1) При этом предполагалось активное участие программиста в процессе сегментации и загрузки программы.

Было предложено переложить проблему на компьютер. Развитие архитектуры компьютеров привело к значительному усложнению организации памяти, соответственно, усложнились и расширились задачи операционной системы по управлению памятью. Одним из главных усовершенствований архитектуры стало появление виртуальной памяти (virtual memory). Она впервые была реализована в 1959 г. на компьютере Атлас, разработанном в Манчестерском университете, и стала популярной только спустя десятилетие.

Определение: виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает.

Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную оперативную память. Пользователь пишет программы так, как будто в его распоряжении имеется однородная оперативная память большого объема, но в действительности все данные, используемые программой, хранятся на одном или нескольких разнородных запоминающих устройствах, обычно на дисках, и при необходимости частями отображаются в реальную память.

Определение: виртуальная память ¾ это совокупность программно-аппаратных средств, позволяющих пользователям писать программы, размер которых превосходит имеющуюся оперативную память; для этого виртуальная память решает следующие задачи:

· размещает данные в запоминающих устройствах разного типа, например, часть программы в оперативной памяти, а часть на диске;

· перемещает по мере необходимости данные между запоминающими устройствами разного типа, например, подгружает нужную часть программы с диска в оперативную память;

· преобразует виртуальные адреса в физические.

Все эти действия выполняются автоматически, без участия программиста, то есть механизм виртуальной памяти является прозрачным по отношению к пользователю.

Таким образом, при помощи виртуальной памяти обычно решают двезадачи:

Во-первых,виртуальная память позволяет адресовать пространство, гораздо большее, чем емкость физической памяти конкретной вычислительной машины. В соответствии с принципом локальности для реальных программ обычно нет необходимости в помещении их в физическую память целиком. Возможность выполнения программы, находящейся в памяти лишь частично имеет ряд вполне очевидных преимуществ:

· Программа не ограничена величиной физической памяти. Упрощается разработка программ, поскольку можно задействовать большие виртуальные пространства, не заботясь о размере используемой памяти.

· Поскольку появляется возможность частичного помещения программы (процесса) в память и гибкого перераспределения памяти между программами, можно разместить в памяти больше программ, что увеличивает загрузку процессора и пропускную способность системы.

· Объем ввода-вывода для выгрузки части программы на диск может быть меньше, чем в варианте классического свопинга, в итоге, каждая программа будет работать быстрее.

Во-вторых,обеспечение контроля доступа к отдельным сегментам памяти и в частности защиту пользовательских программ друг от друга и защиту ОС от пользовательских программ - обеспечение защиты.

Хотя известны и чисто программные реализации виртуальной памяти, это направление получило наиболее широкое развитие после получения соответствующей аппаратной поддержки. Идея аппаратной части механизма виртуальной памяти состоит в том, что адрес памяти, вырабатываемый командой, интерпретируется аппаратурой не как реальный адрес некоторого элемента основной памяти, а как некоторая структура, где адрес является лишь одним из компонентов наряду с атрибутами, характеризующими способ обращения по данному адресу.

Все методы управления памятью могут быть разделены на два класса: методы, которые используют перемещение процессов между оперативной памятью и диском, и методы, которые не делают этого (рисунок 2.8). Начнем с последнего, более простого класса методов.


Рис. 2.8. Классификация методов распределения памяти

Распределение памяти фиксированными разделами

Самым простым способом управления оперативной памятью является разделение ее на несколько разделов фиксированной величины. Это может быть выполнено вручную оператором во время старта системы или во время ее генерации. Очередная задача, поступившая на выполнение, помещается либо в общую очередь (рисунок 2.9,а), либо в очередь к некоторому разделу (рисунок 2.9,б).


Рис. 2.9. Распределение памяти фиксированными разделами: а - с общей очередью; б - с отдельными очередями

Подсистема управления памятью в этом случае выполняет следующие задачи:

сравнивая размер программы, поступившей на выполнение, и свободных разделов, выбирает подходящий раздел,

осуществляет загрузку программы и настройку адресов.

При очевидном преимуществе - простоте реализации - данный метод имеет существенный недостаток - жесткость. Так как в каждом разделе может выполняться только одна программа, то уровень мультипрограммирования заранее ограничен числом разделов не зависимо от того, какой размер имеют программы. Даже если программа имеет небольшой объем, она будет занимать весь раздел, что приводит к неэффективному использованию памяти. С другой стороны, даже если объем оперативной памяти машины позволяет выполнить некоторую программу, разбиение памяти на разделы не позволяет сделать этого.

Распределение памяти разделами переменной величины

В этом случае память машины не делится заранее на разделы. Сначала вся память свободна. Каждой вновь поступающей задаче выделяется необходимая ей память. Если достаточный объем памяти отсутствует, то задача не принимается на выполнение и стоит в очереди. После завершения задачи память освобождается, и на это место может быть загружена другая задача. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера. На рисунке 2.10 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так в момент t0 в памяти находится только ОС, а к моменту t1 память разделена между 5 задачами, причем задача П4, завершаясь, покидает память. На освободившееся после задачи П4 место загружается задача П6, поступившая в момент t3.


Рис. 2.10. Распределение памяти динамическими разделами

Задачами операционной системы при реализации данного метода управления памятью является:

ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти,

при поступлении новой задачи - анализ запроса, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения поступившей задачи,

загрузка задачи в выделенный ей раздел и корректировка таблиц свободных и занятых областей,

после завершения задачи корректировка таблиц свободных и занятых областей.

Программный код не перемещается во время выполнения, то есть может быть проведена единовременная настройка адресов посредством использования перемещающего загрузчика.

Выбор раздела для вновь поступившей задачи может осуществляться по разным правилам, таким, например, как "первый попавшийся раздел достаточного размера", или "раздел, имеющий наименьший достаточный размер", или "раздел, имеющий наибольший достаточный размер". Все эти правила имеют свои преимущества и недостатки.

По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный недостаток - фрагментация памяти. Фрагментация - это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти.

Читайте также: